
J Supercomput (2014) 69:17–24
DOI 10.1007/s11227-014-1208-8

GPU-accelerated simulations of mass-action kinetics
models with cupSODA

Marco S. Nobile · Paolo Cazzaniga ·
Daniela Besozzi · Giancarlo Mauri

Published online: 23 May 2014
© Springer Science+Business Media New York 2014

Abstract In the last years, graphics processing units (GPUs) witnessed ever growing
applications for a wide range of computational analyses in the field of life sciences.
Despite its large potentiality, GPU computing risks remaining a niche for special-
ists, due to the programming and optimization skills it requires. In this work we
present cupSODA, a simulator of biological systems that exploits the remarkable
memory bandwidth and computational capability of GPUs. cupSODA allows to effi-
ciently execute in parallel large numbers of simulations, which are usually required to
investigate the emergent dynamics of a given biological system under different condi-
tions. cupSODA works by automatically deriving the system of ordinary differential
equations from a reaction-based mechanistic model, defined according to the mass-
action kinetics, and then exploiting the numerical integration algorithm, LSODA. We

M. S. Nobile (B) · G. Mauri
Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi di Milano-Bicocca,
Viale Sarca 336, 20126 Milano, Italy
e-mail: nobile@disco.unimib.it

G. Mauri
e-mail: mauri@disco.unimib.it

P. Cazzaniga
Dipartimento di Scienze Umane e Sociali, Università degli Studi di Bergamo, Piazzale S. Agostino 2,
24129 Bergamo, Italy
e-mail: paolo.cazzaniga@unibg.it

D. Besozzi
Dipartimento di Informatica, Università degli Studi di Milano, Via Comelico 39, 20135 Milano, Italy
e-mail: besozzi@di.unimi.it

M. S. Nobile · P. Cazzaniga · D. Besozzi · G. Mauri
SYSBIO Centre for Systems Biology, Milano, Italy

123

18 M. S. Nobile et al.

show that cupSODA can achieve a 86× speedup on GPUs with respect to equivalent
executions of LSODA on the CPU.

Keywords CUDA · Graphics processing unit · cupSODA · Biochemical simulation ·
Systems biology

1 Introduction

Since the introduction of general-purpose graphics processing units (GPUs), the adop-
tion of graphics engines experienced a great boost in Bioinformatics, Systems Biology
and Computational Biology [4,6], where central processing units (CPUs) tradition-
ally represented the standard workhorses. The use of GPUs for the investigation of
complex biological systems is motivated by the need for performing large numbers of
computational analyses, which necessitate a computing power that usually overtakes
the capability of standard desktop computers. Despite the considerable advantage in
terms of computational speedup, scientific applications on GPUs risk remaining a
niche for few specialists, since GPU-based programming substantially differs from
CPU-based programming and usually requires the re-design of existing algorithms
or the development of ad hoc procedures. Indeed, a challenge of GPU computing is
that the direct porting of an application may be unfeasible, or may not fully exploit
the computational power and massive parallelism of GPUs because of their innov-
ative architecture and intrinsic limitations [5]. To overcome these problems, several
software tools for the analysis of biological systems were recently released (see, e.g.,
[6,13,17]), so that also users with no knowledge of GPUs hardware and programming
can easily access their computing power.

In this work we present cupSODA, a GPU-powered simulator for biological systems
that allows to efficiently execute a large number of parallel deterministic simulations
at a considerable reduced computational cost with respect to CPUs. In particular, cup-
SODA exploits the massive parallelism of CUDA architecture to execute different and
independent simulations in each thread, therefore giving access to tera-scale comput-
ing on a common workstation and obtaining a low-cost and energy-wise alternative to
the traditional high-performance computing infrastructures (i.e., cluster of machines).

Given a mathematical model of a biological system, simulation algorithms can be
exploited to analyze the model and to make predictions on the way the system behaves
in normal or perturbed conditions: the intensive exploration of high-dimensional para-
meter spaces allows to devise the different emergent behaviors that the system can
present [1,3,15]. In the case of deterministic models, a system of ordinary differential
equations (ODEs) is used to describe how the concentration of each chemical species
varies in time; according to the law of mass action [9], these equations can be derived
from a given mechanistic reaction-based model of the biological system under inves-
tigation. cupSODA is a simulator for models based on mass-action kinetics, whose
peculiarity is that it automatically derives the system of ODEs—and perform their
numerical integration using the LSODA algorithm [12]—simply starting from a set of
biochemical reactions. This way, any user—having or not either GPU programming
skills or mathematical modeling expertise—will be able to run parallel simulations

123

GPU-accelerated simulations 19

of mass-action kinetics systems at reduced costs. Indeed, when a large number of
mutually independent simulations has to be performed, LSODA turns out to be very
time consuming if the simulations are run in a sequential manner on the CPU. In what
follows we show that our GPU implementation of LSODA turns out to be extremely
advantageous.

2 Implementation of cupSODA

cupSODA relies on a C version of LSODA [12], ported and adapted to the CUDA
architecture in order to be run on the GPU. cupSODA is designed to be a cross-platform
implementation, so that it can be run on Microsoft Windows, Linux, and Apple OSX-
based operating systems. Nevertheless, to exploit CUDA’s massive parallelism for the
execution of different and independent simulations in each thread, a Nvidia GPU is
required; therefore, cupSODA itself requires a Nvidia video card to be executed.

In [12], LSODA was designed to solve differential systems in the canonical form,
whereby the user is supposed to specify the system of ODEs, that must be imple-
mented as a custom C function that is then passed to the algorithm. In order to speed
up the computation when dealing with stiff systems, the Jacobian matrix must be
implemented as a custom C function as well.

cupSODA, on the other hand, is designed to the purpose of being a black-box simu-
lator, that can be easily used without any programming skills. In particular, cupSODA
consists in a tool that automatically converts the mechanistic reaction-based model
of a biological system—which can be indifferently given according to a deterministic
or a stochastic formulation1—into the corresponding system of ODEs, in conformity
with the mass-action kinetics [16], and then it encodes the ODEs and its corresponding
Jacobian matrix as C arrays.

These two arrays are loaded into the GPU, parsed and implemented as custom
functions. In order to encode each term of each equation into a linear data structure,
without any loss of information, both arrays contain the following data: a signed
multiplicative factor of the term; the index of the kinetic constant associated to the
term; the number of the chemical species involved in the term and their corresponding
indices (see an example in [10], Fig. 2). The terms of all ODEs are linked together
in these arrays. To efficiently parse the arrays inside the GPU, we use two additional
arrays storing the offsets of each equation (i.e., the indices of each term of each
equation); the parsing algorithm consists in the function given in Fig. 1. A similar
function is defined to parse the Jacobian matrix.

The cupSODA simulator was designed to speed up the time-consuming compu-
tational tasks typical of Systems Biology [1,3], which rely on the repetition of large
numbers of simulations in perturbed conditions, generally realized by varying the
initial concentrations of chemical species or the value of the kinetic constants. To
fulfill this requirement, cupSODA is able to launch multiple threads which run inde-

1 cupSODA automatically executes the conversion from the stochastic to the deterministic formulation of
both reaction constants and initial molecular amounts, given that the volume of the modeled biological
system is specified.

123

20 M. S. Nobile et al.

Fig. 1 Pseudocode of the parsing algorithm, exploited device-side by cupSODA for the decoding of ODEs.
A similar code is used for the decoding of the Jacobian matrix

pendent parallel simulations of the same model, with each thread exploiting its own
parameterization and initial conditions. To this aim, parameters and initial conditions
are contained in coalesced arrays, a strategy that allows a faster fetching of data from
the global memory.

Besides the global memory (accessible from all threads), cupSODA also exploits
the shared memory (accessible from threads belonging to the same block), the local
memory (registers and arrays, accessible from owner thread), and the constant memory
(cached and not modifiable). In particular, being the data transfer between host and
device very time consuming, all temporary results are allocated on the memories of
the GPU, and they are read back as soon as the simulations are over. To obtain a further
reduction of the memory latencies, the current state and time of each simulation are
stored into the shared memory, while all the constants values (e.g., number of reactions
and chemical species in the model, length of ODEs and Jacobian arrays) and LSODA
settings are stored into the constant memory.

Since the amount of shared memory is limited on each streaming multiprocessor—
and poses a limitation on the blocks’ size—cupSODA automatically calculates the
number of threads per block and blocks per grid. We exploit double precision floating
point values to allocate the states of the system and the current time, so that the
consumption of shared memory of each thread is M = 8 × (N + 1) bytes of shared
memory during the ODEs integration, where N is the number of chemical species in
the system. It is possible to determine the threads-per-block value as Tpb = ⌊SM

M

⌋
,

where SM is the shared memory available on the GPU, so that the number of resulting

blocks is B =
⌊

Ttot
Tpb

⌋
, where Ttot is the number of total threads requested by the user.

123

GPU-accelerated simulations 21

LSODA requires additional parameters for its functioning, the most relevant being
the absolute and relative error tolerance values (denoted by AET and RET, respec-
tively), and the maximum number of internal steps for each integration interval. AET
and RET values can be either scalar values or specific vectors for each ODE: cupSODA
accepts all combinations. Moreover, these values can be specified for each individual
thread, allowing the user to simulate the same system with different tolerances and
compare their outcomes.

cupSODA can be also easily employed to compare the outcome of simulations with
any available experimental data (e.g., the concentration of some chemical species
measured at sampling instants t0, . . . , tF), for instance to validate the model under
investigation or to perform a parameter estimation. To this aim, cupSODA invokes
the LSODA kernel F − 1 times: each time the kernel is run over a (simulated) time
interval of length �t = ti − ti−1, i = 1, . . . , F , and the concentration values of
the output species are stored at the end of each �t . Once the concentrations are
stored, cupSODA provides a set of metrics (e.g., root mean square) that the user
can exploit to evaluate the distance between each simulation outcome and the target
dynamics.

3 Results

To show the effectiveness of cupSODA, we compare its performances against the
COmplex PAthways SImulator (COPASI [7]), which we consider here as reference
sequential simulator. To show the suitability of cupSODA, we performed different
batches of independent deterministic simulations of three biological models charac-
terized by an increasing complexity: the Michaelis–Menten (MM) enzymatic kinetics
[9]; a simple model of gene expression in prokaryotic organisms (PGN) [14]; the sig-
naling pathway Ras/cAMP/PKA in the yeast S. cerevisiae [2]. During each test we
stored the dynamics of all chemical species consisting of 100 time instants—uniformly
sampled over the whole simulation time—keeping track of the overall running time.

The GPU used for the tests is a Nvidia GeForce GTX 590, a video card with Fermi
architecture equipped with 2×16 streaming multiprocessors for a total of 1,024 cores.
The performances of the GPU were compared with a quad-core CPU Intel Core i7-
2600 with a clock rate of 3.4 GHz. A direct comparison of GPUs and CPUs is a hard
task, because of their architectural differences (e.g., the multiple cache levels of CPUs).
Moreover, nominal peak capabilities of GPUs (2.48 TFlops in single precision, in the
case of GTX 590) can be achieved only by implementing kernels completely adhering
to the underlying SIMD architecture (e.g., by avoiding any conditional branch in the
code). In addition, the occupancy of GPUs is affected by the usage of registers and
shared memory, which are both limited resources on each streaming multiprocessor.
cupSODA suffers from a high register pressure, which poses a limitation on the number
of simultaneous blocks that can be executed by each multi-core processor: currently,
our implementation is limited to 2 blocks on Fermi GPUs and 4 on Kepler GPUs.
Hence, the theoretical computational power peak is hard to be reached; nonetheless,
we compare here the performances of these two hardware devices since they are well
representative of hardware components typically found in personal computers. All

123

22 M. S. Nobile et al.

 0.01

 0.1

 1

 10

 100

 1000

10 1 10 2 10 3 10 4 10 5

R
un

ni
ng

 ti
m

e
[s

] CPU
 GPU

Fig. 2 Comparison between the computational time of cupSODA (green histograms) and COPASI (red
histograms) for simulating the MM model (top left), the PGN model (top right), and the Ras/cAMP/PKA
model (bottom). The y-axis are in logarithmic scale; RET= 10−10, AET= 10−10 for MM and PGN models,
RET= 10−10, AET= 10−14 for the Ras/cAMP/PKA model. For all tests the maximum number of internal
steps allowed during each call of LSODA was set to 10,000 (color figure online)

tests were executed on a system running the OS Microsoft Windows 7, CUDA version
5.0, COPASI 4.8 (build 35).

We show in Fig. 2 a comparison of the overall running times of COPASI and
cupSODA, obtained by performing an increasing number of simulations with LSODA
for the three test models. Our results show that cupSODA largely outperforms the
LSODA algorithm implemented in COPASI and, in the case of 105 simulations (i.e.,
parallel threads) for the MM model (Fig. 2, top left), the computational cost on the GPU
is nearly two orders of magnitude smaller than the CPU, namely, 3.358 vs. 289.335
s, which corresponds to a 86× speedup. In the case of the PGN model (Fig. 2, top
right), the execution of 105 simulations takes 437 s on the CPU, while it takes just
6.5 s on the GPU, resulting in a 67×. Vice versa, a small number of simulations does
not yield better performances, since the running time for 10 simulations of this model
is similar on the two architectures: 0.047 (CPU) vs. 0.046 s (GPU). The execution of
105 simulations of the Ras/cAMP/PKA model (Fig. 2, bottom) takes 6133.3 s on the
CPU and just 268.58 s on the GPU, resulting in a 23× speedup. This result clearly
states that cupSODA is convenient when more than 10 simulations are required, since
the computational cost for a small number of simulations is lower on the CPU.

Finally, we investigated the impact of the use of different memories on cupSODA,
by executing 105 simulations of the Ras/cAMP/PKA model exploiting either the shared
memory or the global memory to store the current state and time of the simulations.
The running times were, respectively, 27.501 and 54.93 s: cupSODA is twice as fast as
the naive porting of LSODA when the low latency memories are intensively exploited;
in addition, it is worth noting that these running times are always lower than the CPU
(651.741 s).

123

GPU-accelerated simulations 23

4 Conclusions

Computational methods for in silico analysis of biological systems has heightened
the need for novel and efficient algorithms, to carry out fast simulations and to bet-
ter explore the emergent behavior of these complex systems. GPUs are suitable for
this kind of problems, providing cheap means to access tera-scale performances on
common workstations. The bottleneck to the wide adoption of GPUs resides in the
required programming skills for the development of GPU-based algorithms, and to
handle specific features of GPU computing, such as the efficient usage of memory
or the communication bandwidth between GPU and CPU. As a matter of fact, algo-
rithms must be heavily restructured or purposely designed to fully exploit the underly-
ing SIMD architecture and the memory hierarchy. Moreover, a direct porting from the
CPU source-code to CUDA is usually unfeasible, because of the different architectures
and the limited programming capabilities allowed by GPU kernels.

In this work we presented cupSODA, a GPU-powered simulator of biochemical sys-
tem based on mass-action kinetics, designed to offer a black-box solution and capable
of automatically translating the reaction-based model of a biological system into a sys-
tem of ODEs. cupSODA relies on a numerical integrator for ODEs, called LSODA,
which we implemented as a CUDA kernel in order to exploit the massive parallel
capabilities of modern GPUs, thus achieving a relevant reduction of the computa-
tional time usually required to execute a huge number of independent simulations.
The mutual independence of the simulations allows to fully exploit the underlying
SIMD architecture; moreover, cupSODA benefits from an additional speedup, thanks
to our choice of storing each system state into the low-latency shared memory.

A previous GPU implementation of LSODA algorithm was proposed in the cuda-
sim library [17], a Python package providing GPU-accelerated biochemical simula-
tions. The aim and design of cuda-sim are very different from cupSODA, as the latter
allows to perform a massive number of simulations without writing any source code.
cuda-sim also relies on a just-in-time technique, whereby the code for LSODA that
will be executed on the GPU is automatically created and compiled at run-time: this
is indeed a flexible and elegant solution, but adds a relatively long compilation time
and requires the availability of a CUDA compiler and the CUDA toolkit on the run-
ning machine. During the development of cupSODA we opted for the encoding of
ODEs and the Jacobian matrix into linear arrays which are processed device-side,
without the need for any intermediate recourse to the CUDA driver API or any meta-
programming techniques. Hence, with cupSODA it is possible to immediately simulate
any biological system modeled according the mass-action kinetics, a characteristics
that is particularly appealing when the model itself is repeatedly modified, for instance
when it undergoes a reverse engineering process [3,8,11]: in such a case, cupSODA
only needs to update the GPU representation of the ODEs and the Jacobian matrix, in
order to be ready to run a massive number of simulations of the new model.

In this work, we tested the performances of cupSODA on three biological models of
increasing complexity and we showed that cupSODA becomes more convenient than
the CPU counterpart when a consistent number of parallel simulations has to be run,
with a break-even that depends on the complexity of the system under investigation.
Indeed, when performing demanding computational analysis such as, e.g., parameter

123

24 M. S. Nobile et al.

sweep, parameter estimation or sensitivity analysis, the outstanding advantage of novel
softwares as cupSODA clearly comes to light.

The cupSODA software is available from the authors upon request.

References

1. Aldridge B, Burke J, Lauffenburger D et al (2006) Physicochemical modelling of cell signalling
pathways. Nat Cell Biol 8:1195–1203

2. Besozzi D, Cazzaniga P, Pescini D et al (2012) The role of feedback control mechanisms on the
establishment of oscillatory regimes in the Ras/cAMP/PKA pathway in S. cerevisiae. EURASIP J
Bioinf Syst Biol 2012:10

3. Chou I, Voit E (2009) Recent developments in parameter estimation and structure identification of
biochemical and genomic systems. Math Biosci 219(2):57–83

4. Demattè L, Prandi D (2010) GPU computing for systems biology. Brief Bioinform 11(3):323–333
5. Farber R (2011) Topical perspective on massive threading and parallelism. J Mol Graphics Modell

30:82–89
6. Harvey MJ, De Fabritiis G (2012) A survey of computational molecular science using graphics process-

ing units. WIREs Comput Mol Sci 2(5):734–742
7. Hoops S, Sahle S, Gauges R et al (2006) COPASI: a COmplex PAthway SImulator. Bioinformatics

22(24):3067–3074
8. Koza J, Mydlowec W, Lanza G et al (2007) Automatic computational discovery of chemical reaction

networks using genetic programming. In: Džeroski S, Todorovski L (eds) Computational discovery of
scientific knowledge, LNCS, vol 4660, pp 205–227

9. Nelson D, Cox M (2004) Lehninger principles of biochemistry. W. H. Freeman Co, New York
10. Nobile MS, Besozzi D, Cazzaniga P et al (2013) cupSODA: a CUDA-powered simulator of mass-action

kinetics. In: Malyshkin V (ed) Proceedings of 12th international conference on parallel computing
technologies (PaCT 2013), vol LNCS 7979, pp 344–357

11. Nobile MS, Cazzaniga P, Besozzi D et al (2013) Reverse engineering of kinetic reaction networks
by means of Cartesian genetic programming and particle swarm optimization. In: IEEE congress
evolutionary computation (CEC 2013), pp 1594–1601

12. Petzold L (1983) Automatic selection of methods for solving stiff and nonstiff systems of ordinary
differential equations. SIAM J Sci Stat Comp 4(1):136–148

13. Vigelius M, Lane A, Meyer B (2011) Accelerating reaction-diffusion simulations with general-purpose
graphics processing units. Bioinformatics 27(2):288–290

14. Wang Y, Christley S, Mjolsness E et al (2010) Parameter inference for discretely observed stochastic
kinetic models using stochastic gradient descent. BMC Syst Biol 4:99

15. Wilkinson D (2009) Stochastic modelling for quantitative description of heterogeneous biological
systems. Nat Rev Genet 10:122–133

16. Wolkenhauer O, Ullah M, Kolch W et al (2004) Modeling and simulation of intracellular dynamics:
choosing an appropriate framework. IEEE Trans Nanobiosci 3(3):200–207

17. Zhou Y, Liepe J, Sheng X et al (2011) GPU accelerated biochemical network simulation. Bioinformatics
27(6):874–876

123

	GPU-accelerated simulations of mass-action kinetics models with cupSODA
	Abstract
	1 Introduction
	2 Implementation of cupSODA
	3 Results
	4 Conclusions
	References

