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Abstract Predicting cloud performance from user’s perspective is a complex task,
because of several factors involved in providing the service to the consumer. In this
work, the response time of 10 real-world services is analyzed. We have observed long
memory in terms of the measured response time of the CPU-intensive services and
statistically verified this observation using estimators of the Hurst exponent. Then,
naïve, mean, autoregressive integrated moving average (ARIMA) and autoregressive
fractionally integrated moving average (ARFIMA) methods are used to forecast the
future values of quality of service (QoS) at runtime. Results of the cross-validation
over the 10 datasets show that the long-memory ARFIMA model provides the mean
of 37.5 % and the maximum of 57.8 % reduction in the forecast error when com-
pared to the short-memory ARIMA model according to the standard error measure of
mean absolute percentage error. Our work implies that consideration of the long-range
dependence in QoS data can help to improve the selection of services according to
their possible future QoS values.
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1 Introduction

In a cloud computing environment with service-oriented architecture, it is possible
to use services that are implemented by different vendors to create distributed enter-
prise applications that scale-up very well. This architecture is based on a distributed
element called service that uses standard and well-defined messages in extensible
markup language (XML) format. Services communicate in a loosely coupled man-
ner and collaboratively perform tasks. In fact, this relaxation from knowing service
implementations helps service providers to create composite services with arbitrary
implementations. It is even possible to use several instances of a service to improve
the availability.

E-commerce websites widely use web services on the Internet. When a customer
orders goods to an E-commerce website, there is a requirement to check his/her credit
card data. Confirming this data is usually accomplished with the help of a third party
that is a service card issuer. Upon confirming purchases, the providing company con-
tacts the transportation company to handle the shipment of the goods and deliver them
to the customers. This process can be defined and controlled easily in a service-oriented
architecture, and it is possible to control the performance of the process and identify
low performance subsets of the process or actors that cause difficulty in accomplishing
the whole task.

Services can be used either with static or runtime binding. In the first mentioned
approach, usable services are pre-defined and composition is statically created and
used. Although this approach can perform the computations in a distributed manner,
it has several shortcomings. For example, if one service fails at runtime, there will be
no way to fix the composition other than waiting for the failed service to be repaired.

A better approach is runtime binding, in which it is possible to find several candi-
dates to perform a single task and then use the best candidate at runtime. This approach
comes from standardization efforts within the IT industry. With the standardization of
operations and data formats, several services can be created by different vendors that
provide similar functionality. In this way, it is possible to choose better services from
candidates that provide desired functionalities to achieve the best possible quality. To
achieve such a goal, we need to log the quality of previously invoked services and use
it as a judgment basis for selecting better services from the available candidates.

Quality of service consists of several parameters that are beneficial for the cus-
tomers. The exact parameters are different according to the context, but some of the
general parameters are availability and performance measures, such as the response
time and bandwidth. Because the value of quality of service (QoS) comes from the
past, methods are needed to calculate the effective values at runtime. QoS values
change over time because of the dynamism in the environment; thus, a service that is
selected based on current QoS value can have shortcomings at runtime.

In this work, the response time of 10 real-world services is analyzed. An important
parameter in the time series is the memory of it. The autocorrelation of measured
data shows that the response time in CPU-intensive web services is a long-range
dependence time series.

Stationary process X (t) is said to have long-memory or long-range dependence [2]
if its sample autocorrelations, defined as ρ̂(k) = γ̂ (k)/γ̂ (0), decay to zero at a rate
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approximate to k−α for some 0 < α < 1. We use H = 1 − α/2, thus if the estimated
value conforms 1/2 < H < 1, we have a long-memory process.

Careful statistical investigation of measured QoS data of real-world web services
is the main contribution of our work, with the goal being to better understand QoS
data, which can lead to better identification of patterns and eventually to achieve better
predictions.

The remainder of the article is organized as follows. In Sect. 2, we provide back-
ground and related works. In Sect. 3, we discuss time series models, including the short-
memory model autoregressive integrated moving average (ARIMA) and the long-
memory model autoregressive fractionally integrated moving average (ARFIMA). In
Sect. 4, we discuss the dataset used for our experiments, and then we provide the results
of our extensive experiments. Finally, we provide conclusion and some discussion for
future works in Sect. 5.

2 Related studies

Time series analysis has a wide range of applications in science, and specifically
self-similar (fractal) time series are widely used in different scientific areas including
hydrology [9], geology [15], econometrics [18], physics [25], computers, communi-
cations, and many science fields that study nature.

Self-similarity is a feature that is found in several natural phenomena. When looking
at a fractal such as the Koch snowflake or Mandelbrot set, we see approximately the
same thing that we see by increasing the scale and zooming into the fractal. This
feature exists in many natural time series. For example, in 1965, Hurst [9] found this
feature in rain and drought conditions of the Nile river flow.

Although studies on self-similarity and fractals dates back to the seventeenth cen-
tury, among the studies of recursive features, Mandelbrot [16] defined self-similarity
and fractals in an exact manner using rigorous statistics and showed its application to
various aspects of science. This mathematician defined fractals as having the feature
of self-similarity and scale-invariance. The shape of scale-invariant objects does not
change much on different scales, and it is not possible to infer the scale by looking only
at the shape. In his paper, Mandelbrot introduced these properties using the length of
the coast of Britain. In fact, self-similarity is widely found in nature [17], and several
different phenomena can be described using self-similarity. Many research studies
have been accomplished in several areas while considering self-similarity, and we
examine only the related studies in the area of communications.

Mathematically speaking, Stochastic process Xt is considered self-similar with
self-similarity parameter H [2] if for any positive stretching factor c, the rescaled
process with time scale ct , c−H Xct is equal in distribution to the original process Xt .

Self-similar time series with long-range dependence are very useful in computer
and telecommunications, and are used for more realistic modeling of the Internet [22].
Leland et al. [13,14], by investigating the empirical results from carefully measuring
Ethernet traffic with a special custom-designed measurement device in a 4-year period
showed that the nature of Ethernet traffic is self-similar and long-range dependent
and that it is bursty at different time scales. This feature is not present in a Poisson
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traffic model that was shown to be suitable for modeling telephone networks and was
previously used in computer networks.

With these findings, and by considering the large effect of self-similar traffic on the
fast filling of routers’ buffers, it became clear that Poisson traffic is not suitable for
modeling network traffic in wide area networks [23]. Because of long-range depen-
dence (LRD), it is inevitable to revise network analytical models for network traffic,
find better traffic generation and simulation methods, re-evaluate network models and
measure their performance with fractal traffic.

LRD causes problems for the results that are obtained using queue networks in
analyzing routers and switches because most of the pre-LRD results were obtained
using the assumption of a Poisson traffic model, and the calculated buffer and other
parameters would not suffice in real-world LRD traffic. Thus, new extensions of net-
work calculus are used to determine the effects of self-similar traffic. In this research,
we do not intend to improve the design and/or restructure the routers and switches, but
we want to have a good selection among the available web services. Thus, we want to
predetermine the status of Internet services according to the history of their response
time.

Self-similar traffic has a serious impact on needed temporary buffer and other
attributes of routers and switches. Thus, the necessity of considering self-similarity
and providing models for investigating and forecasting these attributes is clear. Two
main features of self-similarity are the existence of large changes in a short period of
time (large variance) and the persistence of a feature over a long period of time and then
the disappearance of it. These two features were called the Noah and Joseph effect,
respectively, by Mandelbrot and Wallis [19] because of their similarity to historical
events. These effects are also available in Internet traffic time series. According to
statistical research on the causes of self-similarity, the root of this feature in Internet
traffic is that aggregating several ON/OFF sources with the Noah effect will create
aggregate traffic with the Joseph effect [32].

One of the most important features of self-similar traffic is that it preserves its bursty
feature at different scales. Statistically, this attribute means that self-similar time series
have the same statistical features at different time scales which range from seconds to
minutes or even hours. In addition, aggregating self-similar traffic does not result in
smoothing.

Previous studies in the area of Internet performance modeling can be categorized
into two separate categories (as shown in Fig. 1): traffic modeling and QoS modeling
using empirically measured data. Although these two categories have many things in
common, they have different goals. In the first category, which is traffic modeling, the
goal is usually to attain better modeling of traffic to improve the infrastructure and
create better routers, switches and other network equipment.

In the second category, the modeling of QoS, the goal is to predict the future states
of services to be able to select better services. Research in this category is usually
applicable where the goal is not to change the infrastructure, or it is not easily possible
to change it, but it is possible to choose between various services. In this case, it is
very important to know the dynamism of the service quality in the available services
to be able to choose service that will have better quality at runtime.
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Fig. 1 Taxonomy of research on Internet performance modeling

Using time series models to forecast future values of QoS has been considered by
different researchers in recent years. However, it is worth noting that none of these
studies have examined the memory of time series, and they have used common short-
memory models to forecast future values.

Cavallo et al. [4] gathered empirical QoS data by monitoring 10 web services over
a period of 4 months. They have collected more than 3,000 samples for each service,
including the time of request, size of request, response time, and success or failure
of the service invocation. Then, using this empirical data, they used several different
forecasting methods, including the last value, mean and ARIMA to calculate pos-
sible future values of the response time of the web services. This research showed
that ARIMA provides good forecasts, considering the error variance. In the men-
tioned research, kernel smoothing is used to reduce outliers, but our work shows that
large values in QoS data do not necessarily indicate errors in measurements, and they
can come from self-similarity as the underlying feature of the dataset. Thus, kernel
smoothing can create worse forecasts.

Solomon et al. [28] have tackled the problem of predicting future QoS values by
considering key performance indicators (KPIs) and predicting them using the ARIMA
method. The difference of their work from the previous work is the aggregation of
QoS data in time windows and then working on aggregated data as a key performance
indicator. In this work, ARIMA and linear regression are compared according to the
different error metrics mean absolute scaled error (MASE) and weighted absolute
percentage error (WAPE), which show the mean and worst error, correspondingly. In
each time window, an ARIMA model is created for each QoS parameter, and the best
model is used. Their results show that ARIMA provides better forecasts for aggregated
data.
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Considering the volatility in the above-mentioned dataset, Amin et al. [1] used
methods that are suitable for non-stationary methods and suggested using generalized
autoregressive conditional heteroskedasticity (GARCH) and self exciting threshold
autoregressive fractionally moving average (SETARMA).

Leitner et al. [12] provided a framework that attempts to minimize QoS violation
penalties by exploring QoS history data of several services in a composition and pro-
viding a good forecast. The mentioned research is one of the newest applications in the
area of web service QoS assurance and uses different prediction methods at different
levels of service level objectives (SLO) and especially the SRD model ARIMA to
predict the quality of composite web services at the level of Aggregation.

Thus, previous studies have ignored the important feature of “self-similarity” in
QoS data, which provides better knowledge about the nature of the data that can
eventually lead to better forecasts. In our work, with careful statistical investigation,
we show that measured response time of CPU-intensive services is self-similar and
has long-range dependence.

To fit and forecast long-memory time series, various models are proposed, among
which are ARFIMA, Fractionally Integrated generalized autoregressive conditional
heteroskedasticity (FIGARCH), and Gegenbauer autoregressive moving average
(GARMA). We use ARFIMA to forecast the measured response time values, and we
compare this approach with other methods such as the mean, last value, and ARIMA
to show that the LRD model ARFIMA can give better forecasts.

Granger and Joyeux [8] pointed that “models using fractional differencing will
not necessarily provide clearly superior short run forecasts, but they may give better
longer-run forecasts where modeling the low-frequencies properly is vital”. Results
of our experiments verify this hypothesis.

3 Modeling using time series analysis

Predicting future values of QoS with a small error margin can help in choosing better
services. One of the useful methods for achieving forecasts is time series analysis.
This method is widely used in econometrics, geological modeling, signal processing,
weather forecasting, and several other scientific contexts.

Various models are usable in time series analysis, but not all of them are necessarily
good for every type of time series. Thus, it is important to use time series models
that correctly specify the underlying data-generating process. To show that a specific
model fits well on a specific dataset and provides good forecasts, one should estimate
parameters that fit the model on the dataset and then choose a model that provides the
best forecasts and the least error according to standard error criteria.

3.1 Time series

First, we introduce the notations that are used in the remainder of the paper, and
then, several models, including naïve, linear regression, mean, Autoregressive (AR),
Moving Average (MA), ARMA, ARIMA and suitable models for long-memory time
series and the case of ARFIMA, are discussed.
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Considering a QoS variable such as X , the observed value at time ti (0 ≤ i ≤ k) is
denoted as X̂(ti ). So, the time series of observed values is denoted as:

X̂(t0), X̂(t1), · · · , X̂(tk) (1)

It is obvious that the predicted values of the time series are not exactly equal to
the real observed values. Thus, we show the values of the time series X at time ti by
Xi . To forecast future values, we first need to fit a time series model on the measured
values of the past.

3.1.1 Naïve

The easiest possible method is to use the last observed value (naïve). In many existing
systems, the last measured value of the QoS is used for the selection of services in the
future (next h time steps):

Xk+n = X̂(ti ) (2)

This method is very simple, but it ignores values other than the last value, which
can lead to inaccurate results and wrong service selections.

3.1.2 Mean

Using the mean of previously measured values is another simple method that is often
used in forecasting:

Xk+n =
k∑

i=0

X̂(ti )

k + 1
(3)

This method is less error-prone compared with the naïve method because it accounts
for all of the previously measured values in the future estimation. However, it has some
drawbacks, such as losing the variance. In this method, the variance of the previous
values is not presented, and the fluctuations are not modeled correctly [5]. It is useful
to mention that every other method that is used is typically compared with the mean
because if a method performs worse than the mean in forecast accuracy, it most often
uses more complex calculations, and thus, it is not worth using [10].

3.1.3 ARIMA models

In autoregressive models, the variable that is forecasted is calculated using a linear
combination of the values of the same variable. If {Zt } is white noise, then {Xt } is
called AR(p) or Autoregressive of degree p if [3]

Xt = ϕ1 Xt−1 + · · · + ϕp Xt−p + Zt (4)

in which the ϕi ’s are constants. In this formula, Xt is not regressed on independent
variables and instead is regressed on older values of the same variable Xt . If Zt is a
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random variable that has a mean of 0 and a variance of σ 2z, then Xt will be MA(q) if

Xt = Zt + βZt−1 + · · · + βq Zt−q (5)

where the θi ’s are constant. This equation can be written in simpler form using a
backward shift operator B j Xt = Xt− j as Xt = 	(B)Zt , in which 	(B) = 1 +
θ1 B + · · · + θq Bq .

In other words, MA(q) describes the current value according to q previous pulses,
and AR(p) describes the current value according to p previous events. Next, it is
possible to define ARMA(p, q) as a combination of these two:

Xt = ϕ1 Xt−1 + · · · + ϕp Xt−p + Zt + θ1 Zt−1 + · · · + θq Zt−q (6)

To use the ARMA model, first we need to ensure stationarity. A stationary time
series is a time series for which the statistical properties do not depend on the time
frame that the series is observed in. The unit root test is one of the objective tests
for stationarity; it tests for the differencing that is needed to achieve a stationary time
series. Several unit root tests are available that by different assumptions lead to different
results. The most useful of such tests are the augmented Dickey Fueller (ADF) and
Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test.

Here, we use the ADF test on which this model is estimated by

y
′
t = ϕyt−1 + β1 y

′
t−1 + β2 y

′
t−2 + . . . + βk y

′
t−k . (7)

in which y
′
t is the first difference time series, y

′
t = yt − yt−1. k is the number of lags

that are included in the regression. If the original yt needs differencing, then the ϕ̂

coefficient would be near to zero, and if yt is stationary, then it would yield ϕ̂ < 0.
The null hypothesis in the ADF test is that the data are non-stationary. Thus, the

large values of p show non-stationarity, and the small p values show stationarity in
the time series. Usually, a 5 % threshold is used, and when p is larger than 0.05,
differencing is considered to be necessary.

If a times series is non-stationary, then it is possible to use the ARIMA(p, d, q)

model by transforming it into a stationary time series using differencing. This arrange-
ment means that we transform the original time series by differencing d times, into
a secondary stationary time series. Thus, Wt = ∇d Xt = (1 − B)d Xt and Wt can be
written as

Wt = ϕ1Wt−1 + · · · + ϕpWt−p + Zt + θ1 Zt−1 + · · · + θq Zt−q ,

Zt = W N (0, σ 2).
(8)

Then, we perform model fitting and estimate the parameters according to certain
criteria. In the ARIMA(p, d, q) model, we first calculate d by applying the difference
operator several times to achieve a stationary process. Then, to estimate p and q,
according to the Akaike information criterion with correction for finite sample sizes
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(AICc) criterion, we test different values up to a certain limit. AICc is defined as [3]

AICc(ϕ, θ) = −2 ln L(ϕ, θ, S(ϕ, θ)/n) + 2(p + q + 1)n

n − p − q − 2
(9)

where ϕ and θ are calculated using the maximum likelihood method. One of the
features of AICc is that it considers a penalty for larger values of p and q, which
means that large values of these parameters are avoided. After finding p, d and q, the
model parameters should be estimated again using AICc.

3.1.4 ARFIMA model (time series with long memory)

Models that we previously discussed have short memory. Working with long-memory
time series, we should use the other forecasting models that are discussed here.
Three categories of such models are ARFIMA, GARCH, and GARMA. Here, we
use ARFIMA for modeling response time of Internet web services.

ARFIMA models were introduced by Granger and Joyeux [8]. In this model, frac-
tional differencing is used to achieve an ARMA process. The ARFIMA process is
defined as [21]:

ϕ (B) Xt = θ (B) (1 − B)−d εt (10)

where ϕ (B) = 1+ϕ1 B+· · ·+ϕB p is the AR coefficient, θ (B) = 1+θ1 B+· · ·+θq Bq

is the MA coefficient, and these two have no common roots. (1 − B)−d is the fractional
differencing operator, which is defined by

(1 − B)−d =
∞∑

j=0

η j B j = η (B) (11)

in which the η j function is defined as

η j = � ( j + d)

� ( j + 1) � (d)
(12)

where d < 1/2 , d �= 0,−1,−2, · · · , and {εt } is white noise with a finite variance.
In ARFIMA process{Xt }, for 0 < d < 1/2, the process has a long memory, and for
d = 0, it has a short memory. This model has been used for Internet traffic forecasting
[7,27] but not for QoS forecasting, for which we show here that LRD modeling is
applicable.

ARFIMA processes which have a seasonal part are called Seasonal autoregressive
fractionally integrated moving average (SARFIMA) processes. A general category
of Gaussian processes that have a long memory and seasonal part can be defined
according to their spectral density, as follows [21]:

f (λ) = g (λ) |λ|−α
r∏

i=1

mi∏

j=2

|λ − λi j |−αi (13)

123



682 H. Nourikhah et al.

where λ ∈ (−π, π ], 0 ≤ α, αi < 1, i = 1, . . . , r and g(λ) is a symmetric function
that is strictly positive, continuous and bounded. There are other assumptions with
respect to the symmetry of f that we omit here.

SARFIMA models have a useful attribute that can be used to identify them. A plot
of these processes has local minima at the frequencies λ = 2π j/s, j = 0, 1, . . .,
which is useful for identifying processes that have a seasonal part according to their
ACF. A similar feature exists in PACF for the LRD time series that have a seasonal
part.

However, as we show in the remainder of this paper, sometimes the intense fluctua-
tions of the time series are such that we can ignore the seasonality compared with those
large changes and consider the whole series to be stationary. In these cases, stationary
tests are useful, and if they imply stationarity, we can ignore that little seasonal part
and use a non-seasonal model of ARFIMA for the modeling.

3.2 Identifying long-range dependence

The LRD feature can be described as the persistence of autocorrelation for a long time,
and we use the Hurst exponent as a measure to show the existence of self-similarity
and long-range dependence. This parameter is usually shown by H and was introduced
by Hurst [9].

Not all self-similar time series are LRD. However, by looking at a Hurst exponent
estimate, we can make a judgment about the existence of short or long memory in the
time series: self-similar time series for which 1/2 < β < 1 are LRD, and those in
which 0 < β ≤ 1/2 are SRD. Several methods are proposed for estimating the Hurst
exponent [26,33], and three of these methods were used here as follows.

3.2.1 Rescaled range

The most famous method for estimating the Hurst exponent is the main method of
Harold Edwin Hurst, which appeared in his original work in the area of Hydrology
and was accomplished by observing the Nile River [9]. Hurst worked on flood and
drought periods of the Nile for a long period of time, and by considering the flow of
the river as a time series, he determined the level of water in an ideal reservoir. Based
on his studies on the Nile River, Hurst defined rescaled range (R/S) analysis, which
is more precisely defined in the works of Mandelbrot and Wallis [20].

We consider the time series Xn, n = 1, . . . , N and calculate the sample standard
deviation SN and the mean-adjusted rescaled range

ym =
m∑

n=1

(xn − x̄N ) =
(

m∑

n=1

xn

)
− mx̄N (14)

The range is defined as

RN = max
1≤m≤N

(ym) − min
1≤m≤N

(ym) (15)
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and the rescaled range is defined as Rn/Sn in the following way

E

[
Rn

Sn

]
= CnH (16)

For estimating the Hurst exponent, the time series is divided into n parts in which
n = N , N/2, N/4, . . . and Rn/Sn is calculated for all of the values of n. Then, the
mean is calculated over these values. After that, H is calculated using a power law.
This process can be accomplished graphically by drawing E [Rn/Sn] in a log–log plot
and fitting a straight line on the graph, and then calculating the slope of the line.

3.2.2 Periodogram

In this method, the Hurst exponent is estimated according to the spectral density of
the time series. When the series has long memory, the variance is infinite, and the
periodogram of the time series will conform to a power law. Thus, if the spectral
density of the time series in the frequency domain is shown in a log–log plot, it is
expected to be linear. In this way, the slope of the line will be 1 − 2H , and H can be
estimated using this theoretical relation. In practice, working on the lower 10 % of the
frequencies is sufficient, because only frequencies that are closer to 0 conform to the
power law. For estimating the Hurst exponent by this method [30], we first calculate

I (λ) = 1

2π N

∣∣∣∣∣∣

N∑

j=1

X j e
i jλ

∣∣∣∣∣∣

2

(17)

in which λ is the frequency, N is the number of elements in the time series, X j is
the dataset, and I (λ) is the spectral density. Thus, the LRD time series agrees with the
power law in the frequency domain and will have a periodogram that is proportional
to |λ|1−2H .

3.2.3 Aggregated variance

In this method, the Hurst exponent is estimated from the variance of an aggregated
time series. First, the original time series Xt is divided into blocks that have the initial
size of m = 1, and after that, in each subset, we calculate the mean as follows [26,33]:

X (m) = 1

m

km∑

i=(k−1)m+1

X (i) , k = 1, 2, . . . (18)

Then, we calculate the variance of X (m) (k). In fact, the time series is divided into
blocks that have the length of m, and then, the variance is calculated for each block.
The slope of the line (β) is calculated by fitting a straight line on a log–log plot of
the sample variance against the block size by the least squares method. Then, H is
estimated according to the theoretical relation β = 2H − 2.
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4 Data and results

4.1 Exploring data

The data that are used in this research are the measured QoS of 10 real Internet web
services over a period of four months. In this study, we focus on the response time of
the services. The used dataset was gathered by Cavallo et al. [4]. In Table 1, which
is extracted from that research, all 10 of the probed web services are defined, and a
description of each service is provided. In this study, we have analyzed these data
with careful statistical measures. All of the statistical works were performed using
the R environment for statistical computing [24]. We used the forecast [11] package
for performing the forecasts, fracdiff [6] for LRD modeling, and plyr [31] for data
aggregation.

Figure 2 shows the response time from the measured QoS data from the 10 web
services. Note that, the measurement period is 1 h for all of the series except for services
4 and 7, which have the rates of 2 h and 30 min, respectively. From the graphs, there
are specific features that are visible in the data, as follows; these visible features are
then carefully investigated using autocorrelation and estimation of Hurst exponent.

1. There are several bursts in the data that are not confined to a specific period of
time. This is visible in all of the series.

2. By examining the data at longer scales with shorter periods of time, it appears that
the shape of the graph is similar to a graph with larger scales and longer periods
of time. This visible feature—as defined before—is called self-similarity, and its
existence is investigated in the following section by estimating Hurst exponent for
each series. Except the series 3, 5, and 10, other series have this feature.

3. There is a strong correlation between the consecutive values. This is investigated
later by examining the autocorrelations of time series, and it is shown that again
only series 3, 5, and 10 lack this feature.

Table 1 Description of the monitored web services

Name Description

1 Amazon Searches in Amazon.com

2 Google Searches with Google.com

3 Bliquidity Information about liquidity in a banking system

4 Currency Converter Does currency conversion

5 Stock Quote Latest stock quotes

6 Fast Weather Weather forecasts for a city

7 Quote of the Day Random daily quotes each day

8 GetJoke Provides random jokes

9 Hyperlink Extractor Extracts all hyperlinks of a web page

10 XML Daily Fact Daily facts on web services, etc.
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Fig. 2 Response time of web services (in ms)
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Figure 3 shows the sample autocorrelation function (ACF) for all of the 10 services,
with lags of up to 96 h (4 days). By examining the ACF diagrams, two types of time
series are identifiable:

1. Short-memory or short-range dependent (SRD), in which the ACF decays expo-
nentially quickly to 0 and there is a finite sum. These are services 3, 5, and 10.

2. Long-memory or long-range dependent (LRD), in which the ACF has a power
law decay and an infinite sum. This means that the autocorrelation remains non-
negligible for a long period time.

Figure 3 also shows that except for services 3, 5 and 10, which are not CPU intensive,
the ACF of all of the other services decays slowly. Thus, we can intuitively say that
these services have a long memory, and in the next section, we statistically show the
existence of this feature by estimating the Hurst exponent. Investigating the causes of
long-range dependence in the QoS data requires separate research, but there are other
interesting features that are visible in the graphs. The ACF of these services conform
to another specific pattern: there are local maxima at lags of 24 (48 for service with
a 2-h data collection interval and 12 for service with 30-min data collection interval).
This result occurs in LRD time series that have a seasonal component. Please note that
because there are different sample rates for services nos. 4 and 7, the same rule works
for them.

All of the time series that have long-range dependence belong to services that do
information retrieval and/or some processing on the data. Services 1 and 2 search in
Amazon and Google, respectively, service 4 retrieves latest currency exchange rates
and does the currency conversion, service 5 retrieves weather forecasts for a certain
city, service 7 calculates a random number and retrieves a random joke, service 9
retrieves a web page and extracts all hyperlinks of the web page. Response time of
each of these web services exhibits LRD.

In contrast, time series that have short-range dependence belong to services that do
simple lookups which are not CPU intensive. Service 3 provides information about
liquidity in a banking system, service 5 provides latest stock quotes (low frequency
data), and service 10 provides daily facts on web services. Response time of each of
these web services exhibits SRD.

4.2 Estimating the Hurst exponent

As discussed in the previous sections, the Hurst exponent is used to examine the
existence of long-range dependence in a time series. The estimated values of Hurst
exponent, according to several estimators, including the aggregated variance, rescaled
range, and periodogram, are shown in Table 2.

Considering the shape of the ACF and the seasonality of the data, this variation
in estimated value of H (approximately 0.1) is acceptable. Thus, according to the
estimated Hurst exponent, except for rows 3, 5 and 10, which are bold values in
Table 2, all of the other time series have long-range dependence.
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Fig. 3 Sample autocorrelation for the response time of the 10 web services
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Table 2 Estimates of the Hurst
exponent

Hurst exponent
service no.

Aggregated
variance

R/S Periodogram

1 0.7601 0.7631 0.7602

2 0.728 0.6629 0.7383

3 0.5899 0.5759 0.668

4 0.8397 0.9452 0.9768

5 0.5392 0.5795 0.5087

6 0.8296 0.7569 0.7968

7 0.7823 0.6782 0.6069

8 0.8443 0.8067 1.0605

9 0.7793 0.8081 0.8893

10 0.5598 0.5686 0.5053

4.3 Forecasting results

Forecast error is calculated by subtracting the forecast value from the original measured
value: ei = yi − ŷi. Forecast accuracy measures are calculated based on ei and thus
they are scale dependent. One of the most commonly used measures is mean absolute
error (MAE) that is computed as [10]

MAE = mean (|ei |) (19)

Another important measure is mean absolute percentage error (MAPE) that shows
mean percentage of error, thus it is scale independent and it is widely used to compare
forecast performance of different forecasting methods. MAPE is computed as [10]

MAPE = mean (|Pi |) (20)

If method 2 provides less error compared to method 1, we calculate improvement
percentage according to

i =
(

MAPE1 − MAPE2

MAPE1

)
× 100 (21)

To calculate the precision of the different forecasting mechanisms, four different
forecasting methods (naïve, mean, ARIMA and ARFIMA) are used for modeling and
forecasting future values.

For calculating forecast performance, we did not confine ourselves to limited exper-
iments with special data. To achieve good accuracy in performance comparison of
different methods, we have done cross-validation [29] on all 10 available datasets. We
have used a fixed window as the training dataset and calculated the mean of forecast
error of each method by comparing forecasts and actual measured values, and we
have done this repeatedly by rolling the fixed window from the start to the end of each
dataset.
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Fig. 4 Comparing different forecasting methods according to MAPE, calculated over all 10 series

Because all values of response time are strictly positive, we have used logarithmic
transformation. This can be viewed as a Box–Cox transformation with λ = 0, defined
as

wt = f (x) =
{

log (yt ) , if λ = 0(
yλ

t − 1
)
/λ, otherwise

(22)

We do forecasting on transformed values, and then we transform back these results
to the original space. This transformation is done for all of the four forecasting methods.

Figure 4 shows the accuracy of the different forecasting methods according to
MAPE for forecast horizons from 1 to 48. Please note that this is calculated over
all 10 series. ARFIMA on the mean provides better forecast on all 10 services, and
also provides less variant errors that can be seen on the boxplot of the forecast errors.
ARFIMA forecast improvement over three other forecasting methods can be seen in
Table 3.
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Table 3 ARFIMA forecast improvement over three other forecasting methods according to MAPE (on
LRD series)

Naïve (%) Mean (%) ARIMA (%)

Mean improvement of ARFIMA compared to … 44.0 44.6 37.5

Maximum improvement of ARFIMA compared to … 48.7 54.0 57.8

Overall, value of forecast error for each method is calculated from more than 29,000
experiments across the 10 different datasets. Results show that for response time of
web services that show LRD, ARFIMA provides 37.5 % less error in the mean, and
maximum of 57.8 % improvement that occurs in maximum forecast horizon (h=48).
In our experiments, we have chosen the window size of 4 × 24 = 96 and maximum
forecast horizon of 2 × 24 = 48.

Our experiments are done using a Core i7-M processor. The time needed to fit
the ARFIMA model on a window of length 96 and forecast for the next 24 steps, was
about 100 ms on this system. We conclude that ARFIMA is fast, and needs small set of
measurement history to give acceptable results, thus it is a good choice for forecasting
QoS data of web services.

As it can be seen on Fig. 5, ARFIMA shows considerable reduction of forecast error
on LRD series. For services 3, 5, and 10 that are not CPU intensive and their measured
response time is SRD, difference between forecast error of ARIMA and ARFIMA is
limited, but even in these situations, ARFIMA provides slightly better forecasts.

5 Conclusions and future works

In this study, we have analyzed measured web service QoS data, and by comparing the
results of three different methods, we estimated the Hurst exponent and showed the
presence of long-range dependence in measured response time of CPU-intensive web
services. Further investigation of ACF for the response times showed the presence of
a seasonal part in the data with a period of 24 h. However, ADF test over the data
showed that with the large fluctuations of data, the statistical characteristics do not
vary much over time, and the data can be considered to be stationary.

Considering the presence of LRD in QoS data, it is possible to use this feature and
achieve more exact forecasts for the future values of QoS. Using fractional differencing
to model LRD series may not provide superior results in short-term forecasts, but
with longer forecast horizons, it can provide better predictions with less error. We
have verified the hypothesis by extensive experiments on QoS data. Results of our
experiments and comparisons show that in measured response time of web services
that exhibit LRD, ARFIMA provides better fit. Also, using standard error measure
of MAPE, we have shown that forecasts of ARFIMA have higher accuracy in longer
forecast steps compared to the ARIMA, mean and naïve. The other advantage of
considering LRD is the achievement of more precise prediction intervals compared
with the other methods. Naïve estimation provides an ultra-wide confidence interval
that is not usable in practice. In addition, the mean provides a constant confidence
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Fig. 5 Comparing different forecasting methods according to MAPE
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Fig. 5 continued
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Fig. 5 continued

interval that is not useful. In the ARIMA method, the confidence interval widens as
time passes, and for long-term forecasts it reduces the accuracy. Only ARFIMA can
make use of the strong correlation between consecutive values. Thus, using predicted
values of this forecast method that makes use of LRD leads to better selection of
services from the set of candidates.

In previous related studies, even the latest studies on web services QoS, the memory
of these time series has not been investigated, and the existence of long-range depen-
dence was not shown. In this work, by considering LRD feature of QoS data, we have
used the ARFIMA forecasting method that makes use of this feature to better forecast
future values, and we have compared the accuracy of the ARFIMA to SRD methods.

It is worth noting that further work in this area is needed, and here we provide
insight on possible future works. LRD models are not limited to the ARFIMA, thus
studying other LRD models like GARMA and FIGARCH, and measuring the forecast
performance of these methods on QoS time series can be an area of future research.
Also, careful investigations of seasonality in the data, the benefit of using seasonal
methods and the effect of lack of data on forecast performance are also needed.

We plan to study more on the roots of LRD in QoS data of web services on the
Internet, because the suggested causes of LRD in Internet traffic are not necessarily
applicable to the context of web services. In our work, we have observed that response
time of services that are not CPU intensive does not have long memory. This observa-
tion should be investigated more and confirmed with further experiments. Other than
these future works, studying the effect of the provided point forecast and the prediction
intervals on the rate of service level agreement (SLA) violation is an important area
of the future researches that we aim to follow.
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