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Abstract Recently, Tso proposed a three-party password-based authenticated key
exchange (3PAKE) protocol. This protocol allows two clients to authenticate each
other and establish a secure session key through a server over an insecure channel.
The main security goals of such protocols are authentication and privacy. However, we
show that Tso’s protocol achieves neither authentication goal nor privacy goal. In this
paper, we indicate that the privacy and authentication goals of Tso’s protocol will be
broken by off-line password guessing attack and impersonation attack, respectively.
To overcome the weaknesses, we propose an improved 3PAKE protocol to achieve
more security and performance than related protocols. The security of the proposed
improved protocol is proved in random oracle model.

Keywords Password-based authentication · Key exchange protocol ·
Off-line password guessing attack · Impersonation attack · Random oracle model

1 Introduction

Authenticated key exchange (AKE) protocols (e.g., [1–10]) help communicating enti-
ties, who are communicating over an insecure network, to establish a secret session key
to be used for protecting their subsequent communication. Password-based authenti-
cated key exchange (PAKE) protocol is a type of AKE protocols which enables two or
more communication entities, who only share a weak, low-entropy and easily memo-
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An efficient client–client password-based authentication 1003

rable passwords, to authenticate each other and establish a high-entropy secret session
key.

PAKE protocols were first proposed in the two-party setting (2PAKE) which are
quite suitable for the client–server architecture (e.g., [11–18]). However, these proto-
cols are very inconvenient for large-scale client–client communication environments.
Since each client needs to remember different password for each partner who commu-
nicates with, for a large network, it may strain the storage capacity of the clients. To
avoid this problem, PAKE protocols in the three-party setting (3PAKE) are developed.
In a 3PAKE protocol, a trusted server mediates between two communication clients
and each client only needs to share a password with the server.

1.1 Related works

In order to design a secure and practicable 3PAKE, many protocols have been proposed.
The main security threats for the 3PAKE protocols are password guessing attacks. To
protect these protocols against dictionary attacks, there are three main approaches:
using the server public key (e.g., [19–22]), using symmetric cryptosystems (e.g., [23–
25]), and without using server public keys and symmetric cryptosystems (e.g., [26–
30,30–42]). The 3PAKE protocols using symmetric cryptosystems requires a stronger
assumption ”the ideal cipher model” to prove the security [30]. Recently, Xiong et al.
[25] demonstrated that all of the 3PAKE protocols without server public keys are not
secure against Key Compromise Impersonation (KCI) attack. Therefore, the 3PAKE
protocols which uses only server public keys to prevent password guessing attacks are
more secure and applicable than the other two approaches.

In 2009, Huang [38] proposed a 3PAKE protocol without server public key and
symmetric cryptosystems. However, Yoon and Yoo [39] demonstrated that Huang’s
3PAKE protocol is vulnerable to undetectable online password guessing attacks and
off-line password guessing attacks by any other user. Based on the Yoon and Yoo’s
attacks, Wu et al. [40] showed that Huang’s protocol is also vulnerable to key com-
promise impersonation attack and proposed an enhanced protocol which uses server
public key. In 2011, Chang et al. [41] applied XOR operations to removed both the
server public keys and the symmetric cryptosystem for constructing a communica-
tion efficient 3PAKE protocol. However, Wu et al. [30] pointed out that Chang et
al.’s 3PAKE is insecure against password guessing attacks and proposed an improved
protocol. To overcome the security problems of the Chang et al.’s scheme, Tso [42]
also proposed an improved scheme without using the server public key or symmetric
cryptosystems. Recently, Xiong et al. [25] demonstrated that the Wu et al.’s 3PAKE
protocol is vulnerable to key compromise impersonation (in short, KCI) attack.

1.2 Contribution

The contribution of this paper is twofold. First, the paper indicates that Tso’s protocol
[42] not only is still vulnerable to off-line password guessing attack, but also is insecure
against impersonation attack. Second, it proposes a more secure and efficient 3PAKE
protocol to overcome the security flaws of the related protocols.
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1004 M. S. Farash, M. A. Attari

Table 1 The notations

Notation Description

A, B Legitimate users

pw The password of a legitimate user

id The unique identity of a legitimate user

S A remote server

p A large prime number

G A multiplicative group of order p

q A large prime with q|(p − 1)

g A generator of order q

Z
∗
q The non-zero residues mod q

x , Y Server’s private key and public key, respectively

h(.) A Conventional hash function h : {0, 1}∗ → {0, 1}l

1.3 Organization

The rest of this paper is organized as follows. In Sect. 2, we review the Tso’s 3PAKE
protocol. In Sect. 3, we show the vulnerabilities of Tso’s protocol. An enhanced 3PAKE
protocol is proposed in Sect. 4. We analyze the security and performance of the pro-
posed scheme in Sects. 5 and 6, respectively. Finally, we conclude our paper in Sect. 7.

2 A brief review of Tso’s 3PAKE protocol

This section briefly reviews Tso’s 3PAKE protocol [42].

2.1 Notations

The notations used throughout this paper are summarized in Table 1.

2.2 Protocol description

For a detailed analysis, we review Tso’s 3PAKE protocol [42]. The details of this
protocol, shown in Fig. 1, are as follows:

Step 1: A sends the identities idA and idB to S as initial request.
Step 2: Upon receiving the messages {idA, idB}, S chooses two random numbers
eS1, eS2 ∈R Z

∗
q , computes

RS1 = geS1+pwA mod p,

RS2 = geS2+pwB mod p,

and sends {RS1, RS2} to A.
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Fig. 1 Tso’s 3PAKE protocol [42]
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Step 3: After receiving the message {RS1, RS2}, A firstly retrieves geS1 by comput-
ing (RS1/g pwA) mod p. A then chooses a random number eA ∈R Z

∗
q to compute

RA = geA mod p,

RAS = (geS1)eA mod p,

Auth AS = h(RAS, geS1 , idA, idB),

and sends {idA, RA, Auth AS , RS2} to B.
Step 4: After receiving the message {idA, RA, Auth AS , RS2}, B retrieves geS2 by
computing (RS2/g pwB ) mod p. B then chooses a random number eB ∈R Z

∗
q to

compute

RB = geB mod p,

RBS = (geS2)eB mod p,

K B = ReB
A mod p,

AuthBS = h(RBS, geS2 , idA, idB),

AuthB A = h(K B, RA),

and sends {RA, Auth AS , RB , AuthBS , AuthB A} to S.
Step 5: After receiving the message {RA, Auth AS , RB , AuthBS , AuthB A},
S authenticates A and B, separately. To authenticate A, S computes RS A =
ReS1

A mod p and verifies h(RS A, geS1 , idA, idB)? = Auth AS . To authenticate B, S
computes RSB = ReS2

B mod p and verifies h(RSB, geS2 , idA, idB)? = AuthBS . If
the two results are positive, S computes AuthS A = h(RS A, RB) and AuthSB =
h(RSB, RA). Then S sends {RB , AuthS A, AuthB A, AuthSB} to A.
Step 6: After receiving the message {RB , AuthS A, AuthB A, AuthSB}, A checks
if h(RAS, RB)? = AuthS A. If it holds, S is authenticated by A; then A com-
putes K A = ReA

B mod p, and verifies h(K A, RA)? = AuthB A. If it holds, B is
authenticated by A. Then, A computesAuth AB = h(K A, RB) and sends {AuthSB ,
Auth AB} to B. Finally, A computes the session key as SK = h(K A, idA, idB) =
h(geAeB , idA, idB).
Step 7: After receiving the message {AuthSB , Auth AB}, B checks if h(RBS, RA)?
= AuthSB . If it holds, S is authenticated by B; then B verifies h(K B, RB)? =
Auth AB . If it holds, A is authenticated by B. Finally, B computes the session key
as SK = h(K B, idA, idB) = h(geAeB , idA, idB).

3 Cryptanalysis of Tso’s protocol

The main security goals of 3PAKE protocols are authentication and privacy. However,
this section indicates that Tso’s protocol [42] does not achieve the security goals.
We Show that Tso’s protocol is vulnerable to off-line password guessing attack and
impersonation attack.
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Fig. 2 Off-line password guessing attack on Tso’s 3PAKE protocol

3.1 Off-line password guessing attack

Here, we show that an active adversary can successfully guess the users’ correct
passwords which leads to completely breaking Tso’s protocol [42]. The details of the
proposed off-line password guessing attack, outlined in Fig. 2, are as follows:

Step 1: When the user A wishes to communicate with the user B through the server
S, and sends the initial message {idA, idB} to S, the active adversary C intercepts
the message and chooses two random numbers e′

S1, e′
S2 ∈R Z

∗
q to computes

R′
S1 = ge′

S1mod p,

R′
S2 = ge′

S2 mod p.

C then returns {R′
S1, R′

S2} to A.
Step 2: After receiving the message {R′

S1, R′
S2}, A chooses a random number

eA ∈R Z
∗
q to compute
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1008 M. S. Farash, M. A. Attari

RA = geA mod p,

RAS = (R′
S1/g pwA)eA mod p, (1)

Auth AS = h(RAS, (R′
S1/g pwA ), idA, idB),

and sends {idA, RA, Auth AS , R′
S2} to B.

Step 3: C intercepts the message {idA, RA, Auth AS , R′
S2} and tries to guess A’s

correct password pwA. To do so, C performs the following steps
1. Guess a password pw′

A.
2. Compute

R′
AS = (R

e′
S1

A /R
pw′

A
A )mod p. (2)

3. Check if
Auth AS = h(R′

AS, (R′
S1/g pw′

A ), idA, idB). (3)

4. If Eq. (3) holds, C confirms that the guessed password pw′
A is the correct one.

Otherwise, C chooses another password pw′
A and repeatedly performs above

steps to obtain the correct password.

Proposition 1 Equation (3) holds for a correct guess of pw′
A = pwA.

Proof Firstly, we show that the Eqs. (1) and (2) are equal for pw′
A = pwA as follows:

R′
AS = (R

e′
S1

A /R
pw′

A
A )mod p

= ((geA)e′
S1/(geA)pwA )mod p

= ((ge′
S1)eA/(g pwA)eA)mod p

= (ge′
S1/g pwA )eA mod p

= (R′
S1/g pwA )eA mod p

= RAS .

Thus,

Auth AS = h(RAS, (R′
S1/g pwA), idA, idB)

= h(R′
AS, (R′

S1/g pw′
A), idA, idB).

It fulfills the proof. ��

3.2 Impersonation attack

Here, we show that an adversary who obtained the correct password of a special user
can easily masquerade as the legitimate server and another user. Suppose the adversary
C obtained A’s password pwA. To impersonate the server S and B, the adversary C
performs as follows (outlined in Fig. 3):
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Fig. 3 Impersonation attack on Tso’s 3PAKE protocol
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Step 1: When the user A wishes to communicate with the user B through the server
S, and sends the initial message {idA, idB} to S, the active adversary C intercepts
the message and chooses two random numbers e′

S1, e′
S2 ∈R Z

∗
q to computes

R′
S1 = ge′

S1+pwA mod p,

R′
S2 = ge′

S2 mod p.

C then returns {R′
S1, R′

S2} to A.
Step 2: After receiving the message {R′

S1, R′
S2}, A chooses a random number

eA ∈R Z
∗
q to compute

RA = geA mod p,

RAS = (R′
S1/g pwA)eA mod p, (4)

Auth AS = h(RAS, (R′
S1/g pwA ), idA, idB),

and sends {idA, RA, Auth AS , R′
S2} to B.

Step 3: C intercepts the message {idA, RA, Auth AS , R′
S2} and tries to masquerade

as both B and S. To masquerade as B, C chooses a random number e′
B ∈R Z

∗
q ,

and computes

R′
B = ge′

B mod p,

K ′
B = R

e′
B

A mod p,

Auth′
B A = h(K B, RA).

To masquerade as S, C computes

R′
S A = R

e′
S1

A mod p,

Auth′
S A = h(R′

S A, R′
B),

and chooses random string Auth′
SB . C then sends {R′

B , Auth′
S A, Auth′

B A,
Auth′

SB} to A.
Step 4: After receiving the message {R′

B , Auth′
S A, Auth′

B A, Auth′
SB}, A checks

if
h(RAS, R′

B)? = Auth′
S A. (5)

If it holds, A ensures that the received message was sent by S; then A computes

K A = ReA
B mod p, (6)

and verifies
h(K A, RA)? = Auth′

B A. (7)

If it holds, A ensures that Auth′
B A was generated by B, and computes Auth AB =

h(K A, RB) and sends {Auth′
SB , Auth AB} to B. Finally, A computes the session

key as SK = h(K A, idA, idB).
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Step 5: C intercepts the message {Auth′
SB , Auth AB} and computes the session

key as SK ′ = h(K ′
B , idA, idB).

Proposition 2 By performing the above steps, the adversary C can successfully mas-
querade as the server S.

Proof The user A accepts the adversary C as the server S if Eq. 5 holds. We show
that it holds as follows:

h(RAS, R′
B) = h((R′

S1/g pwA)eA), R′
B)

= h(((ge′
S1+pwA )/g pwA )eA), R′

B)

= h((ge′
S1eA), R′

B)

= h(R
e′

S1
A , R′

B)

= h(R′
S A, R′

B)

= Auth′
S A.

��
Proposition 3 By performing the above steps, the adversary C can successfully mas-
querade as the user B.

Proof The user A accepts the adversary C as the user B if Eq. 7 holds. We show that
it holds as follows:

h(K A, RA) = h((R′eA
B ), RA)

= h((ge′
B eA), RA)

= h((R
e′

B
A ), RA)

= h(K ′
B, RA)

= Auth′
B A.

��
Proposition 4 By performing the above steps, the adversary C can successfully estab-
lish a common session key with the user A.

Proof The session key SK computed by A is equal to the session key SK ′ computed
by the adversary C , since

SK = h(K A, idA, idB)

= h((R′eA
B ), idA, idB)

= h((ge′
B eA), idA, idB)

= h((R
e′

B
A ), idA, idB)
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= h(K ′
B, idA, idB)

= SK ′.

��
According to the Propositions 2, 3 and 4, Tso’s protocol is vulnerable to imperson-

ation attacks.

4 The proposed improved 3PAKE protocol

As can be clearly seen in Sect. 3, the vulnerabilities of Tso’s scheme is due to the
computation of the parameters RS1 and RS2. To overcome the vulnerabilities, we
change the computation of these parameters as RS1 = geS1 + g pwA and RS2 =
geS2 + g pwB . The details of the proposed improved scheme, shown in Fig. 4, are
described in the following steps:

Step 1: A sends the identities idA and idB to S as initial request.
Step 2: Upon receiving the messages {idA, idB}, S chooses two random numbers
eS1, eS2 ∈R Z

∗
q , computes

RS1 = geS1 + g pwA mod p,

RS2 = geS2 + g pwB mod p,

and sends {RS1, RS2} to A.
Step 3: After receiving the message {RS1, RS2}, A firstly retrieves geS1 by com-
puting (RS1 − g pwA) mod p. A then chooses a random number eA ∈R Z

∗
q to

compute

RA = geA mod p,

RAS = (geS1)eA mod p,

Auth AS = h(RAS, geS1 , idA, idB),

and sends {idA, RA, Auth AS , RS2} to B.
Step 4: After receiving the message {idA, RA, Auth AS , RS2}, B retrieves geS2 by
computing (RS2 − g pwB ) mod p. B then chooses a random number eB ∈R Z

∗
q to

compute

RB = geB mod p,

RBS = (geS2)eB mod p,

K B = ReB
A mod p,

AuthBS = h(RBS, geS2 , idA, idB),

AuthB A = h(K B, RA),

and sends {RA, Auth AS , RB , AuthBS , AuthB A} to S.
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Fig. 4 The improved 3PAKE protocol
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Step 5: After receiving the message {RA, Auth AS , RB , AuthBS , AuthB A},
S authenticates A and B, separately. To authenticate A, S computes RS A =
ReS1

A mod p and verifies h(RS A, geS1 , idA, idB)? = Auth AS . To authenticate B, S
computes RSB = ReS2

B mod p and verifies h(RSB, geS2 , idA, idB)? = AuthBS . If
the two results are positive, S computes AuthS A = h(RS A, RB) and AuthSB =
h(RSB, RA). Then S sends {RB , AuthS A, AuthB A, AuthSB} to A.
Step 6: After receiving the message {RB , AuthS A, AuthB A, AuthSB}, A checks
if h(RAS, RB)? = AuthS A. If it holds, S is authenticated by A; then A com-
putes K A = ReA

B mod p, and verifies h(K A, RA)? = AuthB A. If it holds, B is
authenticated by A. Then, A computesAuth AB = h(K A, RB) and sends {AuthSB ,
Auth AB} to B. Finally, A computes the session key as SK = h(K A, idA, idB) =
h(geAeB , idA, idB).
Step 7: After receiving the message {AuthSB , Auth AB}, B checks if h(RBS, RA)?
= AuthSB . If it holds, S is authenticated by B; then B verifies h(K B, RB)? =
Auth AB . If it holds, A is authenticated by B. Finally, B computes the session key
as SK = h(K B, idA, idB) = h(geAeB , idA, idB).

5 Security analysis of the improved protocol

In this section, we show that our improved protocol is secure in the random oracle
model. We start with the formal security model and the algorithm assumption that will
be used in our proof.

5.1 Security model

In order to make our scheme resist the known attacks to 3PAKE protocol, we use the
method of provable security. The security proof is based on the model proposed by
Abdalla and Pointcheval [43]. The model that we use is as follows.

5.1.1 Participants

A 3PAKE protocol � runs in a network of a number of interconnected participants
where each participant is either a client U ∈ U or a trusted server S ∈ S . The set S
is assumed to involve only a single server for simplicity. Each of the participants may
have several instances called oracles involved in distinct executions of the protocol �.
We refer to i th instance of U (resp. S) in a session as �i

U (resp. �i
S). Every instance

�i
U (resp. � j

S) has a partner ID pidi
U (resp:pid j

S ), a session ID sidi
U (resp:sid j

S ), and

a session key ski
U (resp:sk j

S). pidi
U (resp:pid j

S ) denotes the set of the identities that are

involved in this instance. sidi
U (resp:sid j

S ) denotes the flows that are sent and received

by the instance �i
U (resp. �

j
S). An instance �i

U (resp. �i
S) is said to be accepted if it

holds a session key ski
U (resp:sk j

S), a session identifier sidi
U (resp:sid j

S ), and a partner

identifier pidi
U (resp:pid j

S ). Two instances �i
U1

and �
j
U2

are considered partnered if

and only if (1) both of them have accepted, (2) pidi
U1

= pid j
U2

, (3) sidi
U1

= sid j
U2

,

(4) ski
U1

= sk j
U2

.
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5.1.2 Long-lived keys

Each client U ∈ U holds a password pwU . Each server S ∈ S holds a vector
pwS = 〈pwU 〉U∈U with an entry for each client.

5.1.3 Adversary model

The communication network is assumed to be fully controlled by an adversary M ,
which schedules and mediates the sessions among all the parties. The adversary M is
allowed to issue the following queries in any order:

Execute(�i
U1

, � j
U2

, �k
S): This query models passive attacks in which the attacker

eavesdrops on honest executions among the client instances �i
U1

and �
j
U2

and

trusted server instance �k
S . The output of this query consists of the messages that

were exchanged during the honest execution of the protocol �.
SendClient(�i

U , m): The adversary makes this query to intercept a message and
then modify it, create a new one, or simply forward it to the client instance �i

U .
The output of this query is the message that the client instance �i

U would generate
upon receipt of message m. Additionally, the adversary is allowed to initiate the
protocol by invoking SendClient(�i

U1
, (U1, Start)).

SendServer(�i
S , m): This query models an active attack against a server. The

adversary makes this query to obtain the message that the server instance �i
S

would generate on receipt of the message m.
Reveal(�i

U ): This query models the known session key attack. The adversary
makes this query to obtain the session key of the instance �i

U .
Corrupt(U ): This query returns to the adversary the long-lived key pwU for par-
ticipant U .
Test(�i

U ): Only one query of this form is allowed to be made by the adversary
to a fresh oracle. To respond to this query, a random bit b ∈ {0, 1} is selected. If
b = 1, then the session key held by �i

U is returned. Otherwise, a uniformly chosen
random value is returned.

5.1.4 Fresh oracle

An oracle �i
U is called fresh if and only if the following conditions hold: (1) �i

U has
accepted; (2) �i

U or its partner (if exists) has not been asked a Reveal query after
their acceptance; and (3) the client who has a partner instance with �i

U , has not been
issued a Corrupt query.

5.1.5 3PAKE security

The security of a 3PAKE protocol � is modeled by the game Game3pake(�,M ).
When playing this game, M can make many queries mentioned earlier to �i

U and

�
j
S . If M asks a single test query, Test(�i

U ), where �i
U has accepted and is fresh,
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then M outputs a single bit b′. The aim of M is correctly guessing the bit b in the
test session. More precisely, we define the advantage of M as follows:

Adv
3pake
�,D (M ) = |2Pr [b′ = b] − 1|. (8)

The protocol � is said to be 3PAKE-secure if Adv
3pake
�,D (M ) only negligibly larger

than O(qsend)/|D|, where qsend is the number of the Send queries, and |D| is the size
of the password dictionary.

5.2 Computational assumption

We define the decisional Diffie–Hellman (DDH) assumption which we use in the
security proof of our scheme.

5.2.1 Decisional Diffie–Hellman (DDH)

The DDH assumption can be precisely defined by two experiments, Expcddh−real
α,p (W )

and Expcddh−rand
α,p (W ). An adversary W is provided with gumod p, gvmod p and

guvmod p in the experiment Expcddh−real
α,p (W ), and gumod p, gvmod p and gwmod p

in the experiment Expcddh−rand
α,p (W ), where u, v and w are drawn at random from

Z
∗
q . Define the advantage of W in violating the DDH assumption, Advcddh

α,p (W ), as
follows:

Advddh
α,p (W ) = max{|Pr [Expddh−real

α,p (W ) = 1]
−Pr [Expcddh−rand

α,p (W ) = 1]|}.

5.3 Security proof

Theorem 1 Let D be a uniformly distributed dictionary of size |D|. Let � describes
the 3PAKE protocol defined in Fig. 4. Suppose that DDH assumption holds, then,

Adv
3pake
�,D (M ) ≤ q2

h

2l
+ (qs + qe)

2

p2 + 2qe · AdvDDH (W )

+2 max

{
qh

p
,

qs

|D| + qs

2l

}

where qs denotes the number of Send queries; qe denotes the number of Execute
queries; qh denotes the number of hash queries to h.

Proof This proof consists of a sequence of hybrid games, starting at the real attack
G0 and ending up at game G4 where the adversary has no advantage. For each game
Gi (0 ≤ i ≤ 4), we define Succi as the event that M correctly guesses the bit b in the
test session.
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Game G0. This game is the real protocol, in the random-oracle model. In this
game, all the instances of A and B and the trusted server S are modeled as the real
execution in the random oracle. By definition of event Succi , which means that
the adversary correctly guesses the bit b involved in the Test-query, we have

Adv
3pake
�,D (M ) = 2| Pr[Succ0] − 1

2
|. (9)

Game G1. This game is as the same as the game G0 except that we simulate the
hash oracle h as usual by maintaining hash list hList with entries of the form (Inp,
Outp). On hash query h(Inp) for which there exists a record (Inp, Outp) in the
list hList , return Outp. Otherwise, randomly choose Outp ∈ {0, 1}l , send it to M
and store the new tuple (Inp, Outp) into hList . We also simulate all the instances,
as the real players would do, for the Send-query and for the Execute, Send-
Client, SendServer, Reveal, Corrupt and Test queries. From the viewpoint of
the adversary, we easily see that the game is perfectly indistinguishable from the
real attack. Hence,

Pr[Succ1] = Pr[Succ0]. (10)

Game G2. In this game, we simulate all the oracles in game G1, except we cancel
the game in which some collisions appear on the partial transcripts (RA, RS1),
(RB, RS2) or (RA, RB) and on hash values. According to the birthday paradox, the
probability of collisions in output of h oracle is at most q2

h/2l+1, where qh denotes
the maximum number of queries to h. Similarly, the probability of collisions in
the transcripts is at most (qs + qe)

2/(2p2), where qs represents the number of
queries to the SendClient and SendServer oracles and qe represents the number
of queries to the Execute oracle. So we have

| Pr[Succ2] − Pr[Succ1]| ≤ q2
h

2l+1 + (qs + qe)
2

2p2 . (11)

Game G3. In this game, we change the simulation of queries to the SendClient
oracle. First, we randomly select a session executed by some honest clients A and
B for partner instances �i

A and �
j
B .

– When SendClient(�i
A, (B, Start)) is asked, we return {idA, idB} to M .

– When SendClient(�i
A, (RS1, RS2)) is asked, we randomly select u ∈ Z

∗
q , and

compute RA = gumod p, RAS = (RS1 − g pwA )umod p and Auth AS as the real
protocol. Then, we return {idA, RA, Auth AS, RS2} to M .

– When SendClient(� j
B , (idA, RA, Auth AS, RS2)) is asked, we randomly choose

v ∈ Z
∗
q , compute RB = gvmod p, K B = Rv

A = guvmod p, RBS , AuthBS and
AuthB A like the real protocol, and return {RA, Auth AS , RB , AuthBS , AuthB A}
to M .

– When SendClient(�i
A, (RB , AuthS A, AuthB A, AuthSB)) is asked, we compute

K A = Ru
B = guvmod p, Auth AB and the session key SK like the real protocol,

and return {AuthSB, Auth AB} to M .
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So, it can be easily seen that this game is perfectly indistinguishable from the
previous game G2. Hence,

Pr[Succ3] = Pr[Succ2]. (12)

Game G4. In this game, we once again change the simulation of queries to the
SendClient oracle for the selected session in game G3. This time, we change the
way we compute the values K A and K B so that they become independent of pass-
words and ephemeral keys. When SendClient (�

j
B , (idA, RA, Auth AS, RS2))

and SendClient (�i
A, (RB , AuthS A, AuthB A, AuthSB)) are asked, we set

K A = K B = Tw(α), where w is selected from Z
∗
p at random. The difference

between the game G4 and the game G3 is as follows:

| Pr[Succ4] − Pr[Succ3]| ≤ qexe · AdvDDH
α,p (W ). (13)

��
Proof By assuming a successful adversary M to distinguish G3 and G4, we construct
a DDH solver W . The only difference between G3 and G4 is in the computation of K A

and K B for the selected session. First time, W obtains a DDH tuple (gu, gv, Z). As
G3 and G4, the solver W selects a matching session for �i

A and �
j
B executed by the

honest clients A and B. Then, when SendClient(�i
A, (RS1, RS2)) is asked, the solver

W sets RA = gumod p. Also, when SendClient(� j
B , (idA, RA, Auth AS, RS2)) and

SendClient(�i
A, (RB , AuthS A, AuthB A, AuthSB)) are asked, the solver W sets

RB = gvmod p and K A = K B = Z . For all other queries, the solver W treats as G3
and G4.

The probability that the distinguisher M picks the selected session as the test ses-
sion, (i.e., the adversary asks Test (�i

A) or Test(� j
B)) is 1/qexe. So, the solver W

simulates all oracle queries without knowing u and v. From the obtained information,
the distinguisher M can compute (RA = gumod p, RB = gvmod p) but cannot com-
pute K A = K B . In the case of Z = guvmod p, this environment for the distinguisher is
equivalent to G3. In the case of Z = gwmod p, this environment for the distinguisher
is equivalent to G4.

Finally, if the distinguisher decides that he interacted with G3, then the solver W
decides that Z = guvmod p. And, if the distinguisher decides that he interacted with
G4, then the solver W decides that Z �= guvmod p. Hence,

| Pr[Succ4] − Pr[Succ3]| ≤ qexe · AdvDDH
α,p (W ).

��
In game G4, Diffie–Hellman keys K A and K B are random and independent with

passwords and ephemeral keys. So, there are three possible cases where the adversary
distinguishes the real session key and the random key as follows:

Case 1. The adversary queries (gw, idA, idB) to h. The probability that this event
occurs is qh/ l.
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Case 2. The adversary asks SendClient query except SendClient(� j
B , m) and

successfully impersonates A to B. The adversary is allowed to reveal the static
key pwB of B but it is not allowed to reveal static key pwA of A. Thus, in order to
impersonate A, the adversary has to obtain some information of the password pwA

of A. The probability is 1/|D|. If the adversary just makes an attempt at random
to impersonate A by computing RAS and succeeds, it will make the difference but
the probability is less than 1/2l . Since there are at most qs sessions of this kind,
the probability that this event occurs is lower than qs/|D| + qs/2l

Case 3. The adversary asks SendClient query except SendClient(�i
A, m) and

successfully impersonates B to A. Similar to Case 1, the probability that this event
occurs is lower than qs/|D| + qs/2l .

As a conclusion,

Pr[Succ4] = 1

2
+ max

{
qH

p
,

qs

|D| + qs

2l

}
. (14)

Combining all the above equations, one gets the announced result as follows:

Adv
3pake
�,D (M ) = 2| Pr[Succ0] − 1

2
|

= 2

∣∣∣∣Pr[Succ0] − Pr[Succ4] + max

{
qh

l
,

qs

|D| + qs

2l

}∣∣∣∣
≤ 2

(
| Pr[Succ0] − Pr[Succ4]| + max

{
qh

l
,

qs

|D| + qs

2l

})

≤ 2

(
| Pr[Succ1] − Pr[Succ2]| + | Pr[Succ3] − Pr[Succ4]|

+ max

{
qh

p
,

qs

|D| + qs

2l

})

≤ q2
h

2l
+ (qs + qe)

2

p2 + 2qe · AdvDDH (W )

+2 max

{
qh

p
,

qs

|D| + qs

2l

}

6 Performance and security comparison

We evaluate the performance and security of our proposed protocol and make com-
parisons with some 3PAKE protocols which use neither symmetric key cryptography
nor server public key. Table 2 shows the performance comparisons of our protocol and
Chang et al.’s protocol [41] and Tso’s protocol [42]. Two main operations are adopted
in this analysis and they are defined as follows. H : the hash function operation; M : the
modular exponentiation operation. In the proposed protocol, we assume that the server
computes and stores g pwU mod p for each user U in the registration phase. Thus, when
the server wants to use g pwU , it is not needed to compute a modular exponentiation.
According to this assumption, the computational cost of our protocol is same as Tso’s
protocol and equal to 12M + 14H.
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Table 2 Computation comparison

User A Server User B Total

Pu et al.’s [32] 5M + 4H 7M + 2H 5M + 4H 17M + 10H

Yang et al.’s [36] 4M + 3H 4M + 8H 4M + 3H 12M + 14H

Youn et al.’s [37] 6M + 6H 4M + 6H 6M + 6H 16M + 18H

Chang et al.’s [41] 3M + 5H 4M + 4H 3M + 5H 10M + 14H

Tso’s [42] 4M + 5H 4M + 4H 4M + 5H 12M + 14H

Ours 4M + 5H 4M + 4H 4M + 5H 12M + 14H

Table 3 Security comparison

Pu et al.’s Yang et al.’s Youn et al.’s Chang et al.’s Tso’s Our

scheme [32] scheme [36] scheme [37] scheme [41] scheme [42] scheme

Reply attack Secure Secure Secure Secure Secure Secure

Impersonation attack Insecure Secure Insecure Insecure Insecure Secure

Guessing attacks Secure Secure Secure Insecure Insecure Secure

Denning–Sacco attack Secure Secure Secure Secure Secure Secure

Modification attack Secure Secure Secure Secure Secure Secure

Known-key attack Secure Secure Secure Secure Secure Secure

Forward secrecy Yes Yes Yes Yes Yes Yes

Provably secure Yes Yes No No No Yes

Table 3 lists the security comparisons among our proposed protocol and other
related protocols. It demonstrates that our protocol has many excellent features and is
more secure than other related protocols.

7 Conclusions

In this paper, we briefly reviewed Tso’s 3PAKE protocol. We demonstrated that Tso’s
scheme is vulnerable to off-line password guessing attack. Additionally, we pointed
out that Tso’s scheme also suffers from impersonation attack. Therefore, we proposed
an improved scheme to overcome the security weaknesses of the related schemes and
proved its security in the random oracle model.
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