
J Supercomput (2015) 71:340–368
DOI 10.1007/s11227-014-1298-3

An improved nonlinear data dependence test

Jie Zhao · Rongcai Zhao · Xi Chen · Bo Zhao

Published online: 20 September 2014
© Springer Science+Business Media New York 2014

Abstract To further parallelize large-scale nonlinear scientific computing appli-
cations, some data dependence techniques for nonlinear subscripts, especially for
quadratic subscripts, were proposed in the past. The quadratic programming (QP) test
and polynomial variable interval (PVI) test are two representative techniques. The
QP test, which serves as an exact but time-consuming technique, always gives con-
servative results when the coefficient matrix of the quadratic terms is not positive
semi-definite, while the PVI test will lose efficiency when there exist mixed polyno-
mials in the dependence equation. Focusing on the dependences caused by quadratic
subscripts in nonlinear and irregular programs, we propose an improved nonlinear data
dependence test in this paper. We first normalize a quadratic equation which is written
in a general form, and determine whether the canonical equation is integer solvable in
the region of interest based on the interval equation theory. Experimental results show
that, compared with the QP test, our method maintains a much lower time complexity.
Furthermore, it can detect more general dependences than other dependence testing
methods like the PVI test in terms of quadratic subscripts.

Keywords Parallelizing compiler · Data dependence test · Nonlinear subscript ·
Interval equation

1 Introduction

Data dependence analysis is an essence to identify and exploit parallelism in programs.
It has been more than 40 years since the first data dependence test was proposed. Data
dependence techniques for linear subscripts were well developed. They have been
widely used in modern optimizing compilers. However, the multi-core technology

J. Zhao (B) · R. Zhao · X. Chen · B. Zhao
State Key Laboratory of Mathematical Engineering and Advanced Computing, Wuxi 214125,
People’s Republic of China
e-mail: zjbc2005@163.com; zhaojie8037@gmail.com

123

An improved nonlinear data dependence test 341

raises an in-depth parallelization request for almost all the applications of modern com-
puter systems, especially the light-weight multi-core mobile computing platforms. In
the meantime, various kinds of scientific and engineering computing tasks, including
the environmental and biological large-scale applications, are in need of paralleliza-
tion. Conventional analysis approaches are not able to satisfy these demands, as they
are all based on an assumption that each array subscript is an affine reference of its
enclosing loops’ indexes. As a result, they usually return a conservative result for
nonlinear references, which are becoming more and more ubiquitous in large-scale
irregular applications, thereby preventing the parallelization.

It has been proved [1] that the dependence testing problem is actually to determine
whether there is an integer solution to the system of equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f1(i1, . . . , in, . . . , j1, . . . , jn) = h1(i1, . . . , in) − g1(j1, . . . , jn) = 0
f2(i1, . . . , in, . . . , j1, . . . , jn) = h2(i1, . . . , in) − g2(j1, . . . , jn) = 0
...

fm(i1, . . . , in, . . . , j1, . . . , jn) = hm(i1, . . . , in) − gm(j1, . . . , jn) = 0

(1)

which subjects to the region R = {Lk ≤ ik, jk ≤ Uk |1 ≤ k ≤ n, ik, jk ∈ Z}. Here,
Lk and Uk are the lower and upper bounds of the kth enclosing loop. h and g in each
equation represent the referenced subscript expressions, respectively. In recent years,
due to the challenges of multi-core technology and parallelism requirements of large-
scale irregular computing tasks, data dependence techniques focusing on nonlinear
subscripts have also been widely studied.

Blume and Eigenmann [2] proposed a nonlinear dependence test called Range test.
They consider h and g of each equation, respectively, and calculate their extreme
values individually. If they are both monotonous and the maximum value of h hmax
is less than the minimum value of g gmin, the analysis determines that there is no
dependence. Literature [3] described the Quadratic test, which is designed for cases
when a dependence equation is quadratic and only one loop index appears in the
subscripts. Since loop-carried dependences should be considered, there will be two
variables x and y in the equation, which are different instances of the same loop index.
The algorithm iterates one variable with the other so as to narrow their value intervals.
When either of their intervals becomes null, the iteration process will be terminated
and “no dependence” is reported. Otherwise, each interval will be reduced to one point,
hereby resulting in the solution of the equation. If it is not an integer solution, there
is no dependence. Literature [4] presented an integer interval theory-based nonlinear
dependence test called polynomial variable interval (PVI) test. It views a dependence
equation as an interval equation and eliminates its variables one by one. Finally, only
one constant term and an integer interval in the left- and right-hand expressions are
left, respectively. If the constant term is not in the interval, there is no dependence.

It is not so easy to solve a system of nonlinear equations. In practice, a quadratic sub-
script is relatively common than other cases [3,5,6]. Hence, the research community
developed specific data dependence techniques for quadratic subscripts. For instance,
the Quadratic test described above is such a technique. It is based on a subscript-by-
subscript idea, which solves each equation step by step instead of the whole system.

123

342 J. Zhao et al.

The dependence equation is required to be in the form of

ax2 + by = c (2)

where x and y are different instances of the same loop index. The drawback of the
Quadratic test is manifest, but it is an exact test, saying it will find the integer solutions
of the equation when there is a dependence. To solve this problem, literature [5]
designed a quadratic programming-based nonlinear dependence test called quadratic
programming (QP) test. It regards the left-hand expression of a dependence equation as
the objective function of a quadratic programming problem, and calculates its extreme
value. If the minimum value is greater than zero, there is no dependence. When it is
not greater than zero, literature [6] analyzed whether a solution making the objective
function equal to zero is integer-valued via branch and bound method. If it is not an
integer solution, there is no dependence. However, the QP test is efficient only when
the coefficient matrix of the quadratic polynomials is positive semi-definite. In other
words, the QP test will always return there are dependences when the hypothesis is
not satisfied. The PVI test proposed in [4] is not a specific quadratic test, but it can
also be applied to analyze a quadratic equation, but mixed polynomials cannot appear
in the equation.

Focusing on the quadratic subscripts in modern nonlinear and irregular programs,
we propose an improved nonlinear data dependence test in this paper. First, we trans-
form a general quadratic equation into its canonical form. Second, we determine
whether the canonical equation is integer solvable in the region of interest with the
interval equation theory. Compared with existing techniques, our method can either
analyze more general quadratic dependences [4] or has a lower time complexity [5,6].

The remainder of this paper is structured as follows. Section 2 reviews existing
quadratic data dependence tests and presents our motivation. Section 3 describes the
process of normalizing a general quadratic equation. Section 4 introduces the interval
equation theory and some corresponding theorems to eliminate polynomials of an
equation. Section 5 describes the improved test algorithm. In Sect. 6, a case study
is illustrated to help readers to understand the algorithm. Section 7 performs our
experimental evaluations and Sect. 8 shows the theoretical analysis. The related work
is reviewed in Sect. 9. Finally, our conclusions are placed in the last section.

2 Motivation

As described above, the Quadratic test [3] can only analyze a set of equations with
one loop iteration variable in each equation. It requires that the dependence equation
must be in the form of Eq. (2). Reorganize it as following

y = (c − ax2)/b (3)

then the monotony of the variable y in the range of interest can be inferred according
to the restricted range [L , U] of x and the difference function when �x = 1. L and U
are the lower and upper bounds of the enclosing loop. If y is monotonically increasing
or decreasing, the dependence equation (2) can also be written as

123

An improved nonlinear data dependence test 343

x2 = (c − by)/a (4)

Accordingly, the generated lower and upper bounds of x are

L ′ =
√(− b

a

)+
L − (− b

a

)−
U + c

a

U ′ =
√(− b

a

)+
U − (− b

a

)−
L + c

a

(5)

If we intersect [L , U] with [L ′, U ′], a new range of x is obtained. Since the Eq. (3) is
monotonous, the repeating process is convergent and x’s range will be either reduced
to a point or null.

If y is not monotonous, the corresponding figure of the Eq. (3) is a parabola. In this
case, it will try to find the extreme value of the parabola and then divide the interval
into two parts to proceed.

To analyze more general dependence equations, the QP test is proposed to calculate
quadratic programming problem whose objective function is the left-hand expression
f (x)

min f (x) = CT x + 1

2
xT H x,

s.t. Ax ≤ b, x ≥ 0, (6)

In this model, f (x) represents the objective function of the system, while Ax ≤ b,
x ≥ 0 are the constraints introduced by the bounds of loop nests. A is a matrix in
which each element is the coefficient of the loop index in its reference. First, the
technique determines whether the coefficient matrix H of the quadratic polynomials
is positive semi-definite. If it is, the minimum f (x)min of the quadratic programming
system (6) can be figured out. If f (x)min is greater than zero, there is no solution to
the dependence equation, saying there is no dependence. If f (x)min is not greater than
zero, try to find the integer solutions making f (x) = 0. If no integer feasible solution
is found, there is no dependence.

The PVI test is not a specific quadratic technique. For a quadratic subscript, a
dependence equation must be in the following form

f (x) =
n∑

i=1

ai x2
i +

n∑

i=1

bi xi = c (7)

which implies that a mixed polynomial should not appear in the equation. Here, xi (1 ≤
i ≤ n) represents an instance of a loop index. That is to say, the PVI test can analyze
a quadratic dependence equation only when the coefficient matrix H of the quadratic
polynomials is in the form of

123

344 J. Zhao et al.

Table 1 Quadratic dependence
tests and their limitations

Tests Limitations

Quadratic test Only one loop iteration variable is allowed

QP test Matrix H must be positive semi-definite

PVI test A mixed polynomial is not permitted

H = 2 ×

⎡

⎢
⎢
⎢
⎣

h11
h22

. . .

hnn

⎤

⎥
⎥
⎥
⎦

Therefore, we summarize the quadratic data dependence tests and their limitations
in Table 1. To solve the problems listed in Table 1, we attempt to propose and imple-
ment an improved nonlinear data dependence technique for quadratic subscripts. We
suppose that the dependence equation is of the form

f (x) =
n∑

i=1

ai x2
i +

n∑

i=1

n∑

j=i+1

bi j xi x j +
n∑

i=1

ci xi = d (8)

In the first place, it can be seen that any xi (1 ≤ i ≤ n) can appear in Eq. (8),
while only two variables are allowed in Eq. (2). As a result, there is no constraint
on the number of variables of this equation, which means any number of loop index
variables can appear in the subscripts. In the second place, any mixed polynomial
xi x j (1 ≤ i ≤ n, i ≤ j ≤ n) can be seen in Eq. (8), so mixed polynomials are also
seen in this equation, which breaks the PVI test’s limitation. Finally, it can be seen
from the following sections that our method will not require the matrix H to be positive
semi-definite.

3 The canonical form of dependence equations

The limitation of the PVI test is that a mixed polynomial is not allowed. It is manifest
that the only difference between the Eqs. (7) and (8) is the mixed polynomials. There-
fore, if we can eliminate the mixed polynomials from an equation without altering its
meaning, then we can still determine whether the equation is integer solvable.

Theorem 1 All mixed polynomials of the Eq. (8) can be eliminated without altering
its meaning.

Proof First, we should show a matter of fact as everyone knows. For any integer xi

and x j which represent different instances of loop indexes, the following is preserved

(xi + x j)
2 = x2

i + x2
j + 2xi x j

Hence, we have

xi x j = ((xi + x j)
2 − (x2

i + x2
j))/2

123

An improved nonlinear data dependence test 345

and we can reorder the Eq. (8) as

f (x) =
n∑

i=1

ai x2
i +

n∑

i=1

n∑

j=i+1

bi j xi x j +
n∑

i=1

ci xi

=
n∑

i=1

ai x2
i +

n∑

i=1

n∑

j=i+1

bi j

2
((xi + x j)

2 − x2
i − x2

j) +
n∑

i=1

ci xi = d (9)

At this point, there is no mixed polynomial in the Eq. (9), and no new variable is
introduced. So, the mixed polynomials of the Eq. (8) can be eliminated without altering
its meaning. ��

However, the generated equation brings a quadratic polynomial like (xi + x j)
2 for

each mixed polynomial xi x j , although it will not produce new variables. If we make
yi j = xi + x j , there will also be a constraint on yi j according to its two components.
So, the dependence analysis problem is equal to determining whether the Eq. (9) is
integer solvable subject to

R′ = {Lk ≤ xk ≤ Uk, yi j = xi + x j |1 ≤ i, j, k ≤ n, 1 ≤ i j ≤ n(n − 1)/2, xk ∈ Z}
(10)

4 Interval equation and its theorems

The interval equation theory can be used to address dependence testing problem. For
example, the I test [7], which is a conventional dependence analysis designed for linear
subscripts, and the PVI test described in previous sections, which is a dependence
test for nonlinear subscripts. The I test provides an approach to eliminate a linear
polynomial from the left-hand expression of the equation, while the PVI test eliminates
nonlinear polynomials.

4.1 Interval equation

Since finding the integer-valued solutions to an equation is extraordinary difficult,
we determine whether the equation is integer solvable with interval equation instead
of finding such integer-valued solutions. The following are some related definitions
about interval equation.

Definition 1 For each integer a, say a+ and a− are the positive and negative parts of
integer a, respectively, where

a+ = (|a| + a)/2
a− = (|a| − a)/2

Definition 2 Given an integer region R ∈ Zn , and two functions L and U from R to
Z, then the integer interval [L(x), U (x)] is the union of all integer intervals for each

123

346 J. Zhao et al.

xi of x in R

[L(x), U (x)] =
⋃

xi ∈R

[L(xi), U (xi)]

Definition 3 Given an integer region R ∈ Zn , and three functions F , L and U from
R to Z, then the following

F(x) = [L(x), U (x)] (11)

is an interval equation.

The interval equation (11) is integer solvable in the integer region R, if and only if
there exists such an x0 ∈ R that L(x0) ≤ F(x0) ≤ U (x0). Hence, we can rewrite the
dependence equation in the following form

n∑

i=1

ai x2
i +

n∑

i=1

n∑

j=i+1

bi j

2
(y2

i j − x2
i − x2

j) +
n∑

i=1

ci xi = [d, d] (12)

If we can eliminate all the quadratic polynomials from the left-hand side of the Eq.
(12), then it is transformed into a linear interval equation. Considering such equations
can be determined by the I test, we can address the dependence problem in this way.
As for quadratic polynomials, the integer equation theory will transfer them from the
left-hand side to right side, and eliminate them on the basis of their own constraints.

4.2 Polynomial elimination

The PVI test provides a theorem to eliminate nonlinear polynomials from a dependence
equation.

Lemma 1 [4] Consider the following variable interval equation

F(x) + aXn = [L(x) + bXn, U (x) + cXn]

subject to a set of constraints on x in R, Pn(x) ≤ Xn ≤ Qn(x) and n ∈ Z+,
where Xn does not appear in any of the constraints in R. If (b − a)(c − a) ≤ 0, or
(b − a)(c − a) > 0 and min(U (x) − L(x) + (c − b)+ Pn(x) − (c − b)−Qn(x) + 1)

≥ min(|b − a|, |c − a|), then the equation above is integer solvable if and only if the
interval equation

F(x) = [L(x) + (b − a)+ Pn(x) − (b − a)−Qn(x),

U (x) + (c − a)+Qn(x) − (c − a)− Pn(x)]

is integer solvable subject to the same constraints on x in R and the constraint Pn(x) ≤
Qn(x).

123

An improved nonlinear data dependence test 347

Because we only need to consider the linear and quadratic polynomials in this paper,
we extract two theorems from this lemma as follows.

Theorem 2 Consider the following variable interval equation

F(x) + aX2 = [L(x) + bX2, U (x) + cX2]

subject to a set of constraints on x in R, P2(x) ≤ X2 ≤ Q2(x), where X2 does not
appear in any of the constraints in R. If (b −a)(c −a) ≤ 0, or(b −a)(c −a) > 0 and
(minU (x) − L(x) + (c − b)+ P2(x) − (c − b)−Q2(x) + 1) ≥ min(|b − a|, |c − a|),
then the equation above is integer solvable if and only if the interval equation

F(x) = [L(x) + (b − a)+ P2(x) − (b − a)−Q2(x),

U (x) + (c − a)+Q2(x) − (c − a)− P2(x)]

is integer solvable subject to the same constraints on x in R and the constraint P2(x)≤
Q2(x).

Theorem 3 Consider the following variable interval equation

F(x) + aX = [L(x) + bX, U (x) + cX]

subject to a set of constraints on x in R, P(x) ≤ X ≤ Q(x), where X does not appear
in any of the constraints in R. If (b − a)(c − a) ≤ 0, or (b − a)(c − a) > 0 and
min(U (x) − L(x) + (c − b)+ P(x) − (c − b)−Q(x) + 1) ≥ min(|b − a|, |c − a|),
then the equation above is integer solvable if and only if the interval equation

F(x) = [L(x) + (b − a)+ P(x) − (b − a)−Q(x), U (x)

+ (c − a)+Q(x) − (c − a)− P(x)]

is integer solvable subject to the same constraints on x in R and the constraint P(x) ≤
Q(x).

As a matter of fact, Theorem 2 and 3 are two specific forms of Lemma 1. We will
therefore not repeat their proofs. We put Theorem 3 here, as the constraint of a loop
iteration variable may be a function of other loop indexes. The elimination of such
a quadratic variable will introduce the linear form of these indexes to the right-hand
expression. We would like to construct an integer interval on the right-hand side, so
we also need to eliminate linear variables which appear in the right-hand expression.

After eliminating all the quadratic and linear polynomials which may appear on the
right-hand side, a linear interval equation will generate. At this point, the equation can
be determined in two ways. One is to eliminate all the remaining linear polynomials
with Theorem 3 until the left-hand expression becomes a zero. As the right-hand
expression represents an integer interval, the original dependence equation is integer
solvable if the zero is in this interval. However, two accuracy conditions are needed
to check before using Theorem 3. The other is to invoke the I test. Compared with

123

348 J. Zhao et al.

Theorem 3, no accuracy conditions should be checked when using the I test. Hence,
we decide to invoke the I test algorithm at this point instead of using Theorem 3. So,
whether the original equation is integer solvable depends on the result of the I test.

5 The algorithm

From the above, we can summarize the improved quadratic dependence algorithm. It
can be divided into four steps.

(1) Reorganize the quadratic dependence equation into its canonical form (9) with
Theorem 1, and add each constraint of variable yi j to the region of interest R.

(2) Transfer the Eq. (9) into an interval equation (11) according to Theorem 2, and
repeat eliminating the quadratic polynomials from the left-hand expression until
only linear polynomials are left at this side.

(3) If a linear polynomial is introduced when eliminating a quadratic polynomial or if
its constraint is not constant, then eliminate it from the equation with Theorem 3.

(4) At this point, the Eq. (11) has been transformed into a linear dependence equation.
Invoke the I test algorithm to determine whether the equation has an integer-valued
solution. If it is integer solvable, return there are dependences, otherwise there are
no dependences.

Besides, we need to check two accuracy conditions before using Theorems 2 or 3.
They are as follows [4].
Accuracy Condition 1. For each variable X , eliminated from the variable interval
equation

F(x) + aXk = [L(x) + bXk, U (x) + cXk]

subject to a set of constraints on x in R, Pk(x) ≤ X ≤ Qk(x), where X does not
appear in any of the constraints in R, the following inequalities need to be satisfied

(b − a)(c − a) ≤ 0 or

(b − a)(c − a) > 0, min(U (x) − L(x) + (c − b)+ Pk(x) − (c − b)−Qk(x) + 1)

≥ min(|b − a| , |c − a|)(k = 1, 2)

Accuracy Condition 2. For each variable X , eliminated from the variable interval
equation

F(x) + aXk = [L(x) + bXk, U (x) + cXk]

subject to a set of constraints on x in R, Pk(x) ≤ X ≤ Qk(x), where X does not
appear in any of the constraints in R, the following inequalities need to be satisfied

min(Qk(x) − Pk(x)) ≥ 0(k = 1, 2)

We therefore list the algorithm of this dependence test as follows.

123

An improved nonlinear data dependence test 349

123

350 J. Zhao et al.

123

An improved nonlinear data dependence test 351

Pos and Neg represent the positive and negative parts in Definition 1 of an integer,
respectively. The function Const is used to determine whether the input constraint is
constant. Readers can find the process of the I test from the literature [7]. Its main idea
is to eliminate the variables by two basic theorems until the left-hand expression of
the equation becomes a zero without checking any accuracy condition.

6 A case study

To help readers understand the algorithm, we demonstrate a case study in this section.
Given the codes shown below

for(i = 1; i <= 5; i + +)

for(j = 5 − i; j <= i + 10; j + +)

for(k = 1; k <= 10; k + +)

S1 A[i ∗ (i − j) + i + 3 ∗ k − 2] = · · ·
S2 · · · = A[i ∗ i − 2 ∗ i + 3]

We need to determine whether the statement S1 depends on the statement S2 or the con-
trary. According to the principle of dependence testing, we construct the dependence
equation as following

i2
1 − i1 j − i2

2 + i1 + 2i2 + 3k = 5

It subjects to the constraint defined by the loop bounds. i1 and i2 represent different
instances of the loop iteration variable i . As a loop-carried dependence should be taken
into account, we must initialize two variables for the index i here. The equation above
can be rewritten as follows for the purpose of discussion

I 2
1 − I1 I3 − I 2

2 + I1 + 2I2 + 3I4 = 5

I1, I2, I3 and I4 represent the variables i1, i2, j and k, respectively. We reorganize this
equation by Theorem 1 as

3I 2
1 − I 2

5 − 2I 2
2 + I 2

3 + 2I1 + 4I2 + 6I4 = 10

where I5 = I1 + I3. From the definitions of interval equation, we can know that the
dependence testing problem is to determine whether the interval equation

3I 2
1 − I 2

5 − 2I 2
2 + I 2

3 + 2I1 + 4I2 + 6I4 = [10, 10]

123

352 J. Zhao et al.

subject to the region R =
1 ≤ I1, I2 ≤ 5, 5 − I1 ≤ I3 ≤ I1 + 10
1 ≤ I4 ≤ 10, 6 − I1 ≤ I5 = I1 + I3 ≤ I1 + 15
(5 − I1)

2 ≤ I 2
3

≤ (I1 + 10)2

(6 − I1)
2 ≤ I 2

5
≤ (I1 + 15)2

is integer solvable.
It is not difficult to get the Lower_Bounds and Upper_Bounds sets from the region

R. Since I 2
1 appears in these two sets, we know Stack = {I2, I3, I5}. I 2

3 or I 2
5 should be

eliminated first according to Theorem 2. We may start with I 2
5 . In this case, a = −1,

b = c = 0, L(I) = U (I) = 10, P2(I5) = (6 − I1)
2 and Q2(I5) = (I1 + 15)2. Check

the accuracy conditions:
Accuracy Condition 1

(b − a)(c − a) = (0 − (−1))(0 − (−1)) = 1 > 0

and

min(U (I) − L(I) + (c − b)+ P2(I5) − (c − b)−Q2(I5) + 1)

= min(10 − 10 + 0(6 − I1)
2 − 0(I1 + 15)2 + 1)

≥ min(|0 − (−1)|, |0 − (−1)|)

Accuracy Condition 2

min(Q2(I5) − P2(I5)) = min((I1 + 15)2 − (6 − I1)
2) = min(42I1 + 189) ≥ 0

Both are satisfied, so I 2
5 can be eliminated and the equation is transformed into

3I 2
1 − 2I 2

2 + I 2
3 + 2I1 + 4I2 + 6I4

= [10 + (0 − (−1))(6 − I1)
2, 10 + (0 − (−1))(I1 + 15)2]

= [10 + (6 − I1)
2, 10 + (I1 + 15)2]

= [I 2
1 − 12I1 + 46, I 2

1 + 30I1 + 235]

We continue by eliminating variable I 2
3 . In this case, a = 1, b = c = 0, L(I) =

I 2
1 −12I1+46, U (I) = I 2

1 +30I1+235, P2(I3) = (5− I1)
2 and Q2(I3) = (I1+10)2.

Check the accuracy conditions:
Accuracy Condition 1

(b − a)(c − a) = (0 − 1)(0 − 1) = 1 > 0

and

min(I 2
1 + 30I1 + 235 − (I 2

1 − 12I1 + 46) + 0 × (5 − I1)
2 − 0 × (I1 + 10)2 + 1)

≥ min(|0 − 1|, |0 − 1|)

123

An improved nonlinear data dependence test 353

Accuracy Condition 2

min(Q2(I3) − P2(I3)) = min((I1 + 10)2 − (5 − I1)
2) ≥ 0

Both are satisfied, so I 2
3 can be eliminated and the equation is transformed into

3I 2
1 − 2I 2

2 + 2I1 + 4I2 + 6I4

= [10 + (6 − I1)
2 − (0 − 1)−(I1 + 10)2, 10 + (I1 + 15)2 − (0 − 1)−(5 − I1)

2]
= [−32I1 − 54, 40I1 + 210]

Next is I 2
2 . In this case, a = −2, b = c = 0, L(I) = −32I1 − 54, U (I) =

40I1 + 210, P2(I2) = 1 and Q2(I2) = 25. Check the accuracy conditions:
Accuracy Condition 1 (b − a)(c − a) = (0 − (−2))(0 − (−2)) = 4 > 0 and

min(40I1 + 210 − (−32I1 + 54) + 0 × 1 − 0 × 25 + 1)

≥ min(|0 − (−2)|, |0 − (−2)|)

Accuracy Condition 2

min(Q2(I2) − P2(I2)) ≥ min(25 − 1) ≥ 0

Both are satisfied, so I 2
2 can be eliminated and the equation is transformed into

3I 2
1 + 2I1 + 4I2 + 6I4

= [−32I1 − 54 + (0 − (−2)) × 1, 40I1 + 210 + (0 − (−2)) × 25]
= [−32I1 − 52, 40I1 + 260]

At this point, no variable is included in the Lower_Bounds or the Upper_Bounds
set. So, the Stack is {I1}. In this case, a = 3, b = c = 0, L(I) = −32I1 − 52,
U (I) = 40I1 + 260, P2(I1) = 1 and Q2(I1) = 25. Check the accuracy conditions:
Accuracy Condition 1

(b − a)(c − a) = (0 − 3)(0 − 3) = 9 > 0

and

min(40I1 + 260 − (−32I1 − 52) + 0 × 1 − 0 × 25 + 1) ≥ min(|0 − 3|, |0 − 3|)

Accuracy Condition 2

min(Q2(I1) − P2(I1)) ≥ min(25 − 1) ≥ 0

123

354 J. Zhao et al.

Both are satisfied, so I 2
1 can be eliminated and the equation is transformed into

2I1 + 4I2 + 6I4

= [−32I1 − 54 − 3 × 25, 40I1 + 260 − 3 × 1]
= [−32I1 − 129, 40I1 + 257]

We therefore finish eliminating all quadratic polynomials from the equation. How-
ever, a linear polynomial I1 is introduced when eliminating I 2

5 to the right-hand expres-
sion, so it should be eliminated according to the algorithm. In this case, a = 2,
b = −32, c = 40, L(I) = −129, U (I) = 257, P(I1) = 1 and Q(I1) = 5.

Check the accuracy conditions:
Accuracy Condition 1

(b − a)(c − a) = (−32 − 2)(40 − 2) ≤ 0

Accuracy Condition 2

min(Q(I1) − P(I1)) ≥ min(5 − 1) ≥ 0

Both are satisfied, so I1 can be eliminated and the equation is transformed into

4I2 + 6I4 = [−129 − 34 × 5, 257 + 38 × 1] = [−299, 295]

The right-hand expression becomes an integer interval. According to the algorithm,
the I test algorithm should be invoked to analyze this interval equation. It returns the
equation is integer solvable, so there are dependences between the statements S1 and
S2.

The above example illustrates the process of our algorithm well. However, it shows
there are dependences. Consider the codes shown below

for(i = 1; i <= 5; i + +)

for(j = 1; j <= 5; j + +)

S1 A [i ∗ (i + 2 j) + j ∗ j + 20] = · · ·
S2 · · · = A[i ∗ i − 2]

We need to determine whether the statement S1 depends on the statement S2 or the con-
trary. According to the principle of dependence testing, we construct the dependence
equation as follows

i2
1 + 2i1 j + j2 − i2

2 = −22

It subjects to the constraint defined by the loop bounds. i1 and i2 represent different
instances of the loop iteration variable i . As a loop-carried dependence should be taken

123

An improved nonlinear data dependence test 355

into account, we must initialize two variables for the index i here. The equation above
can be rewritten as follows for the purpose of discussion

I 2
1 + 2I1 I3 + I 2

3 − I 2
2 = −22

I1, I2 and I3 represent the variables i1, i2 and j , respectively. We reorganize this
equation by Theorem 1 as

I 2
4 − I 2

2 = −22

where I4 = I1 + I3. From the definitions of interval equation, we can know that the
dependence testing problem is to determine whether the interval equation

I 2
4 − I 2

2 = [−22,−22]

subject to the region R =

1 ≤ I1, I2, I3 ≤ 5, 2 ≤ I4 ≤ 10

1 ≤ I 2
1
, I 2

2
, I 2

3
≤ 25

4 ≤ I 2
4

≤ 100

is integer solvable.
We can solve it just like the previous example and get the final interval equation

0 = [−121,−1]

which implies no integer-valued solution is found for the equation, and there is no
dependence between S1 and S2.

From the analysis process of the case study, we have the following conclusions. First,
the PVI test loses its efficiency due to the mixed polynomials. Second, it can be known
after a simple calculation that the coefficient matrix of the quadratic polynomials is
not positive semi-definite for each example, so the QP test gives conservative results.
In the third place, it is manifest that the equation in this case is not similar to the Eq.
(2). Hence, the Quadratic test cannot determine this equation effectively. All of these
results illustrate that all existing quadratic dependence testing methods are inefficient
for these cases, but our approach can analyze then and give exact results.

7 Experimental evaluations

A nonlinear dependence test can be applied more widely provided it can analyze more
general subscripts. To maximize parallelism in applications, a parallelizing compiler
always expects to reduce conservative results of its dependence tests. As a result,
dependence testing is also required to figure out the integer solutions of the system

123

356 J. Zhao et al.

of Eq. (1) when it confirms that the dependence equations are dependent. If a testing
technique can always determine whether a dependence equation has integer solutions,
it is supposed to be accurate. However, an accurate test is definitely a time-consuming
technique, such as the Omega test [8]. To evaluate the performance of our algorithm,
we compare our method with other nonlinear dependence testing techniques from
different aspects. All the tested programs are executed on our personal computers
equipped with 2.0 GHz CPU, 2 GB memory, and RedHat Linux Enterprise 5. The
compiler we used in the experiment is Open64-5.0.

7.1 Efficiency and applicability

First, let us illustrate the applicability of different nonlinear dependence tests by two
practical applications. Figure 1a shows the very simplified version of the nonlin-
ear array reference codes in TRFD, which is extracted from the perfect benchmark
suites. As there are irregular subscripts in this program, compilers cannot determine its
dependences. However, they can be rearranged after the interprocedural analysis. An
aggressive interprocedural analysis can prove that p[i] = i(i −1)/2, so the optimized
codes are in the form of codes in Fig. 1b, in which the subscript has been a quadratic
form. Figure 2 shows the kernel loop nest of OCEAN, which is also a member of the
perfect benchmark suites. There are also some nonlinear subscripts. We analyze these
codes with our algorithm and other nonlinear dependence tests. The results are listed
in Table 2.

We can see from Table 2 that all nonlinear tests except Quadratic test can prove
that the codes in TRFD are independent. The Quadratic test fails in this case since

Fig. 1 Nonlinear array
references in TRFD

for i := 1 to n do
for j := 1 to i do

a[p[i]+j] := ...

for i := 1 to n do
for j := 1 to i do

a[i(i-1)/2+j] := ...

(a) TRFD INTGRL 540

(b) after interprocedural analysis

Fig. 2 Nonlinear array
references in OCEAN

DO j1= 0, i2k 1
exj = ...
DO jj = 0, to x(j1)

DO mm = 0, 128
js = 258*i2k*jj + 129*j1 + mm +1
js2 = js + 129*i2k
h = data(js) - data(js2)
data(js) = data(js) + data(js2)
data(js2) = h*exj

END DO
END DO

END DO

123

An improved nonlinear data dependence test 357

Table 2 Testing results of
TRFD and OCEAN programs
with different nonlinear tests

Dependence tests TRFD OCEAN Time complexity

Quadratic test Maybe Maybe Low

QP test No No High

PVI test No Maybe Low

Range test No No Low

Our work No No Low

Fig. 3 Relationship between
different quadratic equation sets
of three nonlinear tests

QE_SETour

QE_SETPVI

QE_SETQ

QE_SETour: quadratic equation set our method can analyze
QE_SETPVI: quadratic equation set PVI test can analyze
QE_SETQ: quadratic equation set Quadratic test can analyze

there are two loop indexes here. It demonstrates that our work can analyze nonlinear
dependence testing problems in practice efficiently. As for OCEAN, the Quadratic
test and PVI test fail to detect whether it is dependent, so they both return maybe. The
subscripts in Fig. 2 do not match the form of Eq. (2), so the Quadratic test fails. Besides,
there exist mixed polynomials, thereby resulting in the PVI test’s failure. According
to the analysis above, we construct equation sets that different nonlinear dependence
tests can analyze and summarize them in Fig. 3. It illustrates that our method is able to
handle more general quadratic dependence problems than the Quadratic test and PVI
test.

On the contrary, our algorithm proves that the program is independent, as the QP
test and Range test do. However, the QP test needs to calculate the principal minor of
coefficient matrix H , and solve the quadratic programming with a complicated process.
As a result, it consumes much more time than the Range test and our method when
analyzing OCEAN. Figure 4 shows the time comparison between these three methods.
It has been normalized to the time consumed by our technique. The measurement unit
of the execution time of each dependence testing technique is millisecond. It illustrates
that compared with the QP test, our method has a much lower time complexity than
that of the QP test.

7.2 Compared with existing nonlinear dependence tests

We can also see from Table 2 that our method performs similarly as the Range test in
terms of TRFD and OCEAN. The difference between our method and the Range test
can be explained as follows. Compared with the other nonlinear dependence testing
methods mentioned in this paper, the Range test is definitely different. All the above-

123

358 J. Zhao et al.

Fig. 4 Normalized time comparison between three nonlinear tests

mentioned methods determine the dependence by searching or determining whether
there exist integer-valued solutions, but the Range test considers the two subscript
expressions h and g of a dependence equation individually. If they are both monotonous
and the maximum value of h hmax is less than the minimum value of g gmin, then the
analysis result will report that there is no dependence. It has no constraint on the form
of the subscript expressions, but relies on their monotony. Unlike the Range test, our
method determines dependences by solving the system of Eq. (1).

It is manifest that the QP test has a higher time complexity, but it is an accurate
technique when it does not return maybe. As we mentioned above, the reason is the QP
test that always seeks the integer solutions when it proves a dependence. Nevertheless,
current parallelizing compilers usually analyze a dependence with a time saving but
inefficient test first, and then use an exact but time-consuming test. The latter serves as
a backup test when the former fails. This strategy tends to decrease the analysis time as
well as maintain the accuracy of dependence testing. Take the Open64 compiler as an
example. Its testing suite is composed of two main tests, which are GCD test [9] and
Omega test, respectively. When analyzing a dependence, the compiler always detects
it with the GCD test first and then turns to the Omega test when the GCD test fails.
The Open64 compiler also uses some simple testing strategies for the same simplified
cases, but it is unnecessary to discuss them here.

Therefore, we use the QP test as a backup accurate test. Since the Range test analyzes
the two subscript expressions h and g of a dependence equation separately, its analysis
results cannot be utilized by other backup tests such as the QP test. If we combine the
Range and QP test into a test suite, the QP test has to construct dependence equations
when it is invoked. On the contrary, the compiler is allowed to invoke the QP algorithm
directly without constructing dependence equations if it uses our method instead of
the Range test. Consequently, we compare our method with the Quadratic, PVI and
Range tests in this subsection.

To evaluate their performance on quadratic subscripts, we select various nonlinear
programs from five numerical packages [10–12]. We find 303 pairs of one-dimensional
(1D) cases with constant bounds and quadratic equations, and 168 pairs of multidi-

123

An improved nonlinear data dependence test 359

Fig. 5 Testing results of 1D cases

Fig. 6 Testing results of multidimensional cases without mixed polynomials

mensional cases. Here, a 1D case refers to a situation that only one loop index is
allowed in an array subscript, while a multidimensional case implies that more than
one loop indexes may appear. Among these multidimensional cases, 67 pairs con-
tain mixed polynomials. We categorize these cases into three categories, which are
1D, multidimensional without mixed polynomials and multidimensional with mixed
polynomials, respectively. The evaluation results are shown in Figs. 5, 6 and 7, which
are normalized to the total numbers of 1D case, multidimensional case with mixed
polynomials and multidimensional case without mixed polynomials, respectively.

As Fig. 5 shows, the Quadratic test does not return maybe for one-dimensional cases.
In other words, for a 1D case, the Quadratic test is exact. Our method performs the same
as the PVI test, since mixed polynomials will not appear in this case. Compared with
the Quadratic test, our method returns some maybes in this case, since our technique
as well as the PVI test need to check accuracy conditions. However, as Figs. 6 and 7
show, the Quadratic test always fails for multidimensional cases, as the dependence
equations do not match the form of Eq. (2) in this case. When the tested subscripts
contain no mixed polynomials, as the results shown in Fig. 6, the performance of
our algorithm is still the same as that of the PVI test. However, the PVI test loses its
efficiency when mixed polynomials appear, which is illustrated in Fig. 7, while our

123

360 J. Zhao et al.

Fig. 7 Testing results of multidimensional cases with mixed polynomials

technique still works in this case, which means our technique can confirm whether
there are integer solutions to the equation but will not return a conservative result.

From the evaluation results, we can see that the Range test can disprove dependences
in all cases, and its performance is comparable with our method. Nonetheless, it always
returns maybe when it cannot prove that there is no dependence, since it only confirms
that there are solutions but cannot tell whether an integer solution exists. Our method
is able to fix this problem when it is applicable, although it will not find these integer
solutions.

As a consequence of the above discussions, we conclude that our algorithm can
perform as well as the other three tests in one-dimensional and mixed polynomials
free cases. When mixed polynomials appear, the Quadratic test and PVI test fail but
our method still works.

7.3 Working together with QP test

As we described in previous subsections, the QP test is an exact dependence testing
technique, but its time complexity is a boring problem. To reduce the time spent in
quadratic dependence analysis, we implement our algorithm in a parallelizing com-
piler, and combine it with the QP test to constitute a sophistic dependence testing
suite. As a result, not only can the time cost in dependence testing process be reduced,
but more pseudo dependences can be eliminated, thereby exploiting more parallelism
in applications. The reasons why we choose our method and the QP test have been
explained above.

We implement our algorithm as well as that of the QP test on top of the Open64-
5.0 compiler. During the quadratic dependence analysis process, the compiler captures
necessary information about tested array subscripts, and constructs the set of quadratic
dependence equations. After delivering this system of equations to the dependence
testing procedure, the compiler first invokes the algorithm described in this work. If
it disproves the dependences, then the process will not enter the QP test and returns
the testing results. Otherwise, the compiler transfers the system of equations to the
QP test. QP test will find out the integer solutions provided it proves the existence of

123

An improved nonlinear data dependence test 361

Fig. 8 Comparison of time costs between different methods

Fig. 9 Comparison of testing results between different methods

dependences, furthermore determine other dependence information, e.g., dependence
directions, dependence distances, etc.

The experiment is divided into two phases. In the first phase, we detect nonlin-
ear dependences with each test individually, and record the time costs of dependence
analysis. Then, we test the same programs with two methods together, and write down
the time spent in dependence testing procedure. The tested programs are extracted from
the Perfect benchmark suites, which are DYFESM, OCEAN, QCD and TRFD, respec-
tively. In these programs, numerous quadratic subscripts and other kinds of nonlinear
subscripts which can be transformed into quadratic form are found. So, discussion on
these programs can demonstrate the efficiency of nonlinear dependence tests. In the
second phase, we record the dependence testing results when using different tests, so
as to compare their accuracies. The time cost and testing performance comparisons
are shown in Figs. 8 and 9, which are normalized to the time consumed by our method
and the total number of tested cases, respectively.

From Fig. 8, we can see that for the tested programs in the experiment, the time
cost of the QP test far outstrips those of our method and two tests together. When
the compiler only uses our method, its time complexity is lower than that when the
compiler uses two methods together. Figure 9 shows that compared with sole QP
test, combining two tests can disprove more dependences. The reason is as follows.

123

362 J. Zhao et al.

When testing a quadratic dependence with QP test only, the compiler can analyze the
problem only when the coefficient matrix of the problem is positive semi-definite. But
if the hypothesis cannot be satisfied, it has to give a conservative result. In this case,
our algorithm may still disprove dependences. Compared with using each method
separately, combining two algorithms together can find more independents, while
decreasing the number of maybes. That is to say, the accuracy is enhanced.

8 Theoretical analysis

The previous section verifies the technique’s efficiency in an experimental way, but it
can only illustrate that the methods are efficient to the data and the programs tested in
the experiments. It cannot be used for a general purpose. Compared with the experi-
mental evaluation method, the theoretical evaluation approach is more persuasive and
general. Hence, we perform a theoretical analysis in this section. Since all quadratic
dependence testing methods use a subscript-by-subscript approach, the efficiency of
testing a single dependence equation is equal to that of testing the whole system of Eq.
(1). We therefore only analyze the efficiency of testing a single dependence equation.

As described in Sect. 2, the Quadratic test and QP test are two specific methods for
quadratic subscripts. The former can only deal with dependence equations written in
the form of Eq. (2), while the latter must be on the basis of a positive semi-definite
matrix. When the number of variables of a dependence equation is large than 2, saying
that the tested subscripts include more than one loop index, the Quadratic test will lose
its efficiency and give a conservative result. However, the QP test is still able to give
an exact result when its hypothesis is satisfied. Hence, the QP test is more efficient
than the Quadratic test in this case.

Now consider the other case. When a dependence equation is written in the form
of Eq. (2), it is manifest that the coefficient matrix H of the quadratic polynomials
is certainly positive semi-definite (It has been proved that the QP test has the same
process with the standard form in the case of a ≤ 0, provided e(i) = − f (i)). Besides,
after the extension algorithm [6], the QP test can also give as exact results as those of
the Quadratic test. The QP test is therefore as accurate as the Quadratic test in this case.
From the above analysis, we say that the QP test is more efficient than the Quadratic
test for a general dependence equation (9).

Unlike the Quadratic test and QP test, the PVI test is not a specific depen-
dence technique for quadratic subscripts, but a general nonlinear dependence test-
ing approach. The PVI test can deal with the Eq. (2) for certain, and it has been
proved above that the QP test is more efficient than Quadratic test. So, we com-
pare the QP test and PVI test. As shown in Table 1, the QP test can determine a
dependence equation with mixed polynomials, but its limitation lies in the positive
semi-definite matrix. On the contrary, the PVI test has no restriction on the coefficient
matrix, but it requires no mixed polynomials. As a result, when a mixed polyno-
mial appears in the dependence equation, the QP test is more efficient than the PVI
test.

Now consider the case without mixed polynomials. In this case, it has been proved
in [5] that only when each hkk ≥ 0 (1 ≤ k ≤ n) is satisfied, the coefficient matrix H

123

An improved nonlinear data dependence test 363

can be positive semi-definite. The PVI test can determine whether there is an integer-
valued solution to the dependence equation, although it will not search such a solution.
So, we think the PVI test is more efficient than the QP test in this case. On the basis of
the above discussion, we cannot say that the QP test is certainly more efficient than the
PVI test or the contrary for a general dependence equation (2). It depends on whether
there are mixed polynomials in the equation.

Next, let us compare our proposed method and PVI test. The common ground
of these two techniques is that they are both based on the interval equation theory.
They both first eliminate nonlinear variables via this theory and determine whether
the equation is integer solvable. The PVI test cannot deal with mixed polynomials as
described above, but our method can transform any equation into canonical form and
gives an exact result. Hence, we think our method is more efficient than the PVI test
in this case. When there is no mixed polynomial in a dependence equation, the PVI
test needs to continue eliminating linear variables, while our method only needs to
eliminate the introduced or trapezoidal linear variables and call the I test algorithm,
because the equation has been a canonical form in this case. The I test will not check
any accuracy conditions. So, our method is also more efficient in this case. Therefore,
the proposed method in this paper is more efficient than the PVI test for the general
dependence equation (9).

Now compare our method with the QP test. When the coefficient matrix H is not
positive semi-definite, our algorithm can still give an exact answer but the QP test is
inefficient. On the contrary, when the coefficient matrix H is positive semi-definite, the
QP test can determine whether there is an integer-valued solution to the dependence
equation. Our test needs to check accuracy conditions. However, as the experimental
results show, QP test is much more time-consuming than our algorithm, although it is
likely to be able to disprove more dependences than ours.

The difference between our work and the Range test is illustrated in Sect. 7.2, so
we do not repeat it here.

Of course, our technique has its limitations. Since we focus on quadratic cases, it
can only analyze quadratic subscripts compared with the PVI test and Range test. The
QP test always seeks the integer solutions when it proves the dependence equations,
while our technique only determines whether it has such solutions. Compared with
the Quadratic test, our drawback is that we need to check accuracy conditions in 1D
case. To summarize, we list both the advantages and disadvantages of these nonlinear
dependence testing techniques in Table 3.

9 Related work

It has been more than 40 years since the first data dependence testing method was
proposed. Earlier testing techniques determine the dependence by constructing and
solving the Diophantine [13] equation of the subscript expressions. When testing mul-
tidimensional arrays with linear subscripts, a subscript position is said to be separable
if its indexes do not occur in the other subscripts [14,15]. If they contain the same
index, they are coupled [16]. The research community uses a subscript-by-subscript
method to analyze separable subscripts.

123

364 J. Zhao et al.

Table 3 Comparisons between our technique with other nonlinear dependence tests

Advantages Disadvantages

Compared with Quadratic test Our technique can deal with
multidimensional cases

Our technique has to check
accuracy conditions in 1D case

Compared with QP test Our technique has a much lower
time complexity

Our technique cannot find out the
integer solutions for the
equations

Compared with PVI test Our technique can determine the
quadratic equations with mixed
polynomials

Our technique will lose its
efficiency when confronted
with a dependence equation
with larger integer power
variables

Compared with Range test Our technique can be combined
with other nonlinear tests easily

Our technique will lose its
efficiency when confronted
with a dependence equation
with larger integer power
variables

The GCD test [9] is a dependence testing technique using a fundamental theorem
about the Diophantine equation. If the greatest common divisor of all the coefficients
of loop induction variables does not divide the constant term of the equation, the
dependence equation has no integer-valued solution and “no dependence” is reported.
The Banerjee inequality [17] is used to determine whether the equation has real solu-
tions in the region of interest. It first calculates the extreme values of the left-hand
expression to get a real interval, and checks whether the constant on the right-hand side
is in this interval. There is no dependence if this condition cannot be satisfied. Neither
the GCD test’s nor Banerjee Inequality’s is the region of interest. The former does
not consider the bound constraint, while the latter does not require an integer-valued
solution. However, they indicate two specific directions for the subsequent methods.
Considering the problems brought by these two methods, Kong et al. [7] proposed the
I test, which combines the advantages of these two methods. Its main idea is also to
eliminate variables from the dependence equation with the interval equation theory.
One limitation of the I test is that the constraint of each variable has to be integer.

All these methods are subscript-by-subscript techniques. If the subscripts are cou-
pled, the system of Eq. (1) may also be unsolvable even if each equation has an
integer-valued solution. Hence, the research community developed dependence test-
ing techniques for coupled subscripts. Knuth [18] extended the GCD test algorithm and
proposed a general algorithm to solve a set of linear equations with integer coefficients.
Just like the GCD test, this method does not take the bound constraint into account. The
λ test [16,19] is the first technique to consider all the subscripts of coupled subscripts
together. The algorithm, which combines all equations in one with some λs, can be
viewed as the multidimensional form of the Banerjee Inequality. Since it introduces
some new variables, the algorithm can determine the equation only when all λs can
be eliminated. Focusing on the problem generated by the general GCD test, the Power
test [20] was presented. When the general GCD test returns solutions to a dependence

123

An improved nonlinear data dependence test 365

equation, the Power test will determine whether these solutions are in the region of
interest with the Fourier–Motzkin elimination (FME) [21]. The Omega test [8] is a
similar approach. It also tries to address an integer programming problem by FME.
As the integer programming is an NP-hard problem as everyone knows, techniques
like this always trend to have a high time complexity. The Delta test [22] is an exact
and efficient testing method. Its main idea is to propagate the constraints produced by
some single index variable (SIV) subscripts to others in the same group without losing
accuracy. It has been proved that the Delta test is just a restricted form of the λ test
[1].

The above techniques can determine the dependence of linear subscripts well for
most cases. So, some developers began to evaluate these tests to construct a complete
dependence test suite in early 1990s. Shen et al. [23] evaluated some dependence
tests and analyzed their efficiencies with an experimental method. They performed a
preliminary empirical study on some numerical packages, including the Linpack and
Eispack. Petersen and Padua [24] also carried out an experimental evaluation of a
proposed sequence of dependence tests based on some packages, such as the Linpack,
Eispack and Perfect Benchmarks. Besides evaluating the accuracy, Psarris and Kiri-
akopoulos [25] also showed tradeoffs between accuracy and efficiency and the time
costs of three representative techniques. All these methods tried to give experimental
or empirical results so as to enhance the ability of compilers. Directed by this issue,
some newer proposed data dependence tests combined a suite of testing methods for
different cases. Golf et al. [22] divided the subscripts into three categories, which are
zero index variable (ZIV), SIV and multiple index variable (MIV), respectively. They
also presented a set of testing methods to deal with these different cases. Maydan
et al. [26] also proposed a subscript pattern-based dependence test suite. They adapted
the FME as an expensive back up test when all the primary methods failed. All the
above tests are designed based on an assumption that the subscripts are linear affine
expressions of the loop index variables, while the algorithm proposed in this paper,
as well as the Quadratic test [3], QP test [5,6], PVI test [4] and Range test [2] are
nonlinear dependence tests.

In addition to these, there are some other specific data dependence analysis tech-
niques. Hommel [27] proposed a general data dependence test for dynamic, pointer-
based data structures based on a logic proof idea. It can also be viewed as a nonlinear
test. Paek et al. [28,29] categorized the nonlinear subscripts, and proposed an array
access pattern LMAD. A subscript is represented as a general expression, and an ART
test [30,31] was described to address the dependence problem based on it. Engelen
et al. [32] presented a unified approach for nonlinear dependence testing. They pro-
posed Nonlinear GCD test, Nonlinear Value Range test and Nonlinear EVT (Extreme
Value test) for different cases, respectively.

The literature [33] proposed a knowledge-based learning system K test. It integrates
existing tests and makes good use of their advantages. An single instruction multiple
data (SIMD) faced dependence test, D test, was proposed in [34]. It extended the
Banerjee Inequality and proved some theorems for the case where the dependence
distance is greater than or equal to the number of data processed in the SIMD register.

With the development of speculative parallelizing compilers, the research com-
munity began to focus on the study on data dependence profiling, which provides

123

366 J. Zhao et al.

runtime dependence information in speculative optimizations. Chen et al. [35] pro-
posed a hash-based rather than pair-wise data dependence profiling technique, so as
to perform the compiler-based instrumentation. To take full advantages of multi-core
architectures, shadow profiling [36] was introduced to perform sampling on long traces
of instrumented codes. Other representative prior data dependence profilers can mainly
categorized into pair-wise [37,38], which tries to track all pairs of dependences that
occur at runtime, and software signature-based [39] determining the dependence by
grouping many pair-wise relationships into a single set operation.

10 Conclusions

Conventional linear data dependence tests are not able to satisfy their demands due to
the existence of irregular and nonlinear subscripts for the scientific and engineering
applications. To address this problem, the research community proposed some non-
linear tests. The QP test and PVI test are two representative methods among these
tests. However, both of them have their own limitations when applied in practice. This
paper proposed an improved nonlinear data dependence test, which can deal with the
cases where the PVI test fails, and it can reduce the time cost of dependence testing
when combined with QP test. Experimental results show that compared with existing
quadratic dependence analysis techniques, the method proposed in this paper either
has a wide range of application or has a much lower time complexity. As we design this
technique for quadratic subscripts, our next research plan is to extend the algorithm
for more complicated nonlinear cases.

Acknowledgments We would like to acknowledge the anonymous referees for their invaluable comments
and suggestions on this paper. Our work is supported by the HEGAOJI Major Project of China under Grant
No. 2009ZX01036-001-001-2 and the Open Project Program of the State Key Laboratory of Mathematical
Engineering and Advanced Computing No. 2013A11.

References

1. Allen R, Kennedy K (2001) Optimizing compilers for modern architectures: a dependence-based
approach. Morgan Kaufmann Publisher, San Francisco

2. Blume W, Eigenmann R (1998) Nonlinear and symbolic data dependence testing. IEEE Trans Parallel
Distrib Syst 9(12):1180–1194

3. Wu J-H, Chu C-P (2007) An exact data dependence test for quadratic expressions. Inf Sci 177(23):5316–
5328

4. Zhou J, Zeng GH (2008) A general data dependence analysis for parallelizing compilers. J Supercomput
45(2):236–252

5. Zhao J, Zhao RC, Han L (2012) A nonlinear array subscripts dependence test. In: Proceedings of the
14th international conference on high performance computing and communication, pp 764–771, June
2012

6. Zhao J, Zhao RC, Han L, Xu JL (2013) QP test: a dependence test for quadratic array subscripts. IET
Softw 7(5):271–282

7. Kong X, Klappholz D, Psarris K (1991) The I test: an improved dependence test for automatic paral-
lelization and vectorization. IEEE Trans Parallel Distrib Syst 2(3):342–349

8. Pugh W (1991) The Omega test: a fast and practical integer programming algorithm for dependence
analysis. In: Proceedings of the 1991 ACM/IEEE conference on supercomputing, pp 4–13, June 1991

123

An improved nonlinear data dependence test 367

9. Wolfe MJ (1995) High performance compilers for parallel computing. Addison-Wesley Press, Red-
wood City

10. Blume W, Eigenmann R (1992) Performance analysis of parallelizing compilers on the perfect bench-
marks program. IEEE Trans Parallel Distrib Syst 3(6):643–656

11. Dongar J, Furtney M, Reinhardt S (1991) Parallel loops: a test suite for parallel compilers: description
and example results. Parallel Comput 17(10–11):1247–1255

12. Smith BT, Boyle JM, Dongarra JJ, Garbow BS, Ikebe Y, Klema VC, Moler CB (1976) Matrix eigen-
system routines-eispack guide, 1st edn. Springer, New York

13. Shen ZY, Li ZY, Yew PC (1989) An empirical on array subscripts and data dependencies. In: Proceed-
ings of the international conference on parallel processing, pp 145–152, August 1989

14. Allen R (1983) Dependence analysis for subscripted variables and its application to program transfor-
mations. Ph.D. thesis. Department of Mathematical Sciences, Rice University

15. Callahan D (1986) Dependence testing in PFC: Weak separability. Supercomputer Software Newsletter
2, Department of Computer Science, Rice University, August 1986

16. Li ZY, Yew PC, Zhu CQ (1990) An efficient data dependence analysis for parallelizing compilers.
IEEE Trans Parallel Distrib Syst 1(1):26–34

17. Banerjee U, Eigenmann R, Nicolau A, Padua DA (1993) Automatic program parallelization. Proc
IEEE 81(2):211–243

18. Knuth DE (1987) The art of computer programming. Seminumerical algorithms, vol 2, 3rd edn.
Addison-Wesley, Reading

19. Li ZY, Yew PC, Zhu CQ (1989) Data dependence analysis on multi-dimensional array references. In:
Proceedings of the 3rd international conference on supercomputing, pp 215–224, June 1989

20. Wolfe M, Tseng CW (1992) The Power test for data dependence. IEEE Trans Parallel Distrib Syst
3(5):591–601

21. Williams HP (1976) Fourier–Motzkin elimination extension to integer programming problems. J Comb
Theory (A) 21(1):118–123

22. Goff G, Kennedy K, Tseng CW (1991) Practical dependence testing. In: Proceedings of the ACM
SIGPLAN 1991 conference on programming language design and implementation, pp 15–29, June
1991

23. Shen ZY, Li ZY, Yew PC (1990) An empirical study of Fortran programs for parallelizing compilers.
IEEE Trans Parallel Distrib Syst 11(3):356–364

24. Petersen P, Padua D (1996) Static and dynamic evaluation of data dependence analysis techniques.
IEEE Trans Parallel Distrib Syst 7(11):1121–1132

25. Psarrisand K, Kyriakopoulos K (2004) An experimental evaluation of data dependence analysis tech-
niques. IEEE Trans Parallel Distrib Syst 15(3):196–213

26. Maydan DE, Hennessy JL, Lam MS (1991) Efficient and exact data dependence analysis. In: Proceed-
ings of the ACM SIGPLAN 1991 conference on programming language design and implementation,
pp 1–14, June 1991

27. Hummel J, Hendren LJ, Nicolau A (1994) A general data dependence test for dynamic, pointer-based
data structures. In: Proceedings of the ACM SIGPLAN 1994 conference on programming language
design and implementation, pp 218–229, June 1994

28. Paek Y, Hoeflinger J, Padua DA (1998) Simplification of array access patterns for compiler optimiza-
tions. In: Proceedings of the 19th ACM SIGPLAN conference on programming language design and
implementation, pp 60–71, June 1998

29. Paek Y, Hoeflinger J, Padua DA (2002) Efficient and precise array access analysis. ACM Trans Program
Lang Syst 24(1):65–109

30. Hoeflinger J (2000) Interprocedural parallelization using memory classification analysis. Ph.D. thesis,
University of Illinois at Urbana-Champaign, Department of Computer Science

31. Hoeflinger J, Paek Y (1999) The access region test. In: Proceedings of the workshop on languages and
compilers for parallel computing, pp 271–285

32. van Engelen RA, Birch J, Shou Y, Gallivan KA (2004) A unified framework for nonlinear dependence
testing and symbolic analysis. In: Proceedings of the international conference on supercomputing, pp
106–115

33. Yang CT, Tseng SS, Shin WC (2000) The K test: an exact and efficient knowledge-based data depen-
dence testing method for parallelizing compilers. Proc Natl Sci Counc 24(5):362–372

123

368 J. Zhao et al.

34. Bulic P, Gustin V (2004) D-test: an extension to Banerjee test for a fast dependence analysis in a
multimedia vectorizing compiler. In: Proceedings of the 18th international parallel and distributed
processing symposium, pp 535–546

35. Chen T, Lin J, Dai XR, Hsu WC, Yew PC (2004) Data dependence profiling for speculative optimiza-
tions. In: Proceedings of the international conference on compiler construction, pp 57–72

36. Moseley T, Shye A, Reddi VJ, Grunwald D, Peri R (2007) Shadow profiling hiding instrumentation
costs with parallelism. In: Proceedings of the IEEE/ACM international symposium on code generation
and optimization, pp 198–208

37. Yu HT, Li ZY (2012) Fast loop-level data dependence profiling. In: Proceedings of the international
conference on supercomputing, pp 37–46

38. Kim MJ, Kim H, Luk CK (2010) SD3: A scalable approach to dynamic data-dependence profiling. In:
Proceedings of the IEEE/ACM international symposium on microarchitecture, pp 535–546

39. Vanka R, Tuck J (2012) Efficient and accurate data dependence profiling using software signatures.
In: Proceedings of the IEEE/ACM international symposium on code generation and optimization,
pp 168–195

123

	An improved nonlinear data dependence test
	Abstract
	1 Introduction
	2 Motivation
	3 The canonical form of dependence equations
	4 Interval equation and its theorems
	4.1 Interval equation
	4.2 Polynomial elimination

	5 The algorithm
	6 A case study
	7 Experimental evaluations
	7.1 Efficiency and applicability
	7.2 Compared with existing nonlinear dependence tests
	7.3 Working together with QP test

	8 Theoretical analysis
	9 Related work
	10 Conclusions
	Acknowledgments
	References

