
J Supercomput (2014) 70:880–905
DOI 10.1007/s11227-014-1266-y

Parallelizing and optimizing a hybrid differential
evolution with Pareto tournaments for discovering
motifs in DNA sequences

David L. González-Álvarez ·
Miguel A. Vega-Rodríguez ·
Álvaro Rubio-Largo

Published online: 5 August 2014
© Springer Science+Business Media New York 2014

Abstract Transcriptional regulation is the main regulation of gene expression, the
process by which all prokaryotic organisms and eukaryotic cells transform the informa-
tion encoded by the nucleic acids (DNA) into the proteins required for their operation
and development. A crucial component in genetic regulation is the bindings between
transcription factors and DNA sequences that regulate the expression of genes. These
specific locations are short and share a common sequence of nucleotides. The discov-
ery of these small DNA strings, also known as motifs, is labor intensive and therefore
the use of high-performance computing can be a good way to address it. In this work,
we present a parallel multiobjective evolutionary algorithm, a novel hybrid technique
based on differential evolution with Pareto tournaments (H-DEPT). To study whether
this algorithm is suitable to be parallelized, H-DEPT has been used to solve instances
of different sizes on several multicore systems (2, 4, 8, 16, and 32 cores). As we will
see, the results show that H-DEPT achieves good speedups and efficiencies. We also
compare the predictions made by H-DEPT with those predicted by other biological
tools demonstrating that it is also capable of performing quality predictions.

Keywords Parallelism · Hybrid algorithm · Differential evolution ·Multiobjective
optimization ·Motif discovery

D. L. González-Álvarez (B) ·M. A. Vega-Rodríguez · Á. Rubio-Largo
ARCO Research Group, Department Technologies of Computers and Communications,
University of Extremadura, Escuela Politécnica, Campus Universitario s/n, 10003 Cáceres, Spain
e-mail: dlga@unex.es

M. A. Vega-Rodríguez
e-mail: mavega@unex.es

Á. Rubio-Largo
e-mail: arl@unex.es

123

Parallelizing and optimizing a H-DEPT for discovering motifs 881

1 Introduction

The emerging need for dealing with complex optimization problems in almost all scien-
tific fields has led to significant technological advances. New and improved multicore
architectures are designed every day to try to meet these requirements. These power-
ful architectures allow researchers to design new parallel strategies or methodologies
for addressing complex problems where the solution search space grows exponen-
tially with the size of the input information. Parallel computing allows the exploita-
tion of these powerful systems using multiple processing elements simultaneously.
This is accomplished by splitting the problem into different independent parts that are
processed in parallel. The development of parallel programs is a difficult task because,
among other things, we have to carefully study aspects such as data dependencies.
One of the most used programming paradigms for implementing parallel programs
is OpenMP [5], which is an application programming interface (API) able to exploit
the characteristics of shared-memory architectures by means of a set of compiler
directives, library routines, and environment variables. By applying this programming
paradigm we parallelize a new algorithm to try to reduce its required runtimes and,
so, be able to tackle larger instances in a reasonable time.

In bioinformatics, an important complex optimization problem that can exploit the
properties of parallel computing is the motif discovery problem (MDP). MDP aims to
identify the binding of transcription factor to short nucleotide sequences. These strings,
also known motifs, usually share the same nucleotides and can produce changes in the
transcriptional activity. There are many tools specialized in the identification of these
DNA patterns; some examples are aligns nucleic acid conserved elements (AlignACE)
[38], BioOptimizer [20], BioProspector [28], Consensus [19], Gibbs Motif Sampler
[27] [33], MDscan [29], GADEM [25], and MEME [1]. In recent years numerous
works that present new techniques based on evolutionary algorithms have been also
proposed for finding motifs in DNA sequences; some of them are finding motifs by
genetic algorithm (FMGA) [26], a genetic algorithm based on the SAGA [34] opera-
tors; structured genetic algorithm (St-GA) [44], and motif discovery using a genetic
algorithm (MDGA) [6]. However, genetic algorithm-based motif elicitation (GAME)
[48] is one of the techniques that has been most successful. GAME is an optimization
algorithm that conducts a more exhaustive search of the space of possible motifs. If
we analyze the works presented in the literature that address this optimization prob-
lem, the MDP, we observe that most of the proposals are based on genetic algorithms.
Additionally, these algorithms have a number of limitations such as following a single-
objective formulation (as we will see in the following sections, this methodology does
not adequately reflect the biological properties of MDP), or the need of defining a
given motif length beforehand. Moving away from the concept of single-objective
optimization, we just found a multicriterion alternative in [12] and [13], where the
authors optimize the similarity and complexity of the discovered DNA patterns by
using weights; and another where a first multiobjective approximation is proposed
with the MOGAMOD algorithm [21]. Continuing the research presented in the latter
work, we propose a realistic multiobjective formulation that allows us to fill the gaps
made by the previously described tools. To demonstrate this, we have incorporated this
formulation on a hybrid version of the well-known differential evolution (DE) algo-

123

882 D. L. González-Álvarez et al.

rithm [36], hybrid differential evolution with Pareto tournaments (H-DEPT), which
also incorporates the Pareto tournaments function based on the Pareto dominance and
binary tournament concepts. As we will see, this function aims to facilitate the choice
of the best multiobjective solution. We also analyze the parallelization capability pre-
sented by H-DEPT by conducting experiments on different multicore systems (2, 4,
8, 16, and 32 cores), considering different OpenMP parameters such as the estab-
lished thread scheduling policy. As we will see, the proposed hybrid multiobjective
evolutionary algorithm is able to predict biological quality solutions, presenting good
parallel results. These conclusions demonstrate that this algorithm represents a good
tool for discovering motifs in complex instances.

The rest of this paper is organized as follows. Section 2 describes the problem
formulation in a formal way, as well as includes an illustrative example of the problem
to better understand the main purpose of each defined objective function. In Sect. 3
we present a review of the work related to the application of parallelism to solve the
MDP. A description about H-DEPT is presented in Sect. 4. In this section we detail all
aspects related to the multiobjective adaptation of the algorithm and we describe the
operation of the incorporated local search function. Section 5 is devoted to the analysis
of the carried out experiments. A comprehensive analysis of the parallel results and a
comparison between the results obtained by our proposed algorithm and those achieved
by other well-known biological tools are also included. Finally, Sect. 6 summarizes
the conclusions of the paper and discusses possible lines of future work.

2 Motif discovery problem

Identifying new transcription factor binding sites (TFBS) is important and essential
for understanding the genetic regulation process together with the mechanisms that
control life on our planet. The MDP formulates the discovery of motifs as a complex
optimization problem which aims to find small TFBSs in the midst of a huge amount of
biological information. To do this, we search over-represented substrings in a sequence
of strings S = {S1, S2,…, SD} defined on the alphabet B = {A, C, G, T }. Genetic
regulation is essential for all life processes such as cell differentiation, metabolism,
cell cycles. . . Transcriptional regulation, the main genetic regulation, is performed
by means of interactions (bindings) of regulatory elements. Although these mech-
anisms are not even completely understood, numerous efforts are invested in their
understanding. What is known is that special proteins called transcription factors (TF)
bind to certain DNA substrings forming TFBSs [53]. As a result of these unions, the
genetic expression process, the process by which genes are transcribed into RNA, is
enabled or disabled. The identification of these TFBSs and other elements that control
gene expression and interactions among different TFs may explain the origin of living
organisms, providing us important information about its complexity and its evolution.
TFBSs and the elements that control gene expression are also known as motifs. For
finding them, the MDP defines three conflicting objective functions to be maximized:
motif length, support, and similarity. Motif length is the number of nucleotides that
compose the pattern. To obtain the values of the other two objectives, we have to
build the consensus motif, which is a string abstraction of the motif instances of all

123

Parallelizing and optimizing a H-DEPT for discovering motifs 883

sequences. Only those sequences that achieve a motif instance of certain quality with
respect to the consensus motif are taken into account when we generate the final motif.
This is indicated by the support (number of sequences taken into account), the second
defined objective function. Those candidates which share at least a certain number of
nucleotides with the consensus motif will be taken into account in this objective and
in the following steps. After several experiments we established this threshold value
of support to 50 %. Thus, the candidate motifs that are not able to reach this threshold
value will not be taken into account in the support or in the subsequent similarity cal-
culations because we believe that they are distorting the quality of the final solution.
After calculating the support value, we continue with the last objective function, the
similarity. For this, we must build the position count matrix (PCM), a well-known
biological structure that is basically used to count the nucleotide bases that we have
in each position of the selected candidate motifs. The dominant nucleotides of each
position have to be normalized in the position frequency matrix (PFM), and then we
can calculate the similarity value by averaging all the dominance values of each PFM
column, as indicated in the following expression:

Similarity(Motif) =
∑l

i=1 maxb{ f (b, i)}
l

(1)

where f (b, i) is the score of nucleotide b in column i in the PFM and maxb{ f (b, i)}
is the dominance value of the dominant nucleotide in column i . To better adapt the
problem formulation to the real-world biological requirements, we have also incorpo-
rated several constraints that should be satisfied by each solution. These constraints
(C1, C2, and C3) must be met by all the generated solutions, i.e., if a solution does not
meet the three defined constraints, it will be discarded and it will not be part of the
population.

First, since motifs are usually very short [11], we have restricted the motif length to
the range [6,22], where the minimum is 6 and the maximum is 22 (C1). Additionally,
we have set a minimum support value of 2 for the motifs of the sequence data sets
composed of four or less sequences, and of three for the other ones (more than 4
sequences) (C2). Normally, the binding sites are composed of motifs of all or nearly
all sequences, and without this constraint is very easy to predict motifs with a high
similarity (even 100 %) formed, for example, by candidates of only one sequence.
Finally, we have also applied the complexity concept proposed in [12] and [13] (C3).
As it is explained in [12] and [13], this concept should be considered to avoid the
appearance of biologically irrelevant solutions, for example, two candidate motifs:
“AAAAAA” and “AAACAA” are very similar, but it is not a meaningful final motif.
The average complexity for a final motif represents the total complexity score for
each candidate motif. We calculate the complexity of a motif by using the following
expression:

Complexity = logN
l!

∏
(ni !) (2)

where N = 4 for DNA sequences, l is the motif length, and ni is the number of
nucleotides of type i ∈ {A, C, G, T }. For example, if we consider the motif “AAAA”

123

884 D. L. González-Álvarez et al.

Fig. 1 Real motif discovery problem; the example includes the consensus/final motif, the position count
matrix (PCM), the position frequency matrix (PFM), and the objective function values (motif length, support,
and similarity)

(n A = 4, nT = 0, nG = 0, and nC = 0) we will obtain a minimum complexity since
we get the highest value in

∏
(ni !). Otherwise, if we have, for example, the “ACGT”

motif (n A = 1, nT = 1, nG = 1, and nC = 1) we will obtain a higher complexity. As
we can see in Eq. (2), if we do not normalize the complexities when we compare motifs,
the maximum complexity is highly dependent on the motif length. The compositional
complexity calculation was revised such that the possible maximum complexity score
is calculated for each possible motif length prior to the evolutionary computation.
During evolution, each complexity score is rescaled between [0, 1] where the possible
maximum complexity score is 1. This removes any potential bias in complexity relative
to the motif length, as detailed in [12]. In our algorithm we have established a minimum
complexity of 0.5 (50 %).

In Fig. 1 we include a real MDP example of size 13 (motif length = 13) corre-
sponding to a solution of the E2F sequence data set. This instance is composed of 25
sequences and, in this case, all candidate motifs satisfy the support threshold require-
ment. Therefore, the support is equal to the number of sequences, i.e., support = 25.
At this point and, as we have previously explained, we have to build the PCM and
PFM to calculate the value of the last objective, the similarity. These two biological
structures are also included in Fig. 1. As we can note, PCM indicates the number of

123

Parallelizing and optimizing a H-DEPT for discovering motifs 885

nucleotides of type A, C, G, and T in each motif position. Furthermore, PFM includes
the same information but as percentages. These values are calculated by dividing the
number of repetitions of each base by the total number of the used candidates, in this
case 25. Once we build these structures, we just have to apply the expression indi-
cated in Eq. (1) by using the maximum frequencies of each column to obtain the final
similarity value; in this example we obtain a similarity = 69 %.

3 Related work

Although the MDP is a complex optimization problem, there are few works that inves-
tigate the application of parallelism to solve it. The first parallel works presented in
the literature are dedicated to use the parallelism for accelerating the operation of
MEME [1]. The execution of this biological tool includes an initial search phase
(starting point search) and another which applies the known expectation maximiza-
tion (EM) process [10]. The runtimes required for executing both phases increase
with the problem size, making necessary the parallelism to speed up execution. In
[18], the authors present one of the first works devoted to accelerate the implemen-
tation of MEME on distributed memory clusters by using message passing interface
(MPI). MEME has also been parallelized by using specialized hardware such as field
programmable gate arrays (FPGAs) in [40]. Such techniques have been successfully
applied to accelerate the execution of other methods designed to solve other biological
problems such as homologies search [50], multiple sequence alignment [35], and phy-
logenetic inference [32]. Recent improvements in multicore architectures caused the
appearance of new effective technologies when parallelizing tools or algorithms, the
GPUs (graphics processing units). This led the authors of [7] and [30] to exploit the
advantages of GPUs to accelerate the execution of MEME, proposing GPU-MEME
and CUDA-MEME, respectively. The authors of this latest work improved their pro-
posal (CUDA-MEME) designing a new version called mCUDA-MEME [31], which
combines CUDA, open multi-processing (OpenMP), and MPI. Among all of them,
we highlight ParaMEME [18], which uses the most similar methodology to the one
followed in this paper. Even with this, a comparison with this parallel biological tool
is not possible because its source code is not available, so it is impossible to mea-
sure the time required to solve the instances addressed in this work, and the available
results are based on an outdated hardware architecture (CPUs that are not currently
accessible).

Aside from the research related to MEME, there are few other works such as [47]
where the authors propose the parallelization of a method for discovering motifs called
PrefixSpan, which is a data mining technique used to extract common patterns from
databases. In [2], the authors develop Motif Discovery Toolkit, another algorithm that
uses a graph-based parallel algorithm to predict where the genetic regulation can occur.
The authors of [37] propose a parallel tool based on the ParSeq application, previously
proposed by the same authors. Also, in [4] the parallelism is applied to accelerate the
execution of an algorithm based on graph theory [42]. Other papers related to the
discovery of motifs using parallelism are [41], where the Boolean matrices algorithm
(BMA) model is parallelized on FPGAs; or [51] where the authors parallelize an

123

886 D. L. González-Álvarez et al.

algorithm based on Gibbs sampling using GPUs. In short, we can note how there is a
lack of works related to the application of parallelism for accelerating the execution of
evolutionary algorithms solving the MDP; most of them are dedicated to parallelize
existing biological tools such as MEME or Gibbs sampling. For this reason, we could
not compare the parallel performance of our proposed evolutionary algorithm with
that achieved by other parallel evolutionary proposals.

Regarding differential evolution, the authors of this work proposed a first version of
DEPT in [15]. Some years later, a new version of this algorithm was proposed in [16]
that incorporates improvements such as the use of the dominance and the crowding
distance concepts. Finally, the algorithm presented in this paper (H-DEPT) presents
novel improvements such as the new and specialized local search function that allows
the algorithm to improve its performance and accuracy when predicting motifs in DNA
sequences, and the application of the complexity concept that avoids the discovery of
low biologically irrelevant solutions. With regard to parallelism, very preliminary
parallel studies have been presented in [14,39]. However, these works have been
considerably improved with the analysis of new and more complex instances (from
4 to 8 sequence data sets) and extended to the addressed optimization problem, the
MDP. In addition, in this work we have also included a thread scheduling policy study,
a comparison among the execution times of the algorithm on multicore machines
with more cores (until 32 cores instead of 8), a more detailed study of the obtained
results, and a more complete biological analysis of the predictions made, comparing
our results with those achieved by other well-known biological tools.

4 Parallel multiobjective evolutionary algorithm

In this section we present the multiobjective evolutionary algorithm proposed for
addressing the MDP. First, we describe the multiobjective adaptation of the algorithm
(DEPT), also analyzing the operation of the incorporated local search function (H-
DEPT). After this, we delve into the explanation of the parallel version.

4.1 Hybrid differential evolution with Pareto tournaments (H-DEPT)

In this work we modify a differential evolution (DE-based multiobjective evolutionary
algorithm named DE with Pareto tournaments (DEPT). This algorithm incorporates a
novel concept called Pareto tournaments function that combines the Pareto dominance
and binary tournament concepts to facilitate the choice of the best multiobjective
solution. The new algorithm is an improved version of DEPT, named hybrid DEPT
(H-DEPT), thanks to the hybridization with a problem-aware local search.

DE is a simple, yet powerful, population-based evolutionary algorithm which aims
to optimize complex problems by maintaining a population of individuals and combin-
ing their information to generate new solutions [46]. These new solutions are gener-
ated by applying a simple crossover-mutation formulation defined in a set of different
selection (crossover/mutation) schemes (see Table 1). We can distinguish two kinds
of selection schemes: exponential and binomial. The exponential schemes are similar
with the two-point crossover. The first cut is randomly selected and then the algo-

123

Parallelizing and optimizing a H-DEPT for discovering motifs 887

Table 1 Defined DE selection
schemes

Scheme Mutant vector generation

Best/1/exp xtrial = xbest + F(xr1 − xr2)

Rand/1/exp xtrial = xr3 + F(xr1 − xr2)

Randtobest/1/exp xtrial = xr3 + F(xbest − xr3)+ F(xr1 − xr2)

Best/2/exp xtrial = xbest + F(xr1 + xr2 − xr3 − xr4)

Rand/2/exp xtrial = xr5 + F(xr1 + xr2 − xr3 − xr4)

Best/1/bin xtrial = xbest + F(xr1 − xr2)

Rand/1/bin xtrial = xr3 + F(xr1 − xr2)

Randtobest/1/bin xtrial = xr3 + F(xbest − xr3)+ F(xr1 − xr2)

Best/2/bin xtrial = xbest + F(xr1 + xr2 − xr3 − xr4)

Rand/2/bin xtrial = xr5 + F(xr1 + xr2 − xr3 − xr4)

rithm crosses the chromosomes consecutively until a second point determined by
the CR probability. On the other hand, the binomial schemes applies the crossover
probability to all the individual chromosomes. For further information about these
crossover/mutation schemes, see [52].

H-DEPT has four important parameters: population size PopSize, crossover prob-
ability CR, mutation factor F , and selection scheme Scheme. For better describing
the operation of the H-DEPT algorithm, we include its pseudocode in Algorithm 1.

The main structure of H-DEPT can be presented in three parts: initialization (lines
1–3 of Algorithm 1), new solutions generation (lines 5–18), and the Pareto tournament
(line 19 and Algorithm 2). Analyzing in detail the H-DEPT pseudocode, we can note
how the first three lines are devoted to the generation and evaluation of the initial popu-
lation (P), and to the initialization of the solution archive (A) with the non-dominated

Algorithm 1 H-DEPT considering the rand/1/bin selection scheme.
Require: MaxGenerations, PopSize, C R, F , Scheme, and local search parameters
Ensure: Solution archive: A
1: P ← generateRandomPopulation(PopSize)
2: A← nonDominatedSolutions(P)
3: P ← evaluatePopulation(P)
4: for g = 0, g < MaxGenerations, g = g + 1 do
5: for i = 0, i < PopSize, i = i + 1 do
6: xtarget ← P[i]
7: xr1 ← selectRandomIndividual(P) //xr1 �= xtarget
8: xr2 ← selectRandomIndividual(P) //xr2 �= xr1
9: xr3 ← selectRandomIndividual(P) //xr3 �= xr2
10: for j = 0, j < Number O f Sequences, j = j + 1 do
11: if C R indicates crossover then
12: xtrial[j] ← xr3[j] + F · (xr1[j] - xr2[j])
13: else
14: xtrial[j] ← xtarget [j]
15: end if
16: end for
17: xtrial ← applyLocalSearchFunction(xtrial , local search parameters)
18: xtrial ← evaluateIndividual(xtrial)
19: P[i] ← ParetoTournament(P , xtarget , xtrial)
20: A← insertSolutionToArchive(P[i])
21: end for
22: end for
23: return A

123

888 D. L. González-Álvarez et al.

Algorithm 2 H-DEPT Pareto tournament function.
Require: P , xtarget , xtrial
Ensure: Best multiobjective solution: xnew
1: xnew ← xtarget
2: if xtrial �= xtarget then
3: if xtrial.M O F < xtarget .M O F then
4: xnew ← xtrial
5: else if xtrial.M O F = xtarget .M O F then
6: PCW ← insertIndividualsBelongToTheSameParetoFront(P , xtarget , xtrial)
7: xtarget .CW ← calculateCrowdingDistance(PCW , xtarget)
8: xtrial.CW ← calculateCrowdingDistance(PCW , xtrial)
9: if xtrial.CW > xtarget .CW then
10: xnew ← xtrial
11: end if
12: end if
13: end if
14: return xnew

solutions of the population. After the initialization of these necessary structures, H-
DEPT begins to explore the solution space. For doing this, and considering the require-
ments of the established selection scheme (in this case rand/1/bin), the algorithm
selects the necessary solutions (xtarget, xr1, xr2, and xr3) and applies the correspond-
ing expression to generate a new solution (trial individual): xtrial = xr3+F ·(xr1−xr2).
Then, this new generated solution is improved by using the local search function. The
operation of this function is detailed in the following paragraphs (see Algorithm 3).
Finally, the last step is to evaluate the new improved solution and check whether it
is better than the original one (target individual), the Pareto tournament (lines 19 and
Algorithm 2). If both solutions are not the same, we first calculate a multiobjective
fitness value (M O F) by using the following expression:

M O F(ind) = |is Dominated(ind)| · PopSize + |dominates(ind)| (3)

Algorithm 3 H-DEPT local search function.
Require: Individual: ind, Window size: W S, Reference: RE F , Direction: DI R
Ensure: Improved individual: new I nd
1: new I nd ← ind
2: re f Moti f ← selectReferenceMotif(RE F)
3: for i = 0, i < Number O f Sequences, i = i + 1 do
4: f irst Nucleotide← selectStartingNucleotide(W S)
5: f ound ← FALSE
6: for j = WS, (j ≥ 2 ∧ found = FALSE), j = j - 1 do
7: string← refMotif.substr(f irst Nucleotide, j);
8: f ound, pos← searchStringInSequence(i ,string,DI R)
9: if f ound = TRUE then
10: new I nd.startingPos[i] ← pos
11: new I nd ← evaluateSolution(new I nd)
12: if new I nd not dominates ind then
13: new I nd.startingPos[i] ← ind.startingPos[i]
14: end if
15: end if
16: end for
17: end for
18: return new I nd

123

Parallelizing and optimizing a H-DEPT for discovering motifs 889

where is Dominated(ind) indicates the number of solutions of the population that
dominates ind, and dominates(ind) represents the number of solutions of the pop-
ulation dominated by ind. So, the quality of each solution is obtained considering
the quality of the remaining individuals from the population. For further information
about this expression see [49]. If both solutions achieve the same M O F , i.e., both
solutions belong to the same Pareto front, we have to make a second comparison (lines
5–12 of Algorithm 2). In this second comparison, the algorithm analyzes which solu-
tion provides greater dispersion to the population by means of the crowding distance
concept [9]. The solution with the highest crowding distance will be the winner of the
Pareto tournament and will be chosen for the next generation of the algorithm.

As we have previously exposed, the main feature of the H-DEPT algorithm is its
local search function. Its operation is simple and effective at the same time and aims to
improve the process of discovering motifs in DNA sequences. Taking this into account,
the local search is applied at the end of each generation to optimize the quality of the
newly generated solutions. Thus, this function is executed a total of PopSize times at
each generation. The local search requires three important parameters: window size
(W S), search direction (DI R), and reference string (RE F). W S defines the size of
the substring that we have to search in the corresponding sequences, DI R defines
the direction that we must take to find the selected substring, and finally the RE F
parameter indicates which motif (among all candidates and the consensus motif) is
used as reference. Algorithm 3 shows the operation of the defined local search.

The local search receives as input the three previously defined parameters (W S,
DI R, and RE F) and the individual that we want to optimize (ind), returning an
improved solution (new I nd). First, it initializes the solution that it will modify (line
1 of Algorithm 3). Then, it selects the motif that will be used as reference taking
into account the value of the RE F parameter (line 2). After selecting the reference
motif, the local search processes all the sequences for finding a small portion of this
motif. The size of this portion is defined by the W S parameter. For starting the search
process, the local search randomly selects the first string nucleotide considering the
value of the W S parameter (line 4). Then, it starts looking for the substring of size
W S (lines 6–16). The search is done by considering the direction indicated by the
DI R parameter. If we find the string in the sequence (line 9), we will check if the
generated solution has improved the previous one; if so, we keep the change, otherwise
we reestablish the old starting location. On the other hand, if we do not find the string
(f ound = F AL SE), we decrease the considered W S parameter value (j variable)
and repeat the search but, at this time, finding a smaller substring. All possible values
of W S, DI R, and RE F are indicated in Table 2.

4.2 Parallel H-DEPT

When we design and implement an algorithm for addressing the MDP, it is practically
mandatory to study its parallelization capability. MDP is an NP-hard optimization
problem whose complexity increases exponentially with the size of the input data
[24]. Therefore, if we have to solve complex instances, parallel computing can be a
good alternative to speed up the execution of the developed techniques. In this work,

123

890 D. L. González-Álvarez et al.

Table 2 Possible values and functions of the local search parameters

Parameter Values Parameter value operation

Windows size (W S) [2, 7] Nucleotides that compose the substrings

Reference string (RE F) 0 Candidate motif of the first sequence

1 Candidate of a randomly selected sequence

2 Consensus motif

3 Candidate closer to the consensus motif at a nucleotide level

Search direction (DI R) 0 Beginning of the sequence

1 Random direction (right or left) from the starting location

2 Both directions (right and left), selecting the best achieved result

we present a parallel version of the H-DEPT algorithm. For parallelizing it, we have
used OpenMP [5], a well-known API able to exploit the characteristics of shared-
memory architectures by means of a set of compiler directives, library routines, and
environment variables.

First of all, we must analyze its scheme and ensure that no data dependencies
exist in the parts that we want to parallelize. In this particular case, as we can see
in Algorithm 1, H-DEPT is mainly composed of two large loops (lines 4 and 5).
Since the results obtained in a generation g + 1 depend on the results achieved in the
previous generation g, the first loop cannot be parallelized. On the other hand, the
second loop seems to have no dependencies because its main function is to generate
one trial solution for each target individual. Additionally, for achieving good parallel
results, it is also important to establish an appropriate population size (PopSize) and
study in detail the time required by the algorithm to process each individual. These
important aspects are analyzed in the following section.

In conclusion, the Parallel H-DEPT algorithm distributes the trial generation work
into different threads. In a formal way, if we assume an N -core system and a population
size equal to PopSize, then each thread will process PopSize/N solutions, i.e., each
thread will execute PopSize/N iterations of those parallelized for loop. Furthermore,
a synchronization barrier exists at the end of the for loop that prevents starting the next
generation until all threads have finished their parallel executions. In this way, we avoid
possible errors due to data dependencies. A graphical example where we describe the
operation of our parallel algorithm is shown in Fig. 2. In this example we assume a
population size PopSize = 96 and a multicore system with 32 cores (N = 32). As
we can see, each thread is responsible for executing PopSize/N = 96/32 = 3 loop
iterations, that is, processing 3 individuals of the population. Following this parallel
scheme we can execute the algorithm up to 32 times faster (considering an efficiency of
100 %). However, since threads are launched in each generation, the algorithm invests
time in creating and eliminating these threads. This time penalizes the achieved parallel
results and is an important aspect that will be analyzed in the following sections.

Finally, in Table 3 we present an illustrative distribution of the individuals processed
by each thread (T hi) at each moment by using different multicore systems: 2, 4, 8,
16, and 32 cores. As we can observe, while the sequential version needs 95 additional

123

Parallelizing and optimizing a H-DEPT for discovering motifs 891

x[0],t x[1],t x[2],t x[3],t x[4],t x[5],t x[93],t x[94],t x[95],t

thread 0 thread 1 thread 31...

v[1],t v[2],t v[4],t v[5],t v[94],t v[95],t

selectRandomIndividuals()

applySelectionScheme()

Scheme

CR, Fxr1, xr2, xr3
target

trial

selectRandomIndividuals()

applySelectionScheme()

Scheme

CR, Fxr1, xr2, xr3
target

trial

selectRandomIndividuals()

applySelectionScheme()

Scheme

CR, Fxr1, xr2, xr3
target

trial

applyLocalSearchFunction()

ParetoTournament()

Improved trial

target

trial

v[0],t

applyLocalSearchFunction()

ParetoTournament()

Improved trial

target

trial

v[3],t

applyLocalSearchFunction()

ParetoTournament()

Improved trial

target

trial

x[0],t+1 x[1],t+1 x[2],t+1 x[3],t+1 x[4],t+1 x[5],t+1 x[93],t+1 x[94],t+1 x[95],t+1

v[93],t

Pareto tournament
 winner

Pareto tournament
 winner

Pareto tournament
 winner

Population
 P,t

 New
population
 P,t+1

 Mutant
population
 V,t

Fig. 2 General outline of the parallel H-DEPT algorithm

time units (t95) to generate the last trial individual and finish the execution of the
corresponding generation, the multicore versions only need 47, 23, 11, 5, and 2 time
units (t47, t23, t11, t5, and t2), respectively. Thus, the most powerful multicore system
(32 cores) is able to make the same operations as the sequential version, in 3 time units
(t0−2) instead of 96.

5 Experimentation

This section is aimed at presenting the experiments conducted to evaluate the perfor-
mance of the previously described algorithm. Before starting the study of the obtained
results, we explain the methodology followed in the conducted experiments, describe
the representation of the individuals, and configure the algorithm to known which
parameter values achieve the best results.

5.1 Experimental methodology

For the parameter adjustments, the multicore experiments, and the final biological
comparisons, we have followed the same experimental methodology. We have carried
out 30 independent runs, using the average results for the comparisons; so we ensure
certain statistical significance in the results. In addition, in all experiments we have
considered the same individual representation. This representation is shown in Table 4.
As we can see, it includes the necessary information for building a possible motif,
which is represented by the motif length and the starting locations of each candidate
motif in each DNA sequence. With these values, and following the steps described
in Sect. 3, we can calculate the value of the three defined objective functions: motif
length, support, and similarity.

123

892 D. L. González-Álvarez et al.

Table 3 Illustrative distribution of the threads tasks using 1, 2, 4, 8, 16, and 32 cores

Seq. 2-cores 4-cores 8-cores

T h0 T h0 T h1 T h0 T h1 T h2 T h3 T h0 T h1 T h2 T h3 T h4 T h5 T h6 T h7

t0 0 0 48 0 24 48 72 0 12 24 36 48 60 72 84

t1 1 1 49 1 25 49 73 1 13 25 37 49 61 73 85

t2 2 2 50 2 26 50 74 2 14 26 38 50 62 74 86

t3 3 3 51 3 27 51 75 3 15 27 39 51 63 75 87

t4 4 4 52 4 28 52 76 4 16 28 40 52 64 76 88

. .

t10 10 10 58 10 34 58 82 10 22 34 46 58 70 82 94

t11 11 11 59 11 35 59 83 11 23 35 47 59 71 83 95

. .

t22 22 22 70 22 46 70 94

t23 23 23 71 23 47 71 95

.

t46 46 46 94

t47 47 47 95

. . .

t94 94

t95 95

16-cores 32-cores

T h0 T h1 T h2 T h3 . . . T h12 T h13 T h14 T h15 T h0 T h1 . . . T h14 T h15 . . . T h30 T h31

t0 0 6 12 18 . . . 72 78 84 90 0 3 . . . 42 45 . . . 90 93

t1 1 7 13 19 . . . 73 79 85 91 1 4 . . . 43 46 . . . 91 94

t2 2 8 14 20 . . . 74 80 86 92 2 5 . . . 44 47 . . . 92 95

t3 3 9 15 21 . . . 75 81 87 93

t4 4 10 16 22 . . . 76 82 88 94

t5 5 11 17 23 . . . 77 83 89 95

Table 4 Individual representation

Seq. 1 Seq. 2 Seq. 3 Seq. n

Motif length S1 S2 S3 . . . Sn

Furthermore, the value of the algorithm parameters have been adequately adjusted
after performing numerous experiments. To configure the algorithm parameters, we
first analyzed which of them were the most influential ones in terms of the quality of
the results. Once identified, we configure them in that order. For doing this, we select
a minimal set of five values uniformly distributed in their possible ranges and then
execute the algorithm. Those parameter values that achieve the best results in most

123

Parallelizing and optimizing a H-DEPT for discovering motifs 893

Table 5 Parameterization of the algorithm

Parameterization used in H-DEPT

Population size (PopSize) 96 individuals

Crossover probability (C R) 25 %

Mutation factor (F) 3 % of the individual chromosomes

Selection scheme (Scheme) Rand/1/bin

Parameterization used in the local search function

Windows size (W S) 6 nucleotides

Reference string (RE F) 1, candidate of a randomly selected sequence

Search direction (DI R) 2, both directions, selecting the best one

instances will be established. This process is repeated for all parameters. In Table 5, we
show the best configurations found for the H-DEPT algorithm. All these experiments
have been performed on an AMD Opteron Processor 6174 (2.20 GHz) with 64 GB of
RAM and Scientific Linux 6.1 (64 bits), compiling the software with GCC 4.4.5.

To study the behavior of the parallel algorithm we measure its performance by
using three indicators: execution time (T , in seconds), speedup (Sc), and efficiency
(Ec). Speedup refers to how much a parallel algorithm is faster than a corresponding
sequential algorithm, and to calculate its value we need the sequential time (T1) and
the parallel time using c cores (Tc):

Sc = T1

Tc
(4)

Furthermore, efficiency is a value between 0 and 1 typically used to estimate how
well utilized the processors are in solving a problem. It is measured by using the
sequential and parallel times, i.e., the speedup; and the number of cores used for
running the parallel application (c):

Ec = Sc

c
= T1

c · Tc
(5)

Ideally, the best speedup is equal to the number of cores (Sc = c) and the best
efficiency is equal to 1 (Ec = 1); however, these results are very difficult to achieve
due to several reasons; one example can be that there may be parts of the algorithm
that do not accept being parallelized. For further information about these parallel
indicators, see [17].

5.2 MDP instances

For the empirical study we have used a total of eight instances. These instances were
introduced for evaluating the GAME method in [48] and include motifs of different
properties. The CRP data set is a widely tested benchmark [45] containing 23 cyclic

123

894 D. L. González-Álvarez et al.

Table 6 Properties of the eight used real instances

Data set CREB CRP E2F ERE MEF2 MyOD SRF TBP

N 17 18 25 25 17 17 20 95

L 200 105 200 200 200 200 200 200

w 8 22 11 13 7 6 10 6

� 19 23 27 25 17 21 36 95

MaxGenerations 3,750 1,500 2,500 2,500 7,000 3,750 5,000 1,000

Runtimes (s) ≈170 ≈70 ≈200 ≈200 ≈100 ≈300 ≈250 ≈850

N is the number of sequences, L the sequence length, w the motif width, and � is the number of true TFBSs
annotated

adenosine monophosphate receptor binding sites of Escherichia coli. The estrogen
receptor is a ligand-activated enhancer protein which can activate gene expression in
response to estradiol. We analyze 25 genomic sequences that contain known estrogen
receptor elements (ERE) binding sites [23]. Finally, we examine the regulation of 25
sequences that contain 27 binding sites for transcription factors in the E2F family
[22]. We have also used a set composed by five additional instances: CREB, MEF2,
MyOD, SRF, and TBP from the ABS database of annotated regulatory binding sites
[3]. The number of sequences of these eight instances ranges from 17 to 95, and the
size of their sequences from 105 to 200 bases. This allows us to have a set of instances
with different properties that can help us to correctly evaluate the performance of our
proposal. Their properties are described in Table 6. In this table we also include the
runtimes required by the algorithm to obtain quality solutions in each instance. These
times depend on the biological complexity of instances, i.e., the number of sequences,
the number of nucleotides per sequence, and the size of the included binding sites. On
the other hand, the number of generations used in each instance has been calculated
according to the times required by the algorithm.

5.3 Parallel results

As explained in the previous sections, parallelizing an algorithm is not a simple task.
In Sect. 4.2 we saw how the H-DEPT algorithm has no data dependencies in its
second main loop (lines 5–21 of Algorithm 1). This means that if we parallelize it,
we could produce significant accelerations. However, first of all we must deepen the
tasks performed by each thread. The first operations performed by the threads in the
parallelized loop are dedicated to generate the trial individuals by taking advantage of
the genetic information of other individuals of the population (lines 6–16 of Algorithm
1), in this case, by using the information of xr1, xr2, and xr3. These operations are the
same for all individuals and, consequently, the time spent by each thread is practically
identical. Continuing with the analysis of the operations performed by the threads, we
can see how the next function to be executed is the local search (line 17 of Algorithm
1). Studying the operation of the local search function (see Algorithm 3), we can
note how the number of iterations made in the loop of line 6 may not be equal in all

123

Parallelizing and optimizing a H-DEPT for discovering motifs 895

cases. Some solutions can easily improve in a few iterations and others may require
more operations to improve. When parallelizing the algorithm, this aspect should be
taken into account since we are assigning tasks with different temporal requirements
to the threads. Finally, the same happens for the last operation of the parallelized
loop (line 19) corresponding to the Pareto tournament function. If we compare two
solutions belonging to the same Pareto front, we have to build the PCW population and
calculate the corresponding crowding distances. Otherwise, if we have two solutions
belonging to different Pareto fronts, the algorithm will not have to perform these
operations.

A loop has logical iterations numbered 0, 1, . . . , N − 1 where N is the number
of loop iterations, and the numbers denote the order in which the iterations would be
executed in a single thread. OpenMP defines an schedule clause that specifies how
the iterations of a given loop are associated with the different threads. The scheduling
kind can be static, dynamic, or guided. When static schedule is specified, iterations
are assigned to the threads in a round-robin fashion in the order of the thread num-
ber. When dynamic schedule is used, the iterations are distributed to threads as the
threads request them. Finally, when guided schedule is considered, the iterations are
assigned to the threads in exponentially decreasing block sizes until a minimum size is
obtained.

To study what thread scheduling policy allows the algorithm to obtain the best
parallel results, we have performed experiments with the three described ones: static,
dynamic, and guided. More specifically, we have solved eight real instances (see
Sect. 5.2) on different multicore systems composed of 2, 4, 8, 16, and 32 cores. The
obtained results are shown in Tables 7 and 8. These tables include the sequential and
parallel times using the three possible thread scheduling policies, together with the
corresponding speedups and efficiencies. In addition, we also indicate in gray the
best results, i.e., the greatest accelerations. In all experiments we have considered the
default chunk_si ze value. Although we know that this value can be configured, our
experience demonstrates that the best performances are generally obtained with the
default values.

In Table 7a we include the results obtained on the two-core multicore system. In
this particular case, we can see how the results obtained by applying the different
thread scheduling policies are similar: an average efficiency of 90.20 % with static,
90.62 % with dynamic, and 90.01 % with guided. Furthermore, the three scheduling
policies achieve the best results in some instance: two best results with static, five with
dynamic, and one with guided. With this data, we can conclude that, when using a
two-core multicore system, the negative aspects of the previously exposed uneven load
balancing problem does not influence the results. Therefore, we may use any of the
three tested thread schedules. The same happens in the experiments conducted on the
four-core multicore system (see Table 7b). The algorithm achieves similar results by
applying any thread scheduling policy: an average efficiency of 88.33 % with static,
87.51 % with dynamic, and 88.18 % with guided. This can be due to each thread
being assigned a large number of individuals (96/4 = 24) and the total work done
by each thread being still very similar. The performance of the parallel algorithm will
be affected when threads process fewer individuals and some of these solutions are
complicated. Thus, the conclusions drawn for this second multicore system (4 cores)

123

896 D. L. González-Álvarez et al.

Table 7 Mean runtime (X represents the mean time in seconds and Std the standard deviation), speedup
(S), and efficiency (E) obtained by the parallel H-DEPT on different multicore systems

Sequential Static Dynamic Guided

XStd XStd S2 E2 (%) XStd S2 E2 (%) XStd S2 E2 (%)

(a) 2-cores

CREB 154.313.65 86.351.75 1.79 89.35 85.421.78 1.81 90.33 85.251.38 1.81 90.51

CRP 68.501.17 37.880.79 1.81 90.41 38.131.02 1.80 89.81 38.301.29 1.79 89.43

E2F 213.456.10 118.152.71 1.81 90.33 117.183.25 1.82 91.08 117.402.82 1.82 90.91

ERE 216.842.03 118.151.14 1.84 91.77 117.181.47 1.85 92.52 120.531.53 1.80 89.96

MEF2 105.112.43 58.860.89 1.79 89.29 58.661.00 1.79 89.59 59.091.67 1.78 88.95

MyOD 288.768.03 157.873.90 1.83 91.46 158.333.74 1.82 91.19 159.864.27 1.81 90.38

SRF 264.395.05 147.673.34 1.79 89.52 146.212.68 1.81 90.41 146.853.04 1.80 90.02

TBP 871.575.41 486.984.75 1.79 89.49 484.134.10 1.80 90.01 484.175.38 1.80 90.01

272.87 151.49 1.80 90.20 150.66 1.81 90.62 151.43 1.80 90.01

Sequential Static Dynamic Guided

XStd XStd S4 E4 (%) XStd S4 E4 (%) XStd S4 E4 (%)

(b) 4-cores

CREB 154.313.65 43.570.84 3.54 88.54 52.722.82 2.93 73.17 43.490.59 3.55 88.71

CRP 68.501.17 19.440.26 3.52 88.07 19.200.33 3.57 89.17 19.150.26 3.58 89.45

E2F 213.456.10 60.171.48 3.55 88.69 59.171.37 3.61 90.19 59.871.55 3.57 89.13

ERE 216.842.03 61.530.78 3.52 88.11 60.650.71 3.58 89.38 61.030.52 3.55 88.83

MEF2 105.112.43 29.840.50 3.52 88.06 29.480.47 3.56 89.12 29.300.60 3.59 89.68

MyOD 288.758.03 80.671.87 3.58 89.49 79.731.61 3.62 90.55 80.532.03 3.59 89.65

SRF 264.395.05 75.481.18 3.50 87.57 74.001.08 3.57 89.33 81.429.23 3.25 81.19

TBP 871.575.41 247.292.88 3.52 88.11 244.322.47 3.57 89.18 245.342.56 3.55 88.81

272.87 77.25 3.53 88.33 77.41 3.50 87.51 77.51 3.53 88.18

are the same as those obtained for the previous multicore system (2 cores). The thread
scheduling policy does not affect the quality of the parallel results, so that we can
apply any of them.

The results achieved on the eight-core multicore system show a slightly different
behavior. Bt analyzing the information of Table 8a, we can note how the guided and
dynamic thread schedules get better results than those achieved by static. Although
it seems that the static and dynamic results are similar (average efficiency of 84.29
and 84.91 %, respectively), the dynamic final result is heavily influenced by the poor
performance presented by the algorithm in the first two instances (CREB and CRP).
These results show that the parallel algorithm begins to present temporal differences
in the processing of the tasks and, consequently, the achieved performance also begins
to be influenced. Therefore, when using this multicore system a guided or dynamic
thread scheduling policy should be established.

123

Parallelizing and optimizing a H-DEPT for discovering motifs 897

Table 8 Mean runtime (X represents the mean time in seconds and Std the standard deviation), speedup
(S), and efficiency (E) obtained by the parallel H-DEPT on different multicore systems

Sequential Static Dynamic Guided

XStd XStd S8 E8 (%) XStd S8 E8 (%) XStd S8 E8 (%)

(a) 8-cores

CREB 154.313.65 24.332.49 6.34 79.27 25.213.10 6.12 76.52 25.342.49 6.09 76.13

CRP 68.501.17 10.200.85 6.71 83.92 10.771.62 6.36 79.51 9.920.16 6.91 86.34

E2F 213.456.10 30.861.03 6.92 86.46 30.250.72 7.06 88.21 30.410.77 7.02 87.73

ERE 216.842.03 32.201.43 6.73 84.18 31.240.30 6.94 86.77 31.370.34 6.91 86.41

MEF2 105.112.43 15.700.66 6.69 83.66 15.320.22 6.86 85.78 15.360.31 6.84 85.53

MyOD 288.758.03 41.980.93 6.88 85.98 40.830.94 7.07 88.39 41.281.06 6.99 87.44

SRF 264.395.05 38.890.56 6.80 84.99 38.030.70 6.95 86.90 38.200.69 6.92 86.52

TBP 871.575.41 126.941.52 6.87 85.83 124.941.05 6.98 87.20 124.671.00 6.99 87.38

272.87 40.14 6.74 84.29 39.57 6.79 84.91 39.57 6.83 85.43

Sequential Static Dynamic Guided

XStd XStd S16 E16 (%) XStd S16 E16 (%) XStd S16 E16 (%)

(b) 16-cores

CREB 154.313.65 20.1026.42 7.68 47.97 12.160.55 12.69 79.31 13.133.77 11.76 73.48

CRP 68.501.17 8.6111.94 7.95 49.70 6.161.76 11.12 69.47 6.282.33 10.91 68.17

E2F 213.456.10 20.899.62 10.22 63.85 17.114.09 12.48 77.98 18.285.83 11.67 72.96

ERE 216.842.03 20.658.88 10.50 65.65 16.961.56 12.79 79.91 17.693.68 12.26 76.61

MEF2 105.112.43 11.155.35 9.43 58.93 8.330.67 12.61 78.82 10.103.66 10.40 65.02

MyOD 288.758.03 25.9910.60 11.11 69.44 22.631.37 12.76 79.77 25.466.84 11.34 70.89

SRF 264.395.05 23.948.47 11.05 69.03 20.646.83 12.81 80.06 25.6310.03 10.31 64.46

TBP 871.575.41 77.6934.53 11.22 70.11 65.411.54 13.32 83.28 65.720.99 13.26 82.89

272.87 26.13 9.89 61.84 21.18 12.57 78.58 22.79 11.49 71.81

Sequential Static Dynamic Guided

XStd XStd S32 E32 (%) XStd S32 E32 (%) XStd S32 E32 (%)

(c) 32-cores

CREB 154.313.65 8.775.26 17.60 55.01 7.550.78 20.44 63.88 7.811.41 19.76 61.75

CRP 68.501.17 3.961.26 17.28 54.00 3.570.43 19.18 59.92 3.600.58 19.02 59.44

E2F 213.456.10 10.312.72 20.70 64.70 9.671.08 22.08 69.00 9.801.96 21.77 68.04

ERE 216.842.03 10.612.85 20.44 63.88 9.821.18 22.09 69.02 10.362.26 20.93 65.41

MEF2 105.112.43 5.791.93 18.17 56.78 5.130.77 20.49 64.03 5.521.85 19.03 59.47

MyOD 288.758.03 14.232.20 20.29 63.39 14.031.52 20.58 64.32 14.712.94 19.63 61.36

SRF 264.395.05 12.892.39 20.51 64.11 12.601.59 20.99 65.59 12.802.30 20.66 64.56

TBP 871.575.41 43.6910.56 19.95 62.34 38.892.65 22.41 70.04 39.502.82 22.07 68.95

272.87 13.78 19.37 60.53 12.66 21.03 65.72 13.01 20.36 63.62

123

898 D. L. González-Álvarez et al.

Table 9 Best parallel results of H-DEPT using different multicore systems (Sc is the speedup and Ec the
efficiency for c cores)

Sequential 2-cores 4-cores 8-cores 16-cores 32-cores

S2 E2 (%) S4 E4 (%) S8 E8 (%) S16 E16 (%) S32 E32 (%)

CREB 154.31 1.81 90.51 3.55 88.71 6.34 79.27 12.69 79.31 20.44 63.88

CRP 68.50 1.81 90.41 3.58 89.45 6.91 86.34 11.12 69.47 19.18 59.92

E2F 213.45 1.82 91.08 3.61 90.19 7.06 88.21 12.48 77.98 22.08 69.00

ERE 216.84 1.85 92.52 3.58 89.38 6.94 86.77 12.79 79.91 22.09 69.02

MEF2 105.11 1.79 89.58 3.59 89.68 6.86 85.78 12.61 78.82 20.49 64.03

MyOD 288.75 1.83 91.46 3.62 90.55 7.07 88.39 12.76 79.77 20.58 64.32

SRF 264.39 1.81 90.41 3.57 89.33 6.95 86.90 12.81 80.06 20.99 65.59

TBP 871.57 1.80 90.01 3.57 89.18 6.99 87.38 13.32 83.28 22.41 70.04

272.87 1.81 90.75 3.58 89.56 6.89 86.13 12.57 78.58 21.03 65.72

Finally, the results for the multicore systems composed of 16 and 32 cores are
included in Table 8b and c. Analyzing these results, we can see how the algorithm
achieves the best parallel results in all instances by using the dynamic thread schedul-
ing policy. In addition, the algorithm also achieves considerable improvements in the
average efficiency: 78.58 vs. 61.84 and 71.81 % presented by the rest of the policies
for 16 cores; and 65.72 vs. 60.53 and 63.62 % for 32 cores. These results confirm
the previously raised hypothesis, because now each thread is responsible for process-
ing 96/16 = 6 and 96/32 = 3 individuals, respectively, and when this number of
individuals is so low, the processing of a complicated solution greatly penalizes the
performance of the parallel application. Dynamic scheduling policy solves this work-
balancing problem and allows achieving good parallel results. In this latter study, we
can conclude that the best thread scheduling policy for multicore systems composed
of 16 and 32 cores is the dynamic one.

In conclusion, the information presented in Tables 7 and 8 shows that any thread
scheduling policy is good for the systems composed of two or four cores. Guided and
dynamic schedules are the most appropriate ones for the 8-core system; and finally,
the best results on 16-core and 32-core multicore systems are achieved by defining
a dynamic schedule of threads. In Table 9 we summarize the best parallel results
achieved on all the multicore systems.

In addition, in Fig. 3 we also include a more graphical and intuitive comparison
where we compare the runtimes achieved by the parallel version of H-DEPT with the
ideal times obtained by a fully parallel algorithm, i.e., we compare the runtimes that
the algorithm should ideally get if its efficiency was always equal to 100 %, with the
experimental results achieved by the H-DEPT algorithm on the 2, 4, 8, 16, and 32-core
multicore systems. As we can observe, the obtained results are only slightly higher
than the ideal times. Thus, we can say that the proposed algorithm presents a scheme
that makes it suitable for parallelization. Finally, to sum up, we include in Fig. 4 the
mean speedup and efficiency achieved by the H-DEPT algorithm when solving the
eight real sequence data sets.

123

Parallelizing and optimizing a H-DEPT for discovering motifs 899

Fig. 3 Comparisons between the H-DEPT and the ideal times in seconds

5.4 Analysis of the problem solutions

In this section we study the biological quality of the solutions predicted by our algo-
rithm. It is important to note that the solutions predicted by the sequential and parallel
algorithms are the same, but more rapidly obtained. In this comparison we compare

123

900 D. L. González-Álvarez et al.

Fig. 4 Mean speedups and efficiencies of H-DEPT in all the solved instances

its predictions with those made by the GAME algorithm [48], MEME [1], and Bio-
Prospector [28]. In addition, we also include the solutions resulting from the applica-
tion of the BioOptimizer [20] optimization program by using the solutions discovered
by MEME and BioProspector. To compare the correctness of the predictions made,
we use the standard information retrieval metrics of precision and recall [43]:

Precision = # of predicted motif sites that are true sites

of predicted motif sites
(6)

Recall = # of predicted motif sites that are true sites

of true sites
(7)

To make fair comparisons with these biological methods and to compare our results
with those presented in [48], we have used the same biological metrics and followed the
same methodology. That is, we consider that a site is correctly predicted when at least
three base pairs are correctly predicted. These two biological metrics are combined in
the following indicator:

Fscore = 2× Precision × Recall

Precision + Recall
(8)

which is a standard method of comparison [43]. High Fscore values only occur when
high precision and recall are achieved. The GAME, MEME, and BioProspector solu-
tions included in this comparative section are the best solutions found by each method.
Regarding BioOptimizer, the included solutions are those resulting from the optimiza-
tion process.

In Table 10 we show the results of this comparison. This table includes, as we have
already mentioned, the best solutions obtained by GAME, MEME, BioProspector, and
BioOptimizer, as well as some solutions discovered by H-DEPT. After carrying out 30
independent runs of the properly configured algorithm, we selected the best solutions of
each execution and each instance. To select these solutions, we measured the biological
quality of all solutions belonging to the best Pareto front (non-dominated solutions) of
each execution and each instance by calculating the value of the described biological
indicators, and selecting those solutions that have higher Fscore. Once done, we have

123

Parallelizing and optimizing a H-DEPT for discovering motifs 901

Table 10 Comparison among the solutions discovered by H-DEPT, GAME, MEME, BioOptimizer, and
BioProspector

Predictor w | A | Precision Recall F score w | A | Precision Recall F score

CREB MEF2

H-DEPT (best) 14 17 17/17 17/19 0.94 9 17 17/17 17/17 1.00

H-DEPT (median) 14 17 17/17 17/19 0.94 9 17 17/17 17/17 1.00

H-DEPT (worst) 15 14 14/14 14/19 0.85 10 14 13/14 13/17 0.84

GAME 8 22 15/22 15/19 0.73 9 17 15/17 15/17 0.88

BioOpt. (MEME) 12 15 10/15 10/19 0.59 13 15 14/15 14/17 0.88

BioOpt. (BioPro.) 9 17 12/17 12/19 0.67 11 19 11/19 11/17 0.61

MEME 11 15 10/15 10/19 0.59 9 15 14/15 14/17 0.88

BioProspector 8 20 13/20 13/19 0.67 7 17 12/17 12/17 0.71

CRP MyOD

H-DEPT (best) 15 18 18/18 18/23 0.88 15 15 14/15 14/21 0.78

H-DEPT (median) 15 17 17/17 17/23 0.85 14 17 12/17 12/21 0.63

H-DEPT (worst) 8 16 14/16 14/23 0.72 15 10 8/10 8/21 0.52

GAME 19 17 16/17 16/23 0.80 7 21 10/21 10/21 0.48

BioOpt. (MEME) 24 13 12/13 12/23 0.67 10 10 0/10 0/21 0.00

BioOpt. (BioPro.) 24 13 12/13 12/23 0.67 11 11 0/11 0/21 0.00

MEME 24 13 12/13 12/23 0.67 9 8 0/8 0/21 0.00

BioProspector 22 9 9/9 9/23 0.56 6 18 0/18 0/21 0.00

E2F SRF

H-DEPT (best) 11 25 24/25 24/27 0.92 11 20 20/20 20/36 0.71

H-DEPT (median) 11 25 23/25 23/27 0.88 11 20 20/20 20/36 0.71

H-DEPT (worst) 12 25 21/25 21/27 0.81 8 20 18/20 18/36 0.64

GAME 11 24 23/24 23/27 0.90 10 47 33/47 33/36 0.80

BioOpt. (MEME) 13 27 20/27 20/27 0.74 14 51 32/51 32/36 0.74

BioOpt. (BioPro.) 13 27 19/27 19/27 0.70 14 50 32/50 32/36 0.74

MEME 13 23 19/23 19/27 0.76 13 48 28/48 28/36 0.67

BioProspector 11 21 11/21 11/27 0.46 10 35 25/35 25/36 0.70

ERE TBP

H-DEPT (best) 14 24 24/24 24/25 0.98 9 93 86/93 86/95 0.91

H-DEPT (median) 13 23 22/23 22/25 0.92 9 95 85/95 85/95 0.89

H-DEPT (worst) 15 20 19/20 19/25 0.84 9 84 60/84 60/95 0.67

GAME 13 26 19/26 19/25 0.75 7 91 78/91 78/95 0.84

BioOpt. (MEME) 15 22 17/22 17/25 0.72 12 79 35/79 35/95 0.40

BioOpt. (BioPro.) 16 23 18/23 18/25 0.75 9 78 65/78 65/95 0.75

MEME 15 17 15/17 15/25 0.71 12 50 26/50 26/95 0.36

BioProspector 13 16 14/16 14/25 0.68 6 69 58/69 58/95 0.71

H-DEPT results are indicated in bold
w represents the motif length and | A | the number of candidate motifs

123

902 D. L. González-Álvarez et al.

Fig. 5 Sequence logos for the real binding sites of CRP, E2F, and ERE (left) compared with the binding
sites predicted by H-DEPT (right), created using WebLogo [8]

located the best biological solution of each execution and each instance. Among all
the solutions discovered in each instance, we have selected the best, the worst, and the
solution corresponding to the median solution and included the information in Table
10. As we can observe, the algorithm is able to make good biological predictions,
achieving high accuracy (even 100 % in some cases), properly locating most of the
real binding sites. This causes good Fscores that overcome in most cases the quality of
the predictions made by the other biological tools. Among all results we highlight the
one obtained in the MEF2 instance, where the algorithm finds all binding sites in more
than half of the executions. In short, the results presented in this section demonstrate
the biological accuracy of the designed hybrid multiobjective evolutionary algorithm,
being able to conclude that H-DEPT represents a good tool for discovering motifs
(binding sites) in DNA sequences.

Finally, as an example, in Fig. 5 we use the WebLogo software [8] to show the
sequence logos of the best solutions predicted by H-DEPT in the CRP, E2F, and ERE
instances. As we can see, the solutions predicted by our algorithm are very consistent
with the real motifs, accurately locating all nucleotides that compose the solutions in
most cases. These representations support the conclusions drawn in the previous com-
parison and demonstrate the biological accuracy presented by the proposed algorithm.

6 Conclusions and future work

In this work we study in detail the parallelization capability of a hybrid multiobjective
evolutionary algorithm named hybrid differential evolution with Pareto tournaments
(H-DEPT). After detailing the designed multiobjective adaptation, and explaining

123

Parallelizing and optimizing a H-DEPT for discovering motifs 903

the operation of the local search function developed for improving the resolution of
an important biological problem, the motif discovery problem (MDP), we presented
the results obtained after conducting several studies. These studies aim to analyze
the parallelization capability and accuracy of the algorithm when it predicts motifs in
DNA sequences. To parallelize and accelerate the execution of the proposed algorithm
we have used OpenMP and, as differences exist in the execution times of the parallel
tasks, we have analyzed the behavior of the algorithm using different thread scheduling
policies. These parallel experiments have been carried out on several multicore systems
(2, 4, 8, 16, and 32 cores). The obtained results show that any scheduling policy is
good for multicore systems composed of two or four cores; dynamic and guided
are the best for the eight-core multicore system; and finally, the dynamic scheduling
policy achieves the greatest accelerations in multicore systems composed of many
cores (16 and 32 cores). In addition to these conclusions and thanks to the presented
parallelization, we are able to achieve efficiencies around 91 % for 2 cores, 90 % for
4 cores, 86 % for 8 cores, 79 % for 16 cores, and 66 % for 32 cores.

In the second study, we measure the biological quality of the solutions predicted
by the algorithm. For doing this, we use several biological indicators that allow us
to measure the correctness of the solutions. The obtained results demonstrate that the
H-DEPT algorithm is able to find quality solutions that overcome those predicted by
other well-known biological tools presented in the literature such as GAME, MEME,
BioProspector, and BioOptimizer.

As future work, we intend to study the parallel behavior of other multiobjective
algorithms for this specific problem, and thus compare their results with those pre-
sented by the parallel H-DEPT algorithm. Another interesting line of future work is
to address the MDP by applying other parallel methodologies such as MPI or CUDA,
and thus we would know which one is most suitable for its resolution. Finally, we will
also improve the multiobjective problem definition to address in an even more realistic
way the MDP.

Acknowledgments This work was partially funded by the Spanish Ministry of Economy and Competi-
tiveness and the ERDF (European Regional Development Fund), under the contract TIN2012-30685 (BIO
project). David L. González-Álvarez and Álvaro Rubio-Largo are supported by the postdoc research grant
ACCION-III-15 and ACCION-III-13 from the University of Extremadura.

References

1. Bailey TL, Elkan C (1995) Unsupervised learning of multiple motifs in biopolymers using expectation
maximization. Mach Learn 21(1–2):51–80

2. Baldwin N, Collins R, Langston M, Symons C, Leuze M, Voy B (2004) High performance computa-
tional tools for motif discovery. In: Proceedings of 18th International parallel and distributed processing
symposium (IPDPS’04) pp 1–8

3. Blanco E, Farre D, Alba M, Messenguer X, Guigo R (2006) ABS: a database of annotated regulatory
binding sites from orthologous promoters. Nucleic Acids Res 34:D63–D67

4. Challa S, Thulasiraman P (2008) Protein sequence motif discovery on distributed supercomputer. Adv
Grid Pervasive Comput LNCS 5036:232–243

5. Chapman B, Jost R, van der Pas R (2007) Using OpenMP. MIT Press, Boston
6. Che D, Song Y, Rashedd K (2005) MDGA: motif discovery using a genetic algorithm. Proceedings of

the 2005 Conference on genetic and evolutionary computation (GECCO’05), pp 447–452

123

904 D. L. González-Álvarez et al.

7. Chen C, Schmidt B, Weiguo L, Müller-Wittig W (2008) GPU-MEME: using graphics hardware to
accelerate motif finding in DNA sequences. Pattern Recogn Bioinf LNCS 5265:448–459

8. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome
Res 14(6):1188–1190

9. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Trans Evol Comput 6(2):182–197

10. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM
algorithm. J R Stat Soc 39(1):1–38

11. D’haeseleer P (2006) What are DNA sequence motifs? Nat Biotechnol 24(4):423–425
12. Fogel GB, Porto VW, Varga G, Dow ER, Crave AM, Powers DM, Harlow HB, Su EW, Onyia JE,

Su C (2008) Evolutionary computation for discovery of composite transcription factor binding sites.
Nucleic Acids Res 36(21):e142, 1–14

13. Fogel GB, Weekes DG, Varga G, Dow ER, Harlow HB, Onyia JE, Su C (2004) Discovery of
sequence motifs related to coexpression of genes using evolutionary computation. Nucleic Acids Res
32(13):3826–3835

14. González-Álvarez DL, Vega-Rodríguez MA (2013) Parallelizing a hybrid multiobjective differential
evolution for identifying cis-regulatory elements. In: Proceedings of the 20th European MPI Users’s
Group Meeting (EuroMPI 2013), pp 223–228

15. González-Álvarez DL, Vega-Rodríguez MA, Gómez-Pulido JA, Sánchez-Pérez JM (2010) Solving the
motif discovery problem by using differential evolution with pareto tournaments. In: IEEE Congress
on Evolutionary Computation (CEC’10), pp 4140–4147

16. González-Álvarez DL, Vega-Rodríguez MA, Gómez-Pulido JA, Sánchez-Pérez JM (2012) Predicting
DNA motifs by using evolutionary multiobjective optimization. IEEE Trans Syst Man Cybernet Part
C: Appl Rev 42(6):913–925

17. Grama A, Gupta A, Karypis G, Kumar V (2003) Introduction to parallel computing, 2nd edn. Pearson
Education Limited, Edinburgh

18. Grundy W, Bailey T, Elkan C (1996) ParaMEME: a parallel implementation and a web interface for a
dna and protein motif discovery tool. Computer Appl Biosci 12(4):303–310

19. Hertz GZ, Stormo GD (1999) Identifying DNA and protein patterns with statistically significant align-
ments of multiple sequences. Bioinformatics 15(7–8):563–577

20. Jensen S, Liu J (2004) BioOptimizer: a Bayesian scoring function approach to motif discovery. Bioin-
formatics 20:1557–1564

21. Kaya M (2009) MOGAMOD: multi-objective genetic algorithm for motif discovery. Expert Syst Appl
36(2):1039–1047

22. Kel A, Kel-Margoulis O, Farnham P, Bartley S, Wingender E, Zhang M (2001) Computer-assisted iden-
tification of cell cycle-related genes: new targets for E2F transcription factors. J Mol Biol 309(1):99–120

23. Klinge C (2001) Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res
29(14):2905–2919

24. Li M, Ma B, Wang L (2002) Finding similar regions in many sequences. J Computer Syst Sci 65(1):73–
96

25. Li L (2009) GADEM: a genetic algorithm guided formation of spaced dyads coupled with an EM
algorithm for motif discovery. J Comput Biol 16(2):317–329

26. Liu FFM, Tsai JJP, Chen RM, Chen SN, Shih SH (2004) FMGA: finding motifs by genetic algorithm.
In: Fourth IEEE Symposium on bioinformatics and bioengineering (BIBE’04), pp 459–466

27. Liu J, Neuwald A, Lawrence C (1995) Bayesian models for multiple local sequence alignment and
gibbs sampling strategies. J Am Stat Assoc 90(432):1156–1170

28. Liu X, Brutlag D, Liu J (2001) Bioprospector: discovering conserved DNA motifs in upstream regu-
latory regions of co-expressed genes. In: Pacific Symposium on biocomputing, pp 127–138

29. Liu X, Brutlag D, Liu J (2002) An algorithm for finding protein-DNA interaction sites with applications
to chromatin immunoprecipitation microarray experiments. Nat Biotechnol 20:835–839

30. Liu Y, Schmidt B, Liu W, Maskell D (2010) CUDA-MEME: accelerating motif discovery in biological
sequences using CUDA-enabled graphics processing units. Pattern Recogn Lett 31(14):2170–2177

31. Liu Y, Schmidt B, Maskell D (2011) An ultrafast scalable many-core motif discovery algorithm for
multiple GPUs. In: IEEE International Symposium on parallel and distributed processing Workshops
and Phd Forum, pp 428–434

32. Mak T, Lam K (2004) Embedded computation of maximum-likelihood phylogeny inference using
platform FPGA. In: IEEE computational systems bioinformatics conference, pp 512–514

123

Parallelizing and optimizing a H-DEPT for discovering motifs 905

33. Neuwald AF, Liu JS, Lawrence CE (1995) Gibbs motif sampling: detection of bacterial outer membrane
protein repeats. Protein Sci 4(8):1618–1632

34. Notredame C, Higgins DG (1996) SAGA: sequence alignment by genetic algorithm. Nucleic Acids
Res 24(8):1515–1524

35. Oliver T, Schmidt B, Nathan D, Clemens R, Maskell D (2005) Using reconfigurable hardware to
accelerate multiple sequence alignment with clustalw. Bioinformatics 21(16):3431–3432

36. Price K, Storn R, Lampinen J (2006) Differential evolution: a practical approach to global optimization.
Springer, Inc. Secaucus, New york, NJ, USA

37. Qin J, Pinkenburg S, Rosenstiel W (2005) Parallel motif search using ParSEQ. In: Parallel and distrib-
uted computing and networks, pp 601–607

38. Roth FP, Hughes JD, Estep PW, Church GM (1998) Finding DNA regulatory motifs within unaligned
noncoding sequences clustered by whole-genome mRNA quantitation. Nat Biotechnol 16(10):939–945

39. Rubio-Largo A, Vega-Rodríguez MA, González-Álvarez DL (2013) Designing a fine-grained par-
allel differential evolution with pareto tournaments for solving an optical networking problem. In:
Concurrency and computation: practice and experience (online available), pp 1–27

40. Sandve G, Nedland M, Syrstad B, Eidsheim L, Abul O, Drabløs F (2006) Accelerating motif discovery:
motif matching on parallel hardware. Alg Bioinf LNCS 4175:197–206

41. Schröder J, Wienbrandt L, Pfeiffer G, Schimmler M (2008) Massively parallelized DNA motif search on
the reconfigurable hardware platform COPACOBANA. In: Proceedings of the Third IAPR International
Conference on pattern recognition in bioinformatics, pp 436–447

42. Setubal J, Meidanis J (1997) Introduction to computational molecular biology. PWS Publishing Com-
pany, Boston

43. Shaw W, Burgin R, Howell P (1997) Performance standards and evaluations in ir test collections:
cluster-based retrieval models. Inf Process Manag 33(1):1–14

44. Stine M, Dasgupta D, Mukatira S (2003) Motif discovery in upstream sequences of coordinately
expressed genes. In: The 2003 Congress on evolutionary computation (CEC’03), pp 1596–1603

45. Stormo G (1988) Computer methods for analyzing sequence recognition of nucleic acids. Annu Rev
Biophys Biophys Chem 17(1):241–263

46. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization
over continuous spaces. J Global Optim 11(4):341–359

47. Sutou T, Tamura K, Mori Y, Kitakami H (2003) Design and implementation of parallel modified
prefixspan method. Int Symp High Perform Comput 2858:412–422

48. Wei Z, Jensen S (2006) GAME: detecting cis-regulatory elements using a genetic algorithm. Bioin-
formatics 22(13):1577–1584

49. Weicker N, Szabo G, Weicker K, Widmayer P (2003) Evolutionay multiobjective optimization for base
station transmitter placement with frequency assignment. IEEE Trans Evol Comput 7(2):189–203

50. Yamaguchi Y, Miyajima Y, Maruyama T, Konagaya A (2002) High speed homology search using run-
time reconfiguration. Field Progr Logic Appl: Reconfig Comput Going Mainstream LNCS 2438:671–
687

51. Yu L, Xu Y (2009) A parallel gibbs sampling algorithm for motif finding on gpu. In: IEEE International
Symposium on parallel and distributed processing with applications, pp 555–558

52. Zaharie D (2009) Influence of crossover on the behavior of differential evolution algorithms. Appl Soft
Comput 9(3):1126–1138

53. Zare-Mirakabad F, Ahrabian H, Sadeghi M, Hashemifar S, Nowzari-Dalini A, Goli-aei B (2009)
Genetic algorithm for dyad pattern finding in DNA sequences. Genes Genet Syst 84(1):81–93

123

	Parallelizing and optimizing a hybrid differential evolution with Pareto tournaments for discovering motifs in DNA sequences
	Abstract
	1 Introduction
	2 Motif discovery problem
	3 Related work
	4 Parallel multiobjective evolutionary algorithm
	4.1 Hybrid differential evolution with Pareto tournaments (H-DEPT)
	4.2 Parallel H-DEPT

	5 Experimentation
	5.1 Experimental methodology
	5.2 MDP instances
	5.3 Parallel results
	5.4 Analysis of the problem solutions

	6 Conclusions and future work
	Acknowledgments
	References

