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Abstract The high efficiency video coding (HEVC) standard achieves double com-
pression efficiency compared with H.264/advanced video coding at the cost of huge
computational complexity. Parallelizing HEVC encoding is an efficient way of ful-
filling this computational requirement. The parallelization algorithms considered in
HEVC, such as Tiles or wavefront parallel processing (WPP), rely on creating picture
partitions that can be processed concurrently in a multi-core architecture. However,
this paper focuses on the design of a heterogeneous parallel architecture composed of
a graphic processing unit (GPU) plus a multi-core central processing unit (CPU) to
take advantage of these techniques. Experimental results indicate that our approach
outperforms WPP in terms of speed-up and reduces the delay introduced by alterna-
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tive techniques such as the group of pictures-based processing pattern. Moreover, the
proposed algorithms obtain speed-up values of over 4× on an Intel quad-core CPU
and an NVIDIA GPU with negligible quality losses.

Keywords HEVC · Parallelization · GPU · Multicore · Heterogeneous computing

1 Introduction

The new high efficiency video coding (HEVC) standard [3] has recently been estab-
lished by the joint collaborative team on video coding (JCT-VC), an expert group
proposed by the ISO/IEC moving expert group (MPEG) and the ITU-T video coding
expert group (VCEG). HEVC was initially conceived with the purpose of achieving
adequate efficiency and performance to deliver high-quality multimedia services over
bandwidth-constrained networks, and also to support formats beyond high definition
(HD) resolution, such as the new 4 and 8K formats. This standard is based on a well-
known block-based hybrid video coding architecture, as was its predecessor, namely
H.264/MPEG4 part 10—advanced video coding (AVC) [9], which it outperforms
in terms of bitrate reduction at the same quality [12]. Among other features, HEVC
incorporates multiple new coding tools, such as highly flexible quad-tree coding block
partitioning, which includes new concepts such as coding unit (CU), prediction unit
(PU) and transform unit (TU) [2,12].

All these improvements imply a considerable increase in the encoding time. Fortu-
nately, this computational cost can be efficiently reduced by adapting the sequential
algorithm to parallel architectures. Over the past few years the computing industry
has tended towards including several processing units on a single shared chip. In fact,
in terms of massive data computing, there are devices called graphic processing units
(GPUs) which are normally used as co-processors to assist the central processing unit
(CPU). CPUs and GPUs have different instruction set architectures, forming what it
is known as a heterogeneous computing platform [7].

As an aid to this parallelism, HEVC places special emphasis on a hardware-friendly
design and parallel-processing architectures. These parallelization approaches are
Tiles [11] and wavefront parallel processing (WPP) [8], and these will be described in
Sect. 2. Basically, these parallelization algorithms rely on creating picture partitions
that break some dependencies for prediction, context-adaptive binary arithmetic cod-
ing (CABAC) modelling, and/or slice header overhead. As a result, coding losses may
appear.

At this point, this paper proposes a GPU-based algorithm that makes use of this
device in order to efficiently parallelize the motion estimation (ME) carried out in the
HEVC inter-prediction algorithm. This algorithm is completely asynchronous from
the CPU, in such a way that it can execute operations from other modules, resulting
in lower execution times. Additionally, in terms of coding efficiency, this algorithm
makes use of a full search pattern, providing even better Bjøntegaard Delta rate (BD-
rate) results than the reference algorithm in some cases.

Furthermore, this algorithm can be combined with multiple coarse-grained paral-
lelization techniques such as the aforementioned ones in a heterogeneous architec-

123



Accelerating HEVC using heterogeneous platforms 615

ture. In fact, this paper shows the results of combining this GPU-based proposal with
two different parallelization techniques: WPP and a group of pictures (GOP) based
coarse-grained algorithm used in previous standards. These algorithms allow a mul-
ticore system to process multiple coding tree units (CTUs) by splitting the frame in
rows or the sequence in GOPs, respectively. In either case, the motion estimation of
these regions is issued to the device, reducing the idle time of the whole architecture.

The proposed architecture is tested by comparing their results with the ones provided
by the HEVC Test Model (HM) [10], outperforming them in terms of speed-up and
coding efficiency. Results show speed-ups of up to 4.78× on a quad-core CPU using
four threads plus simultaneous multithreading (SMT) with negligible rate-distortion
(RD) penalties. Additionally, Radicke et al. [13] propose another GPU-based algo-
rithm that makes use of a diamond search. Compared with this another proposal, our
algorithm achieves better BD-rate values, ranging from 0.8 to 1.8 %.

The remainder of this paper is organized as follows: Sect. 2 includes the technical
background of the new HEVC standard, while Sect. 3 identifies the related work
which is being carried out on the topic. Section 4 introduces our proposed architecture.
Experimental results are shown in Sect. 5. Section 6 concludes the paper and includes
some possible lines of action for future work.

2 Technical background

As mentioned in the previous section, the main target of HEVC is to achieve lower
bitrates for video streams while maintaining the same observable quality. In order to
make this possible, HEVC introduces new coding tools with respect to its predecessor,
H.264/AVC, and these enable a notable increase in coding efficiency. One of the most
important changes affects picture partitioning, which is now performed following a
quadtree structure. HEVC dispenses with the terms macro-block (MB) and block for
the ME and the transform, respectively, and introduces three new concepts: CU, PU
and TU. This structure leads to a flexible coding to suit the particularities of the frames.
Each picture is partitioned into 64×64 pixel. pixel square regions called CTUs, which
replace the MB structure of previous standards. Each CTU can be recursively divided
into four smaller sub-areas called CUs, whose size ranges from 8×8 to 64×64 pixel.
These regions may contain one or several PUs and TUs. This quadtree structure is
shown in Fig. 1, in which each node represents one of the four CUs in which a CTU
might be divided. For each level (current size of the CU), the split flag (SF) indicates
whether it has been decided to split the corresponding CU or not.

For intra-picture prediction, a PU uses the same 2N × 2N size as that of the CU
to which it belongs, allowing it to be split into quad N × N PUs only for CUs at the
maximum depth level. Therefore, the PU size ranges from 64 × 64 to 4 × 4 pixels.
For inter-picture prediction, several rectangular block shapes (square and non-square)
are available, defining eight different PU sizes (2N × 2N, 2N × N, n × 2N, N × N,
2N × U, 2N × D, nL × 2N, nR × 2N). The prediction residual obtained in each PU is
transformed using the residual quad tree (RQT) structure, which supports various TU
sizes from 32 × 32 to 4 × 4. For the transform of intra 4× 4 PU residuals, an integer
approximation of the discrete sine transform (DST) is used instead.

123



616 G. Cebrián-Márquez et al.

Fig. 1 CTU quadtree structure partitioning

High efficiency video coding (HEVC) checks most of the PUs (inter and intra
modes) to decide whether it should split a CU or not, depending on the best RD case.
Furthermore, in the case of inter prediction, for each of these PU partitions an ME
algorithm is called. The wide range of possibilities makes this module much more
computationally expensive than its predecessor, the one in the H.264/AVC standard.
HEVC introduces changes in other modules too, such as intra prediction (where a
total of 35 different coding modes can be selected), the new PU modes (asymmetric
modes), additional image filters or new transform sizes, among others. As expected,
the selection of the optimal partitioning for each CU/PU/TU is an intensive time-
consuming process due to the huge number of combinations that have to be evaluated.

With the aim of reducing this huge complexity, the new HEVC codec also includes
new parallelization techniques such as Tiles [11] and WPP [8]. On the one hand, Tiles
are square or rectangular shape partitions where dependencies are broken across tile
boundaries [11], making it possible to process them independently, taking into account
that coding losses may appear. The in-loop filters (deblocking and sample adaptive
offset, SAO), however, can still cross these boundaries. The number of tiles and their
location can be defined for the entire sequence or changed from picture to picture.
On the other hand, WPP allows the creation of picture partitions (rows) that can be
processed in parallel. Unlike Tiles, entropy encoding and prediction are allowed to
cross partitions in order to minimize coding losses. Nevertheless, coding dependencies

123



Accelerating HEVC using heterogeneous platforms 617

(a) Tiles partitioning (b) WPP partitioning

Fig. 2 Partitioning and processing order of Tiles (a) and WPP (b)

make it necessary to have a delay of at least two CUs between consecutive rows, in
a similar way to segmentation in a computer architecture [5,8]. For this reason, not
all the processes can start encoding these rows at the same time, which means low
CPU utilization at the beginning and at the end of a frame, thus incurring the so-called
“ramping inefficiencies”. Both techniques are depicted in Fig. 2, in which an example
of partitioning is shown for Tiles and WPP, respectively, as well as the corresponding
processing order of the inner CUs.

Tiles and WPP have different merits and disadvantages. WPP is generally well
suited for the parallelization of the encoder and the decoder due to its high number of
picture partitions with low compression losses. However, the amount of parallelism
with Tiles can be even higher, as the number of regions into which a frame is divided
may vary. Additionally, WPP does not introduce artifacts at partition boundaries, as
is the case for Tiles. In order to simplify the implementation, it is not possible to use
Tiles and WPP simultaneously in the same compressed video sequence.

In either case, these approaches need parallel architectures to exploit their poten-
tial and, hence, to reduce the computational complexity of HEVC. In this respect,
new architectures composed of multi-core CPUs and GPUs are being introduced in
high-performance computing. A multi-core processor is composed of several proces-
sors sharing the same chip, while GPUs are composed of hundreds of similar simple
processing cores, designed and organized with the goal of achieving high performance.
These cores are grouped into stream processors that perform single instruction multi-
ple data (SIMD) operations, which are suitable for arithmetic intensive applications.
The main feature of these devices is a large number of processing elements integrated
on a single chip at the expense of a significant reduction in cache memory.

3 Related work

As far as the related work in the literature is concerned, there have been many
approaches focusing on accelerating different modules of the H.264/AVC encoding
algorithm by means of parallel computing [4,14,16]. However, in the framework of
HEVC, the first parallel approaches were focused on reducing the complexity of the
decoding algorithm; in [5], the authors improve the WPP approach. The idea consists
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of once there are no available rows in the current picture, the next one starts being
processed. In this way, the ramping inefficiencies of WPP can be mitigated by over-
lapping the execution of consecutive pictures. This proposal was called overlapped
wavefront (OWF). As a limitation, search areas need to be constrained to the region
of the reference frame that has been already reconstructed.

In the context of this paper, which is more focused on the encoder side, there are
not many approaches. OWF might work for the encoder, but no results were given in
[5]. Yu et al. [18] proposed in a parallel candidate list to parallelize the motion vector
prediction, but the proposal is not standard compliant. Later, in [17], the authors
reduced the encoding time by up to 13 times using a 64-core architecture, which is far
less accessible than the one used in this paper. Finally, Wang et al. proposed in [15] a
scheme similar to the one in this paper based on a GPU plus multi-core CPU, but the
major shortcoming of this paper lies in the fact that they did not use the HM reference
software [10] and, thus, the RD results provided are worse due to the fact that not all
coding tools were implemented [15].

In [13], the authors propose a GPU-based motion estimation algorithm that differs
in some aspects from the one proposed in this paper. On the one hand, instead of
performing a full search, the pattern used in this paper corresponds to a diamond
search. This pattern may not obtain the best possible results, as not every position
in the search area is checked. On the other hand, fractional motion estimation is
also performed on the device, which leads to higher speed-up values. However, the
absence of motion vector predictors (MVP) may have some negative effects on the
coding efficiency of the algorithm.

4 Proposed algorithms

As seen before, parallelization is possible in both the encoder and the decoder using
the algorithms defined in the standard, among others. Nonetheless, these are designed
to be executed on a multi-core CPU, taking advantage of the capabilities that multiple
threads may offer, but not taking into account other devices. Heterogeneous architec-
tures such as the ones formed by the association of a multi-core CPU and a GPU are
utilized in this paper, making use of the immeasurable power they can provide. The
combination of a GPU-based motion estimation algorithm and two coarse-grained
parallelization techniques is described in the following subsections.

4.1 GPU-based inter prediction algorithm

As motion estimation is the most resource intensive operation on the encoder side [12],
this algorithm aims to reduce the time spent on the CPU by performing these searches
on a GPU device. Nevertheless, taking into account that data transfers between host
and GPU are highly time-consuming, these operations are performed asynchronously.
In this way, time spent on the integer motion estimation (IME) is negligible compared
with the default search algorithm.

As soon as a GOP starts being processed, it is possible to transfer the original frames
that will be encoded to the device, making them available for subsequent uses. Later
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Fig. 3 GPU-based interprediction algorithm activity diagram

on, these frames are updated with their reconstructed version when they are encoded
(and decoded in-loop) to correctly carry out motion estimation on the device. These
operations are shown in Fig. 3.

When the encoder starts processing a slice, the host queues the execution of two
consecutive kernels that perform the integer motion estimation of every PU partition
in the first CTU. The first kernel executes the operations required to calculate the sum
of absolute differences (SAD) residuals across a search area in the reference frame,
while the second one determines which motion vector (MV) may offer the best possible
result.

This algorithm relies on the fact that every PU size established by the standard is
divisible by four, and taking into account the nature of the SAD operation, it is possible
to calculate the residual information of a PU partition from the composition of its 4×4
SAD partitions.

Following this approach, the previously mentioned kernel distributes a device thread
per sample in the reference search area. Every thread is responsible for calculating all
the 4×4 SAD blocks in a CTU, taking as MV its position in the search area. Once
these blocks are calculated, all the running threads put them together to obtain the PU
partitions into which a CTU might be divided. From another point of view, the results
of this step would be equivalent to a full-search algorithm performed for every PU
partition.

At this point, the second kernel runs a reduction algorithm over the residual data
obtained from the first one, so that the result of the GPU algorithm is a single table
containing the best MV for every PU partition, which is copied asynchronously to the
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host. After the transfer is finished, motion search operations related to the next CTU
are then issued to the device.

By the time the host needs to perform the motion estimation of the CTU, integer
MVs should be ready to be queried, it only being necessary to perform fractional
motion estimation (FME) of the PU partitions which have not been skipped by the
encoder.

4.2 Joint algorithms

As a consequence of the computational limit of a single processor, the idea of having
multiple cores on the same chip was successfully introduced some time ago. One of
its most relevant benefits is that a parallel application can achieve speed-up values in
direct proportion to the number of cores. This, along with the ever-expanding existence
of this kind of architectures, motivated the JCT-VC to include parallelism in HEVC,
which was implemented by breaking some dependencies while trying to provide as
much coding efficiency as possible.

These new techniques, however, have some issues that make them inadequate in
some particular situations. Nevertheless, many algorithms used in previous standards
are still applicable to HEVC. In this way, this subsection will present two different joint
algorithms, one based on WPP and another one on a traditional GOP-based division
pattern. This will show that our GPU-based proposal can be combined with many
coarse-grained parallelization techniques.

4.2.1 WPP + GPU-based inter prediction

Unlike Tiles, WPP is able to keep some dependencies across partition boundaries, thus
obtaining very good coding efficiency results. Even though this might have an effect
on the maximum speed-up that it can achieve [5], WPP has been the algorithm chosen
as the basis for the first of our joint proposals, aiming to achieve a trade-off between
both parameters.

In our heterogeneous architecture, both the multi-core CPU and the GPU algorithms
are independent. While WPP performs a coarse-grained parallelization of the whole
encoding process, our GPU-based algorithm is able to carry out the IME operation.
This independence makes it possible to combine these algorithms in a single proposal,
thus obtaining higher speed-up values at the expense of a negligible increment in
coding efficiency losses.

As depicted in Fig. 4, WPP allows multiple threads to process several CTUs con-
currently (shaded regions). A single GPU device can carry out the integer motion
estimation of these CTUs, queueing several kernels into the GPU. In particular, all
these CTUs are located in the current frame and share the same reference list, i.e. the
search areas can be found in the same frame, as shown in the figure. As a result of
processing multiple CTUs, the device is fully utilized, lowering idle times. In addition,
the GPU can process different kernels independently of the CPU in such a way that
the host can continue processing other modules concurrently.
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Fig. 4 Combination of WPP and the GPU-based proposal (4 threads)

4.2.2 GOP-based pattern + GPU-based inter prediction

Just as in previous video coding standards, HEVC offers an independent GOP-based
encoding pattern into which a sequence can be divided. In this way, this second joint
algorithm consists in assigning each GOP to a different thread, taking into account
that no dependencies have to be broken between them. Due to this independence, the
RD results obtained by this algorithm are very similar to the ones from the sequential
algorithm. Moreover, this architecture is scalable to any number of cores.

The proposed architecture has a module splitter and joiner to allocate tasks to avail-
able cores and receive their results. Moreover, a dynamic module has been included to
set up the execution schedule of the threads, taking into account that GOPs can have
different delays. This is mainly because (1) the encoding algorithm can be carried out
without following a sequential order and (2) different threads may have different time
requirements because of variable residual data and, thus, time spent to encode it may
diverge for each one.

Figure 5 shows how the GOPs into which a sequence is divided are issued to every
thread. In this way, each thread processes a different frame and, hence, the motion
estimation is performed on different CTUs. Therefore, the corresponding search areas
are not located in the same frame. However, in a similar way to the previous joint
algorithm, a single GPU device carries out the integer motion estimation of multiple
threads, filling up its occupancy and taking full advantage of the available resources.
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Fig. 5 Combination of the GOP-based algorithm and the GPU-based proposal

Once again, these operations are performed asynchronously, so that the CPU can keep
carrying out other operations of the encoding process.

5 Performance evaluation

In order to ensure a common framework, the JCT-VC group defined a document [1]
in which some test conditions are set out to homogenize comparisons between experi-
ments. Therefore, this performance evaluation has been carried out in accordance with
these guidelines, including the defined sequences and configuration parameters. This
document also defines the Bjøntegaard Delta metric (BD-rate) used to measure the
coding efficiency obtained by a proposal.

Random access (RA) with a color sub-sampling of 4:2:0 and 8-bit encoding was
the configuration chosen to carry out the evaluation, as it is the most widely used
configuration in real scenarios, but any other alternative might also work with our
proposed algorithm. The selected quantization parameter (QP) values were {22, 27,
32, 37}, but only their average results will be presented. No other changes were made
to the default parameters.

In this scenario, the aforementioned document [1] defines the set of video sequences
to be encoded, which are grouped into classes according to their resolution, with the
exception of Class F. This parameter will be relevant when presenting the results
achieved by WPP.

– Class A (2,560 × 1,600): Traffic, PeopleOnStreet.
– Class B (1,920×1,080): Kimono, ParkScene, Cactus, BasketballDrive, BQTerrace.
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– Class C (832×480): BasketballDrill, BQMall, PartyScene, RaceHorses.
– Class D (416×240): BasketballPass, BQSquare, BlowingBubbles, RaceHorses.
– Class F: BasketballDrillText (832 × 480), ChinaSpeed (1,024 × 768), SlideEditing

(1,280×720), SlideShow (1,280×720).

The sequential algorithm of HM version 10.0 [10] has been used as the reference
algorithm to calculate the corresponding speed-up and coding efficiency values. The
proposed GPU-based algorithm has been tested separately to calculate its influence
on the overall processing time. Later, the results achieved by the combination of this
algorithm along with WPP and the GOP-based algorithm are also presented, aiming
to show that the GPU-based proposal can be combined with several types of coarse-
grained algorithms.

All the measurements have been performed on a quad-core Intel Core i7-2600 CPU
running at 3.40 GHz and an NVIDIA GTX 560 Ti GPU running 384 CUDA cores at
the frequency of 1.6 GHz. Consequently, tests have been carried out with 2 and 4
threads, as well as 4 plus SMT, enabling the processor to execute eight threads.

To start with, Table 1 shows the results of the proposed GPU-based algorithm.
As can be seen, performing the IME operation on the GPU involves accelerating the
encoding process by 1.12× while incurring very low coding efficiency losses (due
to MV prediction), or even improving it in some cases. This is because the proposed
algorithm performs a more exhaustive search. It is necessary to emphasize that these
results are the theoretical limit of the integer ME, as the GPU has already calculated
every MV when the host needs to perform this operation. In other words, the IME is
performed in virtually perfect time.

On the other hand, Table 2 shows a comparison between the results provided by
the combination of WPP and the GPU-based algorithm, and the ones provided by
WPP itself. As can be seen, the proposal can reach speed-up values close to the ones
from a parallel efficient algorithm (i.e. threads are almost fully utilized), providing
that the frame size is large enough to exploit the available parallelism (see Class
A). Accordingly, WPP obtains lower speed-up results with lower resolutions (see
class D).

These results also show that combining both WPP and the GPU-based algorithm
surpasses the results of WPP in terms of speed-up, reaching values of up to 4.33×
on average (for Class A) compared with 3.92×, respectively. This behaviour is also
present in other classes besides Class A, although the achieved speed-up values may be
lower due to the aforementioned limitations of WPP. With regard to coding efficiency,
this time reduction has a negligible impact of 1.3 % average BD-rate.

Table 3, in turn, shows the same comparison on the basis of the GOP-based par-
allelization technique. Unlike WPP, it can be seen that this other algorithm does not
depend on the dimensions of the sequence, i.e. every class is able to achieve the same
amount of parallelism. Moreover, as there are no dependencies between GOPs, and
hence between threads, this algorithm is almost perfectly scalable.

Once again, it is shown that the combination of a coarse-grained algorithm, such
as the GOP-based pattern, and the GPU-based motion estimation module outperforms
the sole utilization of the former. In this way, this joint version can reach speed-ups
of 4.46× on average (for Class A), compared with 4.13×, respectively. Moreover, it
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Table 1 Speed-up and coding
efficiency results of the
GPU-based proposal

Class Video sequence Speed-up BD-rate (%)

A Traffic 1.07 0.2

PeopleOnStreet 1.17 −0.5

B Kimono 1.14 0.5

ParkScene 1.07 0.0

Cactus 1.11 0.2

BasketballDrive 1.19 3.5

BQTerrace 1.08 −1.0

C BasketballDrill 1.14 −0.5

BQMall 1.11 0.8

PartyScene 1.09 −0.3

RaceHorses 1.20 0.0

D BasketballPass 1.15 0.0

BQSquare 1.06 −0.1

BlowingBubbles 1.07 −0.4

RaceHorses 1.16 −0.5

F BasketballDrillText 1.13 −0.7

ChinaSpeed 1.15 −3.1

SlideEditing 1.05 3.0

SlideShow 1.08 4.3

Class A 1.12 −0.2

Class B 1.12 0.7

Class C 1.14 0.0

Class D 1.11 −0.2

Class F 1.10 0.9

Total average 1.12 0.2

achieves speed-up values of up to 4.78×. The average BD-rate of this joint algorithm
stands at 0.6 %.

As can be seen, the results of both joint algorithms can be connected with the ones
from Table 1, as the difference in speed-up and BD-rate compared with the GPU-based
algorithm by itself stands at around 1.10× and 0.2 %, respectively. This means that
the device is almost fully utilized, taking advantage of its resources and potential.

Choosing one or another coarse-grained parallelization technique will depend on
the scenario in which the HEVC encoder is involved, e.g. WPP is adequate for large
resolutions, while the GOP-based algorithm is ideal for transcoding operations. In
either case, our GPU-based proposal is able to improve upon the achieved speed-up
results with negligible coding efficiency penalties.

5.1 Comparison with related works

As stated in Sect. 3, Radicke et al. [13] propose a GPU-based motion estimation algo-
rithm that is substantially different from the one presented in this paper. This subsection
aims to evaluate these differences in terms of speed-up and coding efficiency.
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Table 2 Speed-up and BD-rate results comparison between WPP and its corresponding joint algorithm

Class Video sequence Speed-up BD-rate (%)

2 threads 4 threads 4 th. + SMT

WPP w/GPU WPP w/GPU WPP w/GPU WPP w/GPU

A Traffic 1.88 1.99 3.37 3.56 3.90 4.12 0.7 0.9

PeopleOnStreet 1.89 2.17 3.35 3.85 3.95 4.53 0.7 0.1

B Kimono 1.89 2.13 3.36 3.80 3.80 4.31 1.2 1.7

ParkScene 1.88 2.01 3.33 3.56 3.70 3.97 0.7 0.7

Cactus 1.89 2.07 3.31 3.65 3.72 4.13 1.1 1.4

BasketballDrive 1.90 2.22 3.40 3.98 3.76 4.43 1.5 5.0

BQTerrace 1.88 2.00 3.31 3.53 3.79 4.06 1.2 0.1

C BasketballDrill 1.80 2.00 2.73 3.09 2.72 3.09 1.4 1.1

BQMall 1.81 1.96 2.83 3.11 2.83 3.09 1.5 2.3

PartyScene 1.78 1.91 2.70 2.94 2.71 2.96 0.6 0.2

RaceHorses 1.78 2.09 2.79 3.30 2.84 3.35 0.8 0.8

D BasketballPass 1.67 1.88 1.75 2.01 1.75 2.01 0.9 0.9

BQSquare 1.60 1.66 1.84 1.92 1.84 1.92 1.3 1.3

BlowingBubbles 1.59 1.66 1.80 1.91 1.80 1.90 0.9 0.6

RaceHorses 1.63 1.85 1.81 2.10 1.81 2.10 0.9 0.4

F BasketballDrillText 1.79 1.97 2.71 3.05 2.70 3.05 1.4 0.7

ChinaSpeed 1.86 2.12 3.15 3.54 3.28 3.74 0.8 -2.3

SlideEditing 1.80 1.86 3.13 3.24 3.33 3.46 1.0 3.9

SlideShow 1.80 1.92 3.00 3.21 3.24 3.45 2.2 6.7

Class A 1.88 2.08 3.36 3.71 3.92 4.33 0.7 0.5

Class B 1.89 2.08 3.34 3.70 3.75 4.18 1.1 1.8

Class C 1.79 1.99 2.77 3.11 2.78 3.13 1.1 1.1

Class D 1.62 1.76 1.80 1.99 1.80 1.98 1.0 0.8

Class F 1.81 1.97 3.00 3.26 3.14 3.43 1.3 2.3

Total average 1.80 1.98 2.85 3.15 3.08 3.41 1.0 1.3

In order to achieve comparable results, the same test conditions as in [13] have
been used. In this way, the same four sequences have been encoded (Traffic and
PeopleOnStreet from Class A, and Kimono and ParkScene from Class B) using the
Low Delay P encoding configuration. This mode involves using P slices and, thus,
biprediction is not taken into consideration. As a result, both GPU-based algorithms
achieve higher speed-ups. The rest of the configuration parameters remain equal to
the ones provided in [1].

Our proposed heterogeneous architecture performs the fractional motion estimation
module on the host, as opposed to [13], which carries it out on the device. Therefore,
the speed-up results provided in Table 4 are not completely comparable. Nevertheless,
the fractional motion search consists on executing the same algorithm once again on a
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Table 3 Speed-up and BD-rate results comparison between the GOP-based parallelization technique and
its corresponding joint algorithm

Class Video sequence Speed-up BD-rate (%)

2 threads 4 threads 4 th. + SMT

GOP w/GPU GOP w/GPU GOP w/GPU GOP w/GPU

A Traffic 1.95 2.05 3.60 3.80 4.10 4.19 0.0 0.3

PeopleOnStreet 1.96 2.24 3.66 4.16 4.16 4.73 0.1 −0.6

B Kimono 1.94 2.18 3.44 3.95 3.95 4.48 2.3 2.8

ParkScene 1.93 2.06 3.61 3.86 4.09 4.38 1.5 1.6

Cactus 1.96 2.14 3.68 4.03 4.21 4.61 −0.5 −0.4

BasketballDrive 1.96 2.28 3.60 4.16 4.08 4.78 0.4 4.0

BQTerrace 1.96 2.07 3.64 3.88 4.07 4.33 −0.9 −1.9

C BasketballDrill 1.96 2.19 3.70 4.13 4.26 4.75 0.3 −0.1

BQMall 1.94 2.11 3.43 3.81 3.95 4.38 0.4 1.2

PartyScene 1.95 2.09 3.53 3.83 4.01 4.41 0.9 0.7

RaceHorses 1.93 2.27 3.54 4.20 4.06 4.71 −0.5 −0.4

D BasketballPass 1.85 2.12 3.42 3.95 3.98 4.55 0.4 0.5

BQSquare 1.95 2.02 3.67 3.81 4.16 4.30 0.8 0.6

BlowingBubbles 1.87 1.98 3.40 3.64 3.73 4.04 1.8 1.4

RaceHorses 1.92 2.19 3.52 4.03 4.11 4.60 −0.1 −0.6

F BasketballDrillText 1.97 2.17 3.68 4.08 4.24 4.70 0.4 −0.4

ChinaSpeed 1.95 2.21 3.64 4.15 4.09 4.72 −0.2 −3.2

SlideEditing 1.96 2.00 3.60 3.67 4.02 4.16 −1.0 2.1

SlideShow 1.86 1.96 3.23 3.44 3.45 3.75 2.0 6.8

Class A 1.95 2.14 3.63 3.98 4.13 4.46 0.0 −0.2

Class B 1.95 2.15 3.59 3.98 4.08 4.52 0.6 1.2

Class C 1.95 2.16 3.55 3.99 4.07 4.56 0.3 0.3

Class D 1.90 2.08 3.50 3.86 4.00 4.37 0.7 0.5

Class F 1.93 2.09 3.54 3.84 3.95 4.33 0.3 1.3

Total average 1.94 2.12 3.56 3.93 4.05 4.45 0.4 0.6

Table 4 Comparison between this proposal and the related work

Class Video sequence Speed-up BD-rate (%)

Proposal Radicke et al. [13] Proposal Radicke et al. [13]

A Traffic 1.12 1.92 0.0 1.8

PeopleOnStreet 1.32 2.07 −1.0 0.6

B Kimono 1.30 2.15 −0.1 0.7

ParkScene 1.17 1.94 0.1 1.4
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subsampled version of the region referenced by the best motion vector found. In this
way, it would be possible to adapt our proposed algorithm to perform this additional
operation. As a result, it would be expected to obtain equivalent speed-up results.

The main difference, however, lies in the fact that our proposed algorithm performs
a full search, while the algorithm in [13] carries out a diamond search, a similar pattern
to the one used as the default algorithm in HM. Taking into account that this pattern
focuses the search on the centre positions of the reference area, it might be unable to
find the best MV in the absence of motion predictors. On the contrary, a full search is
able to obtain the best MV. Since both proposals perform the same fractional motion
estimation operation afterwards, it is possible to compare the coding efficiency results
shown in Table 4. As can be seen, our algorithm achieves BD-rate savings ranging
from 0.8 to 1.8 % compared with the one proposed by Radicke et al. [13].

As a conclusion, the effects of choosing the right search pattern may have a notice-
able impact on the coding efficiency results. In this way, a full search is able to obtain
the best results with no performance impact on a SIMD architecture such as a GPU.

6 Conclusion and future work

In this paper, we have proposed a GPU-based motion estimation algorithm that, in
combination with some coarse-grained parallelization techniques, forms an efficient
parallel framework for the HEVC encoder. In this framework, these parallelization
techniques are performed on a multi-core CPU, while the GPU carries out the ME oper-
ation concurrently. Comparing our approach to some of these techniques (WPP and a
GOP-based algorithm), our experiments show that the corresponding joint algorithms
achieve better performance in terms of speed-up with negligible coding efficiency
penalties. Ongoing work will focus on using multiple GPUs and parallelizing other
modules, as well as considering other architectures such as Intel Integrated Graphics
or Intel Xeon Phi [6].
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