
J Supercomput (2014) 69:53–60
DOI 10.1007/s11227-014-1210-1

Slot selection algorithms in distributed computing

Victor Toporkov · Anna Toporkova ·
Alexey Tselishchev · Dmitry Yemelyanov

Published online: 18 May 2014
© Springer Science+Business Media New York 2014

Abstract In this work, we introduce slot selection and co-allocation algorithms
for parallel jobs in distributed computing with non-dedicated and heterogeneous
resources. A single slot is a time span that can be assigned to a task, which is a part of
a job. The job launch requires a co-allocation of a specified number of slots starting
synchronously. The challenge is that slots associated with different resources of dis-
tributed computational environments may have arbitrary start and finish points that do
not match. Some existing algorithms assign a job to the first set of slots matching the
resource request without any optimization (the first fit type), while other algorithms are
based on an exhaustive search. In this paper, algorithms for effective slot selection of
linear complexity on an available slots number are studied and compared with known
approaches. The novelty of the proposed approach consists of allocating alternative
sets of slots. It provides possibilities to optimize job scheduling.

Keywords Distributed computing · Economic scheduling · Resource management ·
Slot · Job · Task · Batch

V. Toporkov (B) · D. Yemelyanov
National Research University “MPEI”, ul. Krasnokazarmennaya, 14, Moscow 111250, Russia
e-mail: ToporkovVV@mpei.ru

D. Yemelyanov
e-mail: YemelyanovDM@mpei.ru

A. Toporkova
National Research University Higher School of Economics, Moscow State Institute of Electronics
and Mathematics, Bolshoy Trekhsvyatitelsky per., 1-3/12, Moscow 109028, Russia
e-mail: AToporkova@hse.ru

A. Tselishchev
European Organization for Nuclear Research (CERN), 1211 Geneva 23, Switzerland
e-mail: Alexey.Tselishchev@cern.ch

123



54 V. Toporkov et al.

1 Introduction

Economic mechanisms are used to solve problems like resource management and
scheduling of jobs in a transparent and efficient way in distributed environments such
as cloud services and utility Grid [1,2]. A resource broker model is decentralized,
well scalable and application-specific [2,3]. The simultaneous satisfaction of various
application optimization criteria submitted by independent users is not possible due
to several reasons [2] and also can deteriorate such quality of service rates as total
execution time of a sequence of jobs or overall resource utilization. Another model
is related to virtual organizations (VO) [4–6] and metascheduling with central sched-
ulers or a metabroker [2] providing job-flow level scheduling and optimization. VOs
naturally restrict the scalability, but uniform rules for allocation and consumption of
resources make it possible to improve the efficiency of resource usage and to find
a trade-off between contradictory interests of different participants. The metasched-
ulers implement the economic policy of a VO based on local resource schedules. The
schedules are defined as sets of slots coming from resource managers or schedulers
in the resource domains. During each scheduling cycle, the sets of available slots are
updated based on the information from local resource managers. Thus, during every
cycle of the job batch scheduling [5], two problems have to be solved: (1) selecting
an alternative set of slots (alternatives) that meet the requirements (resource, time and
cost); (2) choosing a slot combination that would be the efficient or optimal in terms
of the whole job batch execution in the current cycle of scheduling. To implement
this scheduling scheme, first of all, one needs to propose the algorithm for finding
sets of alternative executions. An optimization technique for the second phase of this
scheduling scheme was proposed in [5,6].

The scheduling problem in Grid is NP-hard due to its combinatorial nature, and
many heuristic-based solutions have been proposed. In [3], heuristic algorithms for slot
selection, based on user-defined utility functions, are introduced. NWIRE system [3]
performs a slot window allocation based on the user-defined efficiency criterion under
the maximum total execution cost constraint. However, the optimization occurs only on
the stage of the best found offer selection. First fit slot selection algorithms (backtrack
[7] and NorduGrid [8] approaches) assign any job to the first set of slots matching the
resource request conditions, while other algorithms use an exhaustive search [2,9,10]
and some of them are based on a linear integer programming [2,9] or mixed-integer
programming model [10]. The proposed in [2,9,10] scheduling techniques are effec-
tive compared with other scheduling techniques under given criteria: the minimum
processing cost, the overall makespan, resources utilization etc. However, complexity
of the scheduling process is extremely increased by the resources heterogeneity and
the co-allocation process, which distributes the tasks of parallel jobs across resource
domain boundaries. The degree of complexity may be an obstacle for online use in
large-scale distributed environments. In our previous works [11–13], two algorithms
for slot selection AMP and ALP that feature linear complexity O(l), where l is the
number of available time-slots, were proposed. Both algorithms perform the search of
the first fitting window without any optimization. AMP (algorithm based on maximal
job price), performing slot selection based on the maximum slot window cost, proved
the advantage over ALP (algorithm based on local price of slots) when applied to the

123



Slot selection algorithms in distributed computing 55

above-mentioned scheduling scheme. However, in order to accommodate an end users
job execution requirements, there is a need for a more precise slot selection algorithm
to exploit during the first stage of the proposed scheduling scheme and to consider
various user demands along with the VO resource management policy. In this paper,
we propose algorithms for effective slot selection based on user-defined criteria that
feature linear complexity on the number of the available slots during the job batch
scheduling cycle. The novelty of the proposed approaches consists of allocating a
number of alternative sets of slots (alternatives). The proposed algorithms can be used
for both homogeneous and heterogeneous resources.

The paper is organized as follows. Section 2 introduces a general scheme and its
implementations for searching alternative slot sets that are effective by the specified
criteria. Section 3 contains simulation results for comparison of proposed and known
algorithms. Section 4 summarizes the paper and describes further research topics.

2 Algorithm searching for extreme performance

In this section, we consider a general scheme of an algorithm searching for extreme
performance (AEP) and its implementation examples. The launch of any job requires
a co-allocation of a specified number of slots, as well as in the classic backfilling
variation (http://www.adaptivecomputing.com). The job resource requirements are
arranged into a resource request containing a resource reservation time, characteristics
of computational nodes (clock speed, RAM volume, disk space, operating system, etc.)
and the limitation on the selected window maximum cost. According to the resource
request, it is required to find a window with the following description: n concurrent
time-slots providing the resource performance rate and the maximal resource price per
time unit should be reserved for a required time span. The length of each slot in the
window is determined by the performance rate of the node on which it is allocated. The
window search is performed on the list of all available slots sorted by their start time in
ascending order. The algorithm considers every combination of parallel slots that can
form an “extended” window of m ≥ n slots. In addition, one can define a criterion cr W
on which the best matching window alternative is chosen: cost, execution runtime or,
for example, energy consumption. The AEP scheme for an effective window search by
the specified criterion cr W is represented by Algorithm 1. A variable bestWindow

will contain an effective window by the given criterion cr W . The algorithm parses a
list of all available slots subsequently for all the batch jobs. Higher priority jobs are
processed first [5].

The need to choose alternative sets of slots for every batch job increases the com-
plexity of the whole scheduling scheme [5]. With a large number of the available
slots, the algorithm execution time may become inadequate. Though it is possible to
mention some typical optimization problems, based on the AEP scheme that can be
solved with a relatively decreased complexity. These include problems of total job
cost, runtime minimizing, the window formation with the minimal start/finish time.
Let us consider as an example the procedure for minimizing a window start time. This
procedure can be reduced to finding a set of the first n parallel slots the total cost of
which does not exceed the budget limit. This description coincides the AMP scheme
considered in previous works [11–13].

123

http://www.adaptivecomputing.com


56 V. Toporkov et al.

Algorithm 1: AEP scheme for an optimal slot window selection
Data: slot List - an list of available slots ordered by the start time; job

- a job for which the search is performed
Result: bestWindow - a window with the extreme criterion cr W value
for each slot in slotList do

if not(properHardwareAndSoftware(slot.node)) then
continue;

end
windowSlotList.add(slot);
windowStartTime = slot.startTime;
for each wSlot in windowSlotList do

minLength = wSlot.node.getWorkingTimeEstimate();
if (wSlot.endTime - windowStartTime) < minLength then

windowSlotList.remove(wSlot);
end

end
if windowSlotList.size() ≥ job.nodesNeed then

curWindow = getBestWindow(windowSlotList);
crW = getCriteriaValue(curWindow);
if crW > maxCriteriaValue then

maxCriteriaValue = crW;
bestWindow = curWindow;

end
end

end

For the proposed AEP efficiency analysis, the following implementations were
added to the simulation model [5,6]: (1) AMP for searching alternatives with the
earliest start time; (2) MinFinish for searching alternatives with the earliest finish
time; (3) MinCost for searching a single alternative with the minimum total allocation
cost; (4) MinRunTime: This algorithm performs a search for a single alternative with
the minimum execution runtime; (5) Common Stats, AMP (further referred to as CSA)
for searching multiple alternatives using AMP. To compare the search results with
the algorithms, presented above, only alternatives with the extreme value of the given
criterion are selected, so the optimization will take place at the selection process.
Considered optimization includes job’s start time, finish time, total execution cost and
runtime minimization. It is worth mentioning that all proposed AEP implementations
have a linear complexity O(l): algorithms “move” through the list of all the available
slots in the direction of non-decreasing start time without turning back or reviewing
previous steps.

3 Experimental studies of slot selection algorithms

The goal of the experiment is to examine AEP implementations: to analyze alternatives
search results with different efficiency criteria, to compare the results with AMP and to
estimate the possibility of using in real systems considering the algorithm executions
time. A simulation framework [5,6] was configured in a special way in order to study
and to analyze the algorithms presented. In each experiment, a generation of the
distributed environment that consists of 100 CPU nodes was performed. The relatively

123



Slot selection algorithms in distributed computing 57

Table 1 Proposed algorithms scheduling results.

Slot selection algorithm Start time Runtime Finish time Processor time Cost

CSA 0 38 52.6 168.6 1352

AMP 0 100.2 100.2 308.6 1445.2

MinRunTime 53 33 86.1 158 1464.9

MinFinishTime 0 34.4 34.4 161.9 1464.2

MinCost 193 114.7 307.7 344.5 1027.3

high number of the generated nodes has been chosen to allow CSA to find more slot
alternatives. Therefore, more effective alternatives could be selected for the searching
results comparison based on the given criteria. The performance rate for each node
was generated as a random integer variable in the interval [2; 10] with a uniform
distribution. The resource usage cost was formed proportionally to their performance
with an element of normally distributed deviation in order to simulate a free market
pricing model [1–3]. The level of the resource initial load with the local and high
priority jobs at the scheduling interval [0; 600] was generated by the hyper-geometric
distribution in the range from 10 to 50 % for each CPU node. Based on the generated
environment, the algorithms performed the search for a single initial job that required
an allocation of five parallel slots for 150 Units of time. The maximum total execution
cost according to user requirements was set to 1,500.

Experimental results are presented in Table 1. Let us consider the average start
time for the alternatives found (and selected) by the aforementioned algorithms. AMP,
MinFinish and CSA were able to provide the earliest job start time at the beginning
of the scheduling interval (t = 0). The result was expected for AMP and CSA (which
is essentially based on the multiple runs of the AMP procedure) since 100 available
resource nodes provide a high probability that there will be at least five parallel slots
starting at the beginning of the interval and can form a suitable window. The fact that
the MinFinish algorithm was able to provide the same start time can be explained by
the local tasks minimum length value, that is equal to 10. Indeed, the window start
time at the moment t = 10 cannot provide the earliest finish time even with use of the
most productive resources (for example the same resources allocated for the window
with the minimal runtime).

The minimum execution runtime was obviously provided by the MinRunTime algo-
rithm. Though, schemes MinFinish and CSA provide quite comparable values. High
result for the MinFinish algorithm can be explained by the “need” to complete the job
as soon as possible with the minimum (and usually initial) start time. Algorithms Min-
Finish and MinRunTime are based on the same criterion selection procedure. However,
due to non-guaranteed availability of the most productive resources at the beginning
of the scheduling interval, MinRunTime has the advantage. Relatively long runtime
was provided by AMP and MinCost algorithms. For AMP, this is explained by the
selection of the first fitting (and not always effective by the given criterion) alterna-
tive, while MinCost tries to use relatively cheap and (usually) less productive CPU
nodes.

123



58 V. Toporkov et al.

Table 2 Algorithms working
time (in ms) depending on the
processor nodes number

CPU nodes number 50 100 200 300 400

AMP 0.3 0.5 1.1 1.6 2.2

MinRunTime 3.2 12 45.5 97.2 169.2

MinFinishTime 3.2 12 45.1 96.9 169

MinCost 1.7 6.3 23.6 52.3 91.5

The minimum average finish time was provided by the MinFinish algorithm. CSA
has the closest resulting finish time. The relative closeness of these values comes
from the fact that other related algorithms did not intend to minimize a finish time
value and were selecting windows without taking it into account. The late average
finish time is provided by the MinCost scheme. This value can be explained not only
with a relatively late average start time, but also with a longer (compared to other
approaches) execution runtime due to the use of less productive resource nodes. The
minimum value of the used processor time (the sum length of the window slots) is
provided by MinRunTime. MinFinish and CSA were able to provide comparable results.
The most processor time-consuming alternatives were obtained by AMP and MinCost
algorithms. Similarly to the execution runtime value, this can be explained by using
a random first fitting window (in case of AMP) or by using less expensive, and hence
less productive, resource nodes (in case of the MinCost algorithm), as nodes with a
low performance level require more time to execute the job.

Finally, let us consider the total job execution cost. The MinCost algorithm has a
big advantage over other algorithms presented: It was able to provide the total cost
of 1,027.3 (note that the total cost limit was set by the user at 1,500). Thus, the
cheapest alternatives found by CSA have the average total execution cost equal to
1,352, that is 31.6 % more expensive compared to the result of the MinCost scheme,
while alternatives found by MinRunTime (the most expensive ones) are 42.5 % more
expensive.

The important factor is a complexity and an actual working time of the algorithms,
especially with the assumption of the algorithm’s repeated use during the first stage
of the scheduling scheme [5]. Table 2 shows the actual algorithm execution time in
milliseconds measured depending on the number of CPU nodes. The simulation was
performed on a regular PC workstation with Intel Core i3 (2 cores @ 2.93 GHz), 3GB
RAM on JRE 1.6, and 1,000 separate experiments were simulated for each value of
the processor nodes numbers 50, 100, 200, 300, 400.

The average working time of MinRunTime and MinCost proves their (at most)
quadratic complexity on the number of CPU nodes, and the execution times are suitable
for practical use. The AMP’s execution time shows even near linear complexity because
with a relatively large number of free available resources it was usually able to find a
window at the beginning of the scheduling interval.

Table 3 contains the algorithms working time in milliseconds measured depending
on the scheduling interval length. Overall 1,000 single experiments were conducted
for each value of the interval length 600, 1,200, 1,800, 2,400, 3,000, 3,600. When
analyzing the presented values, it is easy to see that all proposed algorithms have a

123



Slot selection algorithms in distributed computing 59

Table 3 Algorithms working
time (in ms) depending on the
scheduling interval length

Scheduling interval length 600 1200 1800 2400 3000 3600

AMP 0.5 0.82 1.1 1.44 1.79 2.14

MinRunTime 11.7 26 40.9 55.5 69.4 84.6

MinFinishTime 11.6 25.7 40.6 55.3 69 84.1

MinCost 6.1 13.4 20.9 28.5 35.7 43.5

linear complexity with respect to the length of the scheduling interval and, hence, to
the number of the available slots, and their executions times are suitable for online
scheduling.

4 Conclusions and future work

In this work, we address the problem of slot selection and co-allocation for parallel
jobs in distributed computing with non-dedicated resources. Each of the AEP algo-
rithms possesses a linear complexity on a total available slots number and a quadratic
complexity on a CPU nodes number. The advantage of AEP-based algorithms over the
general CSA scheme was shown for each of the considered criteria: start time, finish
time, runtime, CPU usage time and total cost.

As a result, it may be stated that each full AEP-based scheme is able to obtain the
best result in accordance with the given criterion. This allows to use the proposed
algorithms within the whole scheduling scheme [5] at the first stage of the batch job
alternatives search. Besides, a single run of the AEP-like algorithm had an advantage
of 10–50 % over suitable alternatives found with AMP with respect to the specified
criterion. A directed alternative search at the first stage of the proposed scheduling
approach [5,6] can affect the final distribution and may be favorable for the end users.

In our further work, we will refine resource co-allocation algorithms in order to
integrate them with scalable co-scheduling strategies [5,6].

Acknowledgments This work was partially supported by the Council on Grants of the President of the
Russian Federation for State Support of Leading Scientific Schools (SS-362.2014.9), the Russian Foundation
for Basic Research (Grant No. 12-07-00042), and by the Federal Target Program Research and scientific-
pedagogical cadres of innovative Russia(state contract no. 16.740.11.0516).

References

1. Lee YC, Wang C, Zomaya AY, Zhou BB (2012) Profit-driven Scheduling for Cloud Services with Data
Access Awareness. J. Parallel and Distributed Computing 72(4):591–602

2. Garg SK, Konugurthi P, Buyya R A Linear Programming-driven Genetic Algorithm for Meta-
scheduling on Utility Grids. J. Parallel, Emergent and Distributed Systems 26, 493–517 (2011)

3. Ernemann C, Hamscher V, Yahyapour R (2002) Economic Scheduling in Grid Computing. In: Feit-
elson DG, Rudolph L, Schwiegelshohn U (eds) JSSPP 2002, vol 2537, LNCSSpringer, Heidelberg,
pp 128–152

4. Kurowski K, Nabrzyski J, Oleksiak A, Weglarz J (2003) Multicriteria Aspects of Grid Re-source
Management. In: Nabrzyski J, Schopf JM, Weglarz J (eds) Grid resource management. Kluwer Acad.
Publishers, State of the art and future trends, pp 271–293

123



60 V. Toporkov et al.

5. Toporkov V, Tselishchev A, Yemelyanov D, Bobchenkov A (2012) Composite Scheduling Strategies
in Distributed Computing with Non-dedicated Resources. Procedia Computer Science. Elsevier 9:176–
185

6. Toporkov V, Tselishchev A, Yemelyanov D, Bobchenkov A (2012) Dependable Strategies for Job-
flows Dispatching and Scheduling in Virtual Organizations of Distributed Computing Environments.
Complex Systems and Dependability, vol 170, AISCSpringer, Heidelberg, pp 240–255

7. Aida K, Casanova H (2008) Scheduling Mixed-parallel Applications with Advance Reservations. 17th
IEEE Int., Symposium on HPDCIEEE CS Press, New York, pp 65–74

8. Elmroth E, Tordsson J A Standards-based Grid Resource Brokering Service Supporting Advance
Reservations, Coallocation and Cross-Grid Interoperability. J. Concurrency and Computation: Practice
and Experience 25(18), pp 2298–2335 (2009)

9. Takefusa A, Nakada H, Kudoh T, Tanaka Y (2010) An Advance Reservation-based Co-allocation Algo-
rithm for Distributed Computers and Network Bandwidth on QoS-guaranteed Grids. In: Frachtenberg
E, Schwiegelshohn U (eds) JSSPP 2010, vol 6253, LNCSSpringer, Heidelberg, pp 16–34

10. Blanco H, Guirado F, Lrida JL, Albornoz VM (2013) MIP Model Scheduling for Multi-clusters. Euro-
Par 2012, vol 7640, LNCSSpringer, Heidelberg, pp 196–206

11. Toporkov V, Toporkova A, Bobchenkov A, Yemelyanov D (2011) Resource Selection Algorithms for
Economic Scheduling in Distributed Systems. Procedia Computer Science. Elsevier 4:2267–2276

12. Toporkov V, Yemelyanov D, Toporkova A, Bobchenkov A (2011) Resource Co-allocation Algorithms
for Job Batch Scheduling in Dependable Distributed Computing. Dependable Computer Systems, vol
97, AICSSpringer, Heidelberg, pp 243–256

13. Toporkov V, Bobchenkov A, Toporkova A, Tselishchev A, Yemelyanov D (2011) Slot Selection and
Co-allocation for Economic Scheduling in Distributed Computing. In: Malyshkin V (ed) PaCT 2011,
vol 6873, LNCSSpringer, Heidelberg, pp 368–383

123


	Slot selection algorithms in distributed computing
	Abstract
	1 Introduction
	2 Algorithm searching for extreme performance
	3 Experimental studies of slot selection algorithms
	4 Conclusions and future work
	Acknowledgments
	References


