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Abstract The energy consumption is an important aspect of today’s processors and
a large variety of research approaches deal with reducing the energy consumption
for specific application codes on different platforms under certain constraints. These
research approaches are based on energy information acquired by very different means,
such as hardware settings with power-meters, software methods with hardware coun-
ters available for more recent CPUs, or simulations based on theoretical models. In
this article, all of these energy acquisition methods are investigated and compared.
As application programs, we consider the SPEC CPU2006 integer and floating-point
benchmark collections, which represent a large variety of applications from differ-
ent areas. The investigations are done for single multicore CPUs with the goal to get
more insight into their energy consumption behavior. An experimental evaluation is
performed on three recent processor types with dynamic voltage–frequency scaling.
The article compares the measured energy and the energy provided by hardware coun-
ters with the energy predicted by simulation models. The comparison shows that the
simulation models are able to capture the energy consumption quite accurately.
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1 Introduction

Energy-aware computing and the efficient use of compute resources are now accepted
to be as important for application codes as performance aspects. Energy efficiency
has already been a critical concern in digital circuit design for the last two decades.
This has led to several power-aware system features, including multicore-on-a-chip
processors, core-independent functional units, dynamic frequency and voltage scaling,
or clock gating, which are mainly aimed at a reduction of the energy consumption of
the processors. To fully exploit the hardware capabilities for decreasing the energy
consumption of application software running on that hardware, information about the
energy consumption has to be available. Reliable energy models and measures are
needed to plan and evaluate the software energy behavior on specific hardware.

One of the most effective hardware energy minimization techniques is dynamic
voltage and frequency scaling involving a dynamic adjustment of the clock frequency
and the corresponding supply voltage. Dynamic voltage–frequency scaling (DVFS)
reduces the dynamic power consumption which is that part of the power needed to
make a processor work. The static power is the power of the processor when it is not
active and mainly includes the leakage power. There is also a considerable amount
of power consumed by the entire hardware system and all its devices. The energy
consumption of application code can be reduced by either decreasing the execution
time, e.g., by algorithmic methods, which may result in a smaller energy consumption,
or by scaling the frequency to decrease the power consumption, which may however
increase the execution time. Since a low execution time is still an important goal, for
instance when simulating large applications or when a predefined response time is
required, energy-awareness and performance awareness have to be treated together.
Thus, in addition to performance data, the availability of reliable energy data is a
prerequisite to tune application code towards energy efficiency.

Measuring, evaluating or modeling energy consumption for either single specific
applications on selected hardware platforms or an entire range of applications empha-
sizing more on the hardware facility is an active research area. The goal is to acquire
information about the energy consumption with the aim to understand, to reduce or
even to minimize the energy consumption under specific constraints. This requires a
very solid foundation of energy data which are reliable in the sense that they reflect the
reality qualitatively and quantitatively. Thus, the challenge is how to get good-quality
energy data. The methods used for gathering energy information of application codes
running on modern hardware platforms are quite different and three main categories
have evolved, which are hardware measurements with specific power-meters, soft-
ware measurements with hardware counters available in more recent processors, and
simulations based on theoretical energy models.

In this article, we consider all the three methods for gathering energy data with
the goal to investigate the correspondence or difference of the energy data provided
by the methods. A contribution of the article is a detailed comparison of the energy
measurement using power-meters and using the running average power limit (RAPL)
interface of recent Intel processors. As application we have chosen the SPEC CPU2006
benchmarks, which are well-known to the community and reflect properties of typi-
cal application codes. The measurements with both of measurement techniques show
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a good correspondence, which allows us to use the energy information gathered by
the faster and easier-to-use hardware counters. In contrast to earlier work, such as
presented in [1,2], the comparison focuses on the frequency scaling feature of the
processors and is performed for a large set of complete application programs (the
SPEC CPU2006 integer and floating-point programs). The correlation of the data
acquired by these two measurement methods is crucial for getting experimental data
on which a power prediction method can be based. A second contribution of the article
is the comparison of the measured energy values with the energy values provided by
different DVFS energy models. In particular, a physical energy model and a heuris-
tic energy model are investigated. These energy models can be used for an a priori
energy estimation and as a basis for simulating the energy consumption of application
programs.

The rest of the article is structured as follows. Section 2 describes measurement tech-
niques for the energy consumption of processors and compares these techniques and
their resulting energy values for the SPEC CPU2006 benchmarks. Section 3 presents
energy measurements for the SPEC benchmarks on different modern processors. Sec-
tion 4 describes different models for capturing the energy consumption of DVFS
processors. Section 5 investigates how well these energy models are suited for predict-
ing the energy consumption of processors. Section 6 discusses related work. Section 7
concludes the paper.

2 Measurement techniques for the energy consumption of DVFS processors

In this section, we describe the techniques with which we have measured the power
and energy consumption of DVFS processors and present the resulting energy data.
Hardware measurement techniques using specialized power-meters are described in
Sect. 2.1. A software-based measurement technique based on accessing the hardware
counters of the processors is described in Sect. 2.2. A comparison of the measured
energy data is done in Sect. 2.3.

Modern microprocessors, such as the Intel Core i7 processors, incorporate a power
management technology which supports different power management states: perfor-
mance states (P-states), throttle states (T-states), idle states (C-states) and sleep states
(S-states) [3]. P-states are predefined sets of paired frequency and voltage combi-
nations at which an active core can operate [4]; the various P-states supported are
implemented using a combination of dynamic frequency scaling (DFS) and dynamic
voltage scaling (DVS). A C-state is an idle state in which parts of the processor are
powered down to save energy. Various C-states are supported by Intel processors, and
a higher numbered C-state indicates more power savings.

For the experiments, three different Intel Core i7 processors have been used:

(i) an Intel Core i7-2600 processor with the Sandy Bridge architecture;
(ii) an Intel Xeon CPU E3-1225 V2 processor with the Ivy Bridge architecture;

(iii) an Intel Core i7-4770 with the Haswell architecture. Table 1 describes some
details of the processor architectures.
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Table 1 Characteristics of the processors used for the experimental evaluation

Core i7-2600 Xeon E3-1225V2 Core i7 4770

Architecture Sandy Bridge Ivy Bridge Haswell

Minimum frequency (GHz) 1.6 1.6 0.8

Maximum frequency (GHz) 3.2 3.2 3.4

TDP (W) 95 77 84

Step size frequency (MHz) 100 100 200

Physical cores 4 4 4

Hyperthreading Yes No Yes

Virtual cores 8 4 8

L1 data cache (KB) 32 32 32

L2 cache (KB) 256 256 256

L3 shared cache (MB) 8 8 8

RAM size (GB) 8 8 8

2.1 Power measurement with power-meter

A precise method to capture the power consumption of computer systems is the direct
measurement using a power-meter. We have implemented this approach using the
data acquisition system National Instruments NI9205, which has been integrated into
an NI CDAQ9181 chassis to enable the transfer of the measured power values via
Ethernet to a separate system for data analysis, see Fig. 1 for an illustration of the
overall configuration and Fig. 2 for a photo of the experimental setup. The power
measurement technique is similar to the technique used by the PowerPack framework
[5].

The NI9205 enables a fine-grain power measurement of different components of a
computer system. In particular, it is possible to isolate the power consumption of the
CPU, the main memory, disks, fans, etc. by accessing the corresponding connectors
used for the supply voltage of an individual component and measuring the power
consumption at this connector. For example, the CPU is powered through a +12VDC
pin whereas the memory is powered through a +3.3VDC pin. The overall power

Fig. 1 Illustration of the power
measurement using the NI9205
device for measuring the supply
voltage Vcc for the different
wires
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Fig. 2 Photo of the power measurement experimental setup using the NI9205 device

consumption of the computer system is the sum of the power consumption of the
individual components.

For the actual power acquisition and profiling, the software tool LabView [6] has
been used for which we have configured several modules operating in a client–server
fashion so that the collection of the power data is automated. The client program initi-
ates the LabView server program to acquire power data and then starts the application
program for which the power profile is requested. After the termination of the applica-
tion program, the LabView module saves the collected power consumption data to disk
and initiates the post-processing of the data. LabView modules were also needed for
the synchronization of the power profiling process with the running application pro-
gram. The software modules developed are also able to capture the power consumption
of specific parts of the application program to be analyzed and to determine which
part of a computer system has which power consumption at which point of program
execution. As example, Fig. 3 shows the power consumption of the SPEC CPU2006
benchmark libquantum running on a Core i7 Ivy Bridge architecture measured with
the NI9205 power-meter. The time interval between 50 and 50.5 s is shown, which has

Fig. 3 Detailed results of the
power measurement for a
specific time interval of the
SPEC benchmark libquantum
using the NI9205 device on an
Intel Ivy Bridge processor
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Fig. 4 Detailed power
measurement for the SPEC
benchmark libquantum executed
at different frequencies;
measurement using the NI9205
device on an Intel Ivy Bridge
processor

been selected arbitrarily. Other intervals show a similar behavior. The total runtime of
the benchmark is 292 s in the turbo mode at 3.6 GHz. The following five connectors
have been measured: (1) the 24 pin ATX 3.3V main-board connector supplying the
memory modules; (2) the 24 pin ATX 12V main-board connector supplying peripheral
devices and the CPU; (3) the 24 pin ATX 5V main-board connector also supplying
peripheral devices and the CPU; (4) the main-board 12V EPS connector which is
mainly used by the CPU; (5) the 12V and 5V supply lines for the hard disk. Figure 3
shows that the power consumption of the memory modules is quite small compared to
the power consumption of the CPU, and the power consumption due to disk accesses
is even smaller.

Figure 4 shows the power consumption for the different connectors for the SPEC
CPU2006 benchmark libquantum depending on the frequencies. Especially the power
consumption of the 12V EPS connector, which is the main power supply of the CPU,
is significantly increasing with the frequency. The power consumption of the ATX 5V
main-board connector, which is also partly used by the CPU, also increases slightly.
The power consumption of the remaining connectors remains nearly constant over the
range of available frequencies, since they are not affected by the frequency change.

The power-meter approach can be extended to capture the power consumption of
parallel systems, such as clusters, by measuring the power consumption of the nodes
of the cluster system separately and adding up the measured power consumption of
the nodes. Figure 5 shows the runtimes and energy consumption of selected SPEC
CPU2006 benchmarks. However, this would require a significant amount of measur-
ing devices, especially for larger parallel systems. An alternative approach is to use
software techniques with hardware counters as described in the Sect. 2.2 requiring
much less overhead. The question arises how accurate the measurement with hard-
ware counters is in comparison with a measurement with a power-meter. We address
this question in Sect. 2.3 (Fig. 5).

2.2 Power measurement with RAPL sensors

Many recent processors provide hardware counters which capture the energy con-
sumption. Starting with the Sandy Bridge architecture, Intel has introduced the RAPL

123



Energy measurement, modeling, and prediction for processors 1457

Fig. 5 Runtime and energy
consumption of selected SPEC
CPU2006 benchmarks with
varying frequencies. For the
energy, the total energy
consumption is shown, collected
with the NI9205 device on an
Intel Ivy Bridge processor

feature, which provides sensors that allow the measurement of the power consumption
of CPU components [2,3]. The Core i7 processor family has two power planes on chip,
which are PP0 containing the processor cores and all caches, and PP1, also referred
to as Uncore, containing additional devices, such as graphics devices or the Pack-
age Control Unit (PCU) [2]. The corresponding RAPL sensors are RAPL_PPO and
RAPL_PP1 measuring the power consumption of the processor core and the proces-
sor uncore. In addition, there are the RAPL sensors RAPL_DRAM and RAPL_PKG
for measuring the power consumption of the memory controller and the whole CPU
package, respectively.

RAPL sensors can be accessed by control registers, known as Model-Specific Reg-
isters (MSRs), which are updated in intervals of about 1 ms [3]. The MSR can be
accessed by a pair of instructions rdmsr and wrmsr. These instructions are privileged
(privilege level 0) and are to be executed in kernel mode. The MSRs provide informa-
tion about the energy status of the PP0 and PP1 power planes using the specific regis-
ters MSR_PP0_ENERGY_STATUS and MSR_PP1_ENERGY_STATUS. The MSR
MSR_PKG_ENERGY_STATUS captures the energy status of the whole CPU pack-
age. The corresponding energy status unit is obtained via the MSR_RAPL_POWER_
UNIT MSR; the default value is 15.3 µJ.

Our investigations include power and energy measurements exploiting RAPL sen-
sors for the SPEC CPU2006 benchmarks. For the RAPL-based experiments, we have
used the likwid toolset (Version 3.0) [7], which provides access to the MSRs introduced
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above. In the following subsection, the measurement methods with power-meters and
RAPL sensors are compared and evaluated. The goal is to clarify the influence of the
measurement overhead on the measurement results.

2.3 Comparison of the measurement techniques

Hardware counters, such as the MSR registers, can capture only the power consumption
of the CPU. On the other hand, measurements with specialized devices, such as the
NI9205 system, enable a more detailed measurement that can also take the memory
system, fans, and peripheral devices into account. However, a significant hardware
and software overhead is required to perform accurate power-meter measurements
with such a device. One might argue that the main contribution to power consumption
comes from the CPU and that the measurement with hardware counters is good enough
to capture the relevant effects. In this context, it is interesting to investigate how
accurate the power measurement with hardware counters is compared with detailed
measurements using special power-meter devices. We address this issue in this section
and present a comparison for selected application programs.

To set the frequencies of the cores to a fixed value, we have used the cpufreq_set
tool; the minimum and the maximum core frequencies have been set to the same value.
During program execution, the frequency of each core can be observed with the i7z
tool. The runtime experiments have been performed with no other application program
running on the machine, i.e., interferences can only come from jobs of the operating
system. To reduce the effect of such interferences, the runtime experiments have been
performed several times.

For the Sandy Bridge architecture, the operational frequency can be set between 1.6
and 3.4 GHz in 100-MHz steps. The same holds for the Ivy Bridge architecture with
the exception that the maximal frequency is 3.2 GHz. For the Haswell architecture,
the frequency can be set between 0.8 and 3.4 GHz; the stepsize is usually 200 MHz
with two exceptions (1.4/1.5 GHz and 2.7/2.8 GHz).

Figure 6 compares the two energy measurement techniques described above. The
measurement has been performed for the SPEC benchmark libquantum on an Intel
Core i7 Sandy Bridge processor. The benchmark runs have been repeated 20 times
with the “test” input. The power measurement shown in Fig. 6 using the NI 9205
acquisition system takes only the main-board 12V EPS connector into consideration,
which is the main power supply of the CPU. The 12V ATX and the 5V ATX connector,
which partially supply the CPU and also other periperal devices, are not taken into
consideration, as it cannot be determined which part of the power actually goes to
the CPU. On the other hand, the measurement with the RAPL interface captures the
complete power consumption of the CPU. The diagram shows a good match of the
energy values obtained with both techniques for some of the frequencies. For other
frequencies, the energy values obtained with RAPL are up to about 20 % larger than
the energy values obtained with the NI 9205 device. A reason for these deviations
could be that there is an additional power flow to the CPU via the 12V and the 5V
ATX connectors, which is not captured. Our investigations have shown that these
deviations are smaller for most of the other SPEC benchmarks on the Sandy Bridge

123



Energy measurement, modeling, and prediction for processors 1459

Fig. 6 Comparison of the results of the energy measurement with power-meters and the energy mea-
surement using RAPL for the SPEC benchmark libquantum on an Intel Core i7 Sandy Bridge processor

Fig. 7 Comparison of power
measurement with MSR
registers (top) and NI9205
device (bottom) on an Intel Ivy
Bridge processor

architecture. The differences in the deviations for different frequencies are not present
for the Ivy Bridge processor as described in the following.

Figure 7 shows the power consumption obtained with the two measurement meth-
ods for the Core i7 Ivy Bridge architecture using five selected SPEC benchmarks.
The figure shows that the power consumption increases more than linearly when the
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frequency is increased. Both measurement techniques can capture this behavior. The
figure also shows that the two measurement methods lead to similar values for the
power consumption. In particular, the relative order of the power consumption of the
different benchmarks is the same for both measurement techniques. However, the
power values obtained with RAPL are systematically larger than the power values
obtained with the NI 9205 device for the same reason as mentioned for Fig. 6. In
particular, the power measured with the RAPL interface is typically about 3 W larger
than the power measured with the NI 9205 device using only the 12V EPS connector.
Adding the power consumption of the 12V ATX and 5V ATX connectors to the power
measured with the NI 9205 device would lead to larger values as measured with the
RAPL interface. In summary, it can be concluded that the power measurement via
RAPL is accurate enough to replace the usage of power-meters.

3 Energy consumption of the SPEC CPU benchmark programs

In this section, we present results of power and energy measurements for the entire
set of applications in the the SPEC CPU2006 benchmark suite, see Figs. 8, 9, and 10.
Based on the findings of the previous section, the RAPL interface has been used to
obtain the power and energy values. The likwid toolset [7] has been used to access the
MSR registers of the different architectures.

The SPEC CPU2006 benchmark suite has been developed with the goal to capture
the performance of desktop systems and single-processor servers. The benchmark suite
consists of integer and floating-point benchmarks, which are real programs covering
different application areas for computer systems. The benchmarks are sequential C,
C++, or Fortran programs. The integer programs include, for example, a compression
program (bzip2), a C compiler (gcc), a video compression program, a chess game, and
an XML parser. The floating-point programs include, for example, several simulation
programs from physics, a speech recognition program, a ray-tracing program (povray),
as well as programs from numerical analysis and a linear programming algorithm
(soplex), see, e.g., [8] and http://www.spec.org for more details. In the experimental
evaluation, the benchmarks have been compiled with gcc 4.7.2 using the compiler
option -ftree-parallelize-loops=4, enabling an automatic parallelization at loop level.

Figure 8 shows the runtimes (top) in seconds, the energy consumption (middle) in
Joule, and the power consumption (bottom) in Watt as functions of the frequency for
the SPEC CPU2006 integer benchmarks on an Intel Core i7 Sandy Bridge architecture.
All available frequencies are shown. The figure shows that the runtime decreases nearly
linearly with increasing frequencies for all benchmarks. Only for smaller frequencies,
the increase of the execution time with a reduced frequency is more than linear. The
diagram shows that for most of the SPEC CPU2006 integer benchmarks, there is only
a slight variation of the energy consumption for the entire range of the frequencies
possible. The power consumption values P have been calculated from the energy
values E obtained from the MSR registers and the runtime t measured also with
hardware registers using E[J] = P×t[W·s]. Looking at the power consumption, it can
be observed that different applications lead to slightly different power consumptions,
i.e., there is a small dependence of the power consumption from the characteristics
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Fig. 8 SPEC CPU2006 integer benchmarks on an Intel Core i7 Sandy Bridge processor: runtime (top),
energy consumption (middle), and power consumption (bottom) for varying frequencies
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Fig. 9 SPEC CPU2006 floating-point benchmarks on an Intel Core i7 Sandy Bridge processor: runtime
(top), energy consumption (middle), and power consumption (bottom) for varying frequencies
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Fig. 10 SPEC CPU2006 integer benchmarks on an Intel Core i7 Haswell processor: runtime (top), energy
consumption (middle), and power consumption (bottom) for varying frequencies
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of the application. Two benchmarks (gcc and libquantum) lead to a larger power
consumption than the rest of the integer benchmarks. This shows that in the case of
the SPEC CPU2006 integer benchmarks, the power consumption mainly depends on
characteristics of the hardware and that the different energy consumptions for the
different benchmarks are mainly caused by the different execution times.

Figure 9 shows the runtimes (top), energy consumption (middle), and power con-
sumption (bottom) for the SPEC CPU2006 floating-point benchmarks for different
frequencies on an Intel Core i7 Sandy Bridge architecture. The SPEC CPU2006
floating-point benchmarks typically have a slightly larger execution time than the
integer benchmarks. Accordingly, a larger energy-consumption results. The energy
consumption shows a similar behavior as for the integer benchmarks and there is no
great variation of the energy consumption in dependence of the frequency. Compared
to the integer benchmarks, a slightly larger variation of the power consumption can be
observed for the different SPEC floating-point benchmarks. This suggests that there is
a larger dependence of the power consumption from the usage of processor resources
by the specific application.

Figures 10 and 11 show the runtimes (top), energy consumption (middle), and power
consumption (bottom) of the SPEC CPU2006 integer and floating-point benchmarks
for different frequencies on an Intel Core i7 Haswell architecture. Similar to the Sandy
Bridge architecture, the figures show a decrease of the runtime of the different bench-
marks which is nearly linear to the operational frequency. For smaller frequencies, the
more-than-linear increase of the execution time with reduced frequency is stronger
than on the Sandy Bridge architecture, since the Haswell architecture allows smaller
frequencies. Especially for larger frequencies, most of the benchmarks are faster on
the Haswell architecture than on the Sandy Bridge architecture, presumably due to the
more recent architecture with a larger L3 cache. Especially for small frequency values,
the energy consumption increases more visibly than for the Sandy Bridge architec-
ture, caused by the increase in execution time. The power consumption on the Haswell
architecture is typically smaller than on the Sandy Bridge architecture for the same
frequency. The same holds for the energy consumption, i.e., the Haswell architecture
usually needs less energy for the same benchmarks than the Sandy Bridge architecture
using the same frequency.

For all SPEC CPU2006 benchmarks and both architectures, the diagrams of the
runtime, the power and the energy consumption show a similar qualitative behavior
as a function of the frequency. The runtime is a decreasing, slightly convex function
with the highest runtime for the smallest available frequency and the smallest runtime
for the highest available frequency. The power consumption is a slightly convex,
increasing function depending on the frequency. As a result, the energy consumption,
being the power integrated over the runtime, is a convex function that is slightly
descending for smaller frequencies and slightly ascending for higher frequencies.
This effect is more distinct for the Haswell processor. These energy functions have
a minimum in the frequency range between 2 and 2.7 GHz, varying for the different
benchmarks and architectures. Since the SPEC CPU2006 benchmarks cover a wide
range of different applications, one may conclude that it is a typical behavior to have
an energy minimum and to achieve the minimum, a suitable frequency should be used.
However, the minimum of the runtime, being at the largest frequency, and the minimum
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Fig. 11 SPEC CPU2006 floating-point benchmarks on an Intel Core i7 Haswell processor: runtime (top),
energy consumption (middle), and power consumption (bottom) for varying frequencies
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of the energy consumption do not coincide. Thus, the user has to decide whether to
minimize the runtime or the energy consumption before selecting a frequency.

4 Energy models with frequency scaling

Many different energy models have been proposed and used for simulating the energy
consumption of application programs on CPUs, see [9,10] for an overview. These
models usually concentrate on the dynamic power consumption, which used to be the
most dominant part in earlier processors, and more recently also include the static
power consumption, memory power consumption or other significant power aspects
of a specific CPU or computer system. The dynamic power consumption is related
to the supply voltage and the switching activity during the computing activity of the
processor. The static power consumption captures the leakage power consumption as
well as the power consumption of peripheral devices. The total power consumption
includes both power components.

For DVFS processors, the power consumption depends on the operational frequency
f , see, e.g., Fig. 8 for an experimental evaluation of this dependence. In this section,
we investigate two models simulating the energy consumption, a physically based
model which has been proposed in the literature and a heuristic model that is derived
from the experimental results in Sect. 3.

4.1 Physical energy model with frequency scaling

Analytical energy models describe the power consumption of a processor by power
models developed for digital circuits used for the construction of the processors. The
energy consumption is calculated by a multiplication with the runtime of an application
program. This class of energy models is typically derived from physical considera-
tions of the expected power behavior, and the models are used within optimization or
scheduling methods which are aimed at the minimization of the energy consumption.
In the following, we exploit a physical energy model that has been proposed in the
literature, see [9,10]. In this article, we use this model and determine parameters for
the SPEC benchmarks.

The specific energy model considered approximates the dynamic power consump-
tion by Pdyn = α · CL · V 2 · f , where α is the switching probability, CL is the load
capacitance, V is the supply voltage, and f is the operational frequency. The static
power consumption is intended to capture the leakage power consumption which con-
sists of several components, including sub-threshold leakage, reverse-biased junction
leakage, gate-induced drain leakage, gate-oxide leakage, gate-current leakage, and
punch-through leakage [10]. The exact power values for these components are vary-
ing and depend on the specific architecture considered; however, only approximations
are needed. Such an approximation has been proposed by Butts and Sohi [11], model-
ing the static power consumption due to leakage power as Pstat = V · N · kdesign · Ileak,
where V is the supply voltage, N is the number of transistors, kdesign is a design
dependent parameter, and Ileak is a technology-dependent parameter.
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For DVFS processors, we are interested in investigating the dependence of the power
consumption on the operational frequency, which can be scaled within a predefined
interval [ fmin, fmax]. The scaling can be expressed by a dimensionless scaling factor
s ≥ 1 which describes a smaller frequency f̃ < fmax as f̃ = fmax/s. The following
functional dependencies have to be considered: the frequency f depends linearly on
the supply voltage V , i.e., V = β · f with some appropriate constant β. Thus, the
dependence of the dynamic power consumption on the frequency f can be expressed
as Pdyn( f ) = γ · f 3 with γ = α · CL · β2 or with the corresponding scaling factor
s as Pdyn(s) = s−3 · Pdyn(1) where Pdyn(1) is the dynamic power consumption in
the un-scaled case. This means that the dynamic power increases cubically with the
operational frequency, which can be used to study the change of the dynamic power
consumption with respect to varying frequency values. Using V = β · f for the static
power consumption Pstat leads to a linear dependence of the static power on f , i.e.,
Pstat( f ) = δ · f with δ = N · kdesign · Ileak · β or Pstat(s) = s · Pstat(1) where Pstat(1)

is the static power consumption in the un-scaled case.
Reducing the operational frequency of a processor by a scaling factor of s usually

decreases the power consumption; however, it also increases the execution time TP (1)

of a program P by the same factor compared to an un-scaled execution, i.e., TP (s) =
s · TP (1). This has to be taken into consideration for the time integration to compute
the energy consumption EP (s) = (Pdyn(s) + Pstat(s)) · s · TP (1) = (s−3 · Pdyn(1) +
s · Pstat(1)) · s · TP (1). Runtime experiments on an Intel Sandy Bridge show that the
linear dependence of the runtime on the frequency scaling factor can more or less be
observed. However, for smaller frequencies the runtime increases more than linearly,
see Figs. 8 and 9. This effect is even stronger for the Core i7 Haswell architecture, see
Figs. 10 and 11, since this architecture supports smaller frequencies.

4.2 Heuristic energy model

The second energy model considered in this article is derived by an approximation
approach based on the discrete energy data measured. This model considers the entire
power consumption of the CPU processing one of the benchmarks and uses data
fitting to derive a closed formula. Thus, the derivation of this energy model applies
the opposite approach compared to the model in Sect. 4.1: it starts with the discrete
data from the experimental setting and uses curve fitting methods with the purpose of
getting a continuous approximation of the discrete data. The heuristic model described
in the following is new and has not been used before.

Due to the power data that we have collected in our experimental setup, e.g. given
in Figs. 10 and 11, we assume an almost linear dependence of the power from the
frequency f with unknown parameters, i.e. we assume the power to be approximated
by Ptotal( f ) = a + b f 1+ε with parameters a and b to be determined by curve fitting.
Although these parameters do not correspond to physical constants, but are the result
of a mathematical calculation, the parameter a can be interpreted as a static part of
the power consumption that does not change with the frequency, whereas b captures a
dynamic part of the power consumption that increases with the operational frequency
of the CPU. For the parameter ε, several fixed values can be used so that the parameters
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a and b can be determined by applying the least squares method. The values of a and
b reflect the characteristics of the specific CPU. However, different benchmarks may
have different values for the parameters a and b due to their specific computational
and memory access behavior, leading to a different usage of the processor resources
and different power requirements. The results of the curve fitting are included in the
next section reporting the comparison of the predicted and measured energy values.

5 Evaluation of the energy models

In this section, we investigate to which extent the energy models presented in the last
section are able to capture the power and energy consumption of standard benchmark
programs on recent processors. The emphasis lies on a modeling of the energy con-
sumption as a function of the frequency in the frequency range provided by the proces-
sor. For those frequencies, we quantitatively and qualitatively compare the measured
energy values as reported in Sect. 3 with energy values provided by the models from
Sect. 4. Section 5.1 considers an application-specific energy modeling and Sect. 5.2
addresses an application-independent modeling and discusses the differences.

5.1 Application-specific energy modeling

The physical energy model based on frequency scaling from Sect. 4.1 contains the
parameters γ in the equation for the dynamic power and δ in the equation for the static
power consumption. The values for γ and δ have been determined by curve fitting with
the least squares method using the measured power values for the different frequencies
for each individual application of the SPEC CPU2006 benchmark suite. The resulting
parameters γ and δ are application-specific and can be used for a modeling of the
energy consumption of the specific application as described in Sect. 4.1.

For the heuristic model from Sect. 4.2, ε = 0.2 has been used. This value has
been determined by experiments which have shown that this value is well suited for
all applications investigated. The model again contains parameters a and b, and as
just described, we have applied curve fitting to determine these parameter values for
the individual application of the SPEC CPU2006 benchmark suite. Based on these
application-specific parameters, Fig. 12 compares the measured and predicted energy
consumption for the different SPEC CPU2006 benchmarks for the Sandy Bridge archi-
tecture using selected frequencies. The smallest and the largest frequencies as well
as a medium frequency have been selected for the diagrams. The entry predicted 1
corresponds to the physical energy model from Sect. 4.1, and the entry predicted
2 corresponds to the heuristic energy model from Sect. 4.2. Figure 13 shows the
same comparison for the Haswell architecture and also includes a comparison with an
application-independent modeling to be discussed in the next subsection.

From Figs. 12 and 13 it can be observed that for the application-specific model-
ing both energy models are well suited to describe the energy consumption of most
benchmark programs and both architectures. The correspondence between modeled
and measured energy consumption is especially good for medium and large frequen-
cies, as shown for frequencies f = 2.5 GHz and f = 3.4 GHz. Similar results are
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Fig. 12 Intel Core i7 Sandy Bridge processor: comparison of measured and predicted energy consumption
of the SPEC CPU2006 integer and floating-point benchmarks for the frequencies f = 1.6 GHz (top),
f = 2.5 GHz (middle), and f = 3.4 GHz (bottom)
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Fig. 13 Intel Core i7 Haswell processor: comparison of measured and predicted energy consumption
of the SPEC CPU2006 integer and floating-point benchmarks for the frequencies f = 0.8 GHz (top),
f = 2.5 GHz (middle), and f = 3.4 GHz (bottom)
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obtained for other frequencies between these frequency values. The deviations usually
lie below 10 %.

The comparison of the modeling quality using the two different models shows that
for the Sandy Bridge processor, see Fig. 12, there is no significant difference between
the energy values provided by the two models. On the Haswell architecture, larger
deviations between the measured and predicted values can be observed for smaller
frequencies, when the physical energy model from Sect. 4.1 is used, see the results for
frequency f = 0.8 GHz in Fig. 13 (top) as example. These deviations are much smaller
for the heuristic energy model. For small frequencies, the physical energy model
systematically underestimates the energy consumption for both the Sandy Bridge
and the Haswell processor. The reason for this underestimation is assumed to be an
underestimation of the static power consumption when using Pstat( f ) = δ · f . Other
energy models [12,13] propose to use Pstat( f ) = constant for all frequencies, but
this would lead to a significant overestimation of the total energy consumption for
small frequencies (not shown in a figure), leading to even bigger deviations from the
measured energy consumption. In contrast, the heuristic energy model captures the
dynamic and the static energy consumption together as one physical entity in one
formula, and this seems to be better suited for the whole range of frequencies. Thus,
the heuristic model provides energy values that are better suited for a prediction than
those provided by the physical energy model from Sect. 4.1.

Averaging over all frequencies and benchmarks, the average percentage difference
between the measured energy values and the predicted values using the heuristic model
with application-specific parameters is 1.8 % with a minimum difference of 0.9 % and
a maximum difference of 6.0 %. Using the physical model, the average percentage
difference is 5.6 % with a minimum difference of 4.4 % and a maximum difference
of 10.7 %.

5.2 Application-independent energy modeling

One goal for modeling the energy consumption values is to provide a prediction
model for the energy consumption of application programs. Such a model suitable
as prediction model has to be easy to use and has to be application independent.
Both the models introduced in Sect. 4 are represented by energy functions that are
quite easy to evaluate. So both models meet the goal of simplicity. However, so far
we have performed an application-specific modeling due to the parameters γ , δ, a,
and b, respectively. An application-independent model requires parameters which are
independent from a specific benchmark application but may depend on the processor
architecture. In this subsection, we propose to use the average of the parameter values
γ and δ or a and b over all benchmarks executed on the same processor.

For the different programs of the SPEC CPU2006 benchmark suite, the values of
the parameters γ and δ resulting from the physical energy model are quite close to each
other for most of the benchmarks on the same architecture; their difference is typically
below 10 %. Thus, using the average values of the parameters also leads to a good
correspondence between measured and modeled values. This represents an energy
modeling that is independent from the specific application but is still architecture
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dependent. For the different architectures, different values for the parameters γ and δ

result.
The modeling with the average parameter values is additionally included in Fig. 13.

The entry “predicted 1 av” corresponds to the modeling with the physical energy model
from Sect. 4.1 using the average values for the parameters γ and δ taken over all SPEC
CPU2006 applications on the Haswell processor. Similarly, the entry “predicted 2 av”
corresponds to the modeling with the heuristic model using the average values for
the parameters a and b. Using the average parameter values for the modeling leads to
energy values that are slightly less close to the measured energy values than for the
application-specific modeling, but the deviations are still acceptable. However, in some
cases, especially for smaller frequencies, using the average parameter values for the
modeling even leads to better predictions than the application-specific modeling. This
is due to the strongly convex behavior of the measured energy values for frequencies
between 0.8 and 1.6 GHz, see Figs. 10 and 11, which indicate a high overhead of the
runtime even though the power function remains linear. The architectural effects are
difficult to capture in one continuous functional pattern. However, the modeling with
a piecewise continuous function would result in a too complex prediction model. For
some benchmarks, the averaging of the parameters seems to level off extreme values.
The heuristic energy model using the average parameter values for the modeling leads
to slightly better predictions than the physical energy model with the average parameter
values for the modeling.

From these observations it can be concluded that both energy models considered,
although different, are able to capture the energy consumption and its dependence on
the operational frequency with reasonable accuracy for most situations. Thus, both
energy models can be used for an a priori prediction of the energy consumption as it is
needed when solving problems such as optimization or scheduling. Compared to the
physical model, the heuristic model leads to better predictions in most situations and
should therefore be preferred. This is due to a better modeling of the leakage power,
which may not be best represented by the linear term in the physical model. Other
models proposed in the literature use constant, quadratic, or even exponential terms
for the leakage power consumption. However, these models are usually not validate
for a wide range of application programs.

6 Related work

Today, power-management mechanisms are integrated in computer systems of almost
every size and class, from handheld devices to large servers [14]. Correspondingly, the
analysis, measurement, or simulation of power and energy consumption is an active
research area. An important feature is the DVFS technique, which trades off perfor-
mance for power consumption by lowering the operating voltage and frequency if
this is possible, see [4,13,15] for an overview. Frequency scaling due to the DVFS
technique has been applied in practical programming as well as in theoretical investi-
gations, optimizing or minimizing the energy consumption under certain constraints.

Approaches to determine the frequency scaling factor that minimizes the total CPU
energy consumption by taking both the dynamic power and the leakage power into
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consideration have been discussed in [13,16,17] for sequential programs. Voltage
scaling has also be considered in [18].

Energy simulation models are often used in approaches to minimize the energy
consumption by scheduling algorithms or other heuristics. Algorithmic research on
speed scaling processors and related scheduling algorithms using the total energy
consumption as objective function has been initiated by the article [19]. Many dif-
ferent scenarios and algorithms have been investigated in the literature, see [20–22]
for an overview. For example, theoretical foundations of scheduling algorithms in a
setting with dynamic speed scaling processors are investigated in [23], considering
the scheduling of n jobs on m identical variable speed processors working in parallel,
where each job is specified by a release date, a deadline, and a processing volume.
Different scenarios concerning the job size, release dates and deadlines are consid-
ered and approximation algorithms for the resulting NP-hard scheduling problems
are presented. In most of the articles in this research line, the emphasis lies on a the-
oretical investigation of the approximation algorithm derived and no simulations or
measurements on real hardware systems are provided.

A comparison of energy measurements using PowerPack and RAPL (accessed via
PAPI) for dense linear algebra algorithms is given in [1], showing that the RAPL
measurements are a good alternative to physical power-meters. However, frequency
scaling has not been taken into consideration in [1]. The power management architec-
ture of the Sandy Bridge processor is described in [2] and includes a comparison of
the actual measured power and the so-called architectural power-meter which predicts
the active power consumption. The dependence of the power and the frequency is not
directly investigated nor is the modeling with a theoretical power model included. An
approach using RAPL for memory power estimation is discussed in [24]. The cor-
respondence with simulation methods and prediction possibilities has also not been
considered in the publication. A detailed comparison of power measurement tech-
niques including RAPL has been given in [25]. However, the DVFS features with a
variation of the frequency and the resulting impact on the power are not investigated.
The performance API PAPI now also covers the report of energy and power values
based on RAPL assuming that the code is previously instrumented, see [26]. The PAPI
approach corresponds to the software approach accessing hardware counters in our
work. [26] also lists state-of-the-art measurement techniques based on power-meters
and hardware counters, but does not provide a comparison.

Performance prediction for DVFS processors is addressed in [27] with an emphasis
on green supercomputing. The energy consumption of parallel algorithms for shared
memory architectures based on the parallel external memory (PEM) model [28] has
been discussed in [29]. [30] proposes a system-level iso-energy-efficiency model to
analyze, evaluate and predict energy-performance of data-intensive parallel applica-
tions running on cluster systems. Based on measurements from smaller configurations,
the power performance for larger systems with increasing number of nodes is predicted
and analyzed. As example applications, the FT, EP, and CG benchmarks of the NAS
Parallel Benchmarks are used. A scalability analysis shows a good correspondence of
the predictions of the model. The interaction between the parallel execution time and
the energy consumption is considered in [31] by partitioning a parallel algorithm into
sequential and parallel regions and computing optimal frequencies for these regions.
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Approaches for an energy complexity metric are discussed in [32]. The application
of a physical energy model and its usage for the scheduling of sequential tasks in
fork-join patterns with energy as objective function have been addressed in [33]; the
energy-based scheduling of parallel tasks has been considered in [34].

In the domain of real-time scheduling, many techniques for utilizing available wait-
ing times based on DVFS have been considered, see, e.g., [35–37]. These approaches
are usually based on heuristics and are not based on an analytical model as presented
in this work. The effects of dynamic concurrency throttling (DCT) and DVFS in the
context of a hybrid MPI/OpenMP programming model are considered in [38]. In par-
ticular, frequency selection is formulated as a variant of the 0–1 knapsack problem
and dynamic programming is used to compute an approximation.

7 Conclusions

In this article, we have investigated and evaluated measurement methods providing
energy consumption values for recent DVFS processors. The article reports the exper-
imental setting for the hardware as well as for the software measurement approach
and presents the resulting measurement data. The CPUs investigated are the Intel Core
i7 Sandy Bridge, Ivy Bridge and Haswell architectures. The application codes mea-
sured are the SPEC CPU2006 benchmarks. The analysis of the energy data gathered
with the power-meter based and the RAPL-based energy measurements shows a good
correspondence across all frequency values, CPUs and benchmarks, leading to the
insight that both measurement methods are suitable and interchangeable. We consider
this result to be especially valuable for research projects concerned with bigger appli-
cations as well as larger machines based on these recent CPUs. A second result of our
investigations is that physical and heuristic energy models are well suited for an early
prediction of the energy consumption of application programs. Thus, these energy
models can be used as a basis for simulation approaches of the energy consumption
of application programs.
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