
J Supercomput (2014) 69:139–160
DOI 10.1007/s11227-014-1131-z

Characterizing and modeling cloud applications/jobs
on a Google data center

Sheng Di · Derrick Kondo · Franck Cappello

Published online: 29 April 2014
© Argonne National Laboratory; DE-AC02-06CH11357 2014

Abstract In this paper, we characterize and model Google applications and jobs,
based on a 1-month Google trace from a large-scale Google data center. We address
four contributions: (1) we compute the valuable statistics about task events and
resource utilization for Google applications, based on various types of resources and
execution types; (2) we analyze the classification of applications via a K-means clus-
tering algorithm with optimized number of sets, based on task events and resource
usage; (3) we study the correlation of Google application properties and running fea-
tures (e.g., job priority and scheduling class); (4) we finally build a model that can
simulate Google jobs/tasks and dynamic events, in accordance with Google trace.
Experiments show that the tasks simulated based on our model exhibit fairly analo-
gous features with those in Google trace. 95+ % of tasks’ simulation errors are <20 %,
confirming a high accuracy of our simulation model.

Keywords Google data center · Cloud task · Characterization and analysis ·
Large-scale system trace

S. Di (B) · D. Kondo
INRIA, Paris, France
e-mail: disheng222@gmail.com

D. Kondo
e-mail: derrick.kondo@inria.fr

F. Cappello
Argonne National Laboratory, Lemont, USA
e-mail: cappello@mcs.anl.gov

123

140 S. Di et al.

1 Introduction

Cloud computing [1,2] has emerged as a compelling paradigm for the easy-to-use and
fine-grained resource consumption on the Internet. Workload characterization and
modeling for cloud applications are essential for optimizing the system-wide resource
allocation in cloud systems.

Google is a well-known cloud platform, on which there are millions of requests to
process across hundreds of thousands of data centers everyday. In November of 2011,
Google [3,4] released its 1-month trace for researchers to study. The trace involves
over 650k jobs across over 12 k heterogeneous hosts from a data center. There are
totally 40 k applications, which are repeatedly called/used by thousands of users in
the form of jobs, and each job is executed in the form of one or more tasks. Over 144
million task events are recorded. For confidentiality, Google intentionally hides some
information like application names and absolute values of resource usage, yet hashed
application names and released the relative values of resource usage, which will not
impact the statistical analysis and simulation of Google trace.

In our previous work [5], we characterized the hostload for each host, by aggregating
its running tasks’ resource usage on different resource types over time. We also present
some new insights about the differences of hostload between cloud and grid. We found
Google hostload exhibits higher variance and larger noise than other grid/HPC systems,
because of the much shorter Google job length and higher job submission frequencies.

In this paper, we focus on the characterization of Google application features sta-
tistically. We will mainly answer four such questions:

– What are the particular statistics about workloads, task events and resource utiliza-
tion, with respect to Google applications?

– Can we classify Google applications based on the way their corresponding jobs are
executed? For example, can we find any correlations between task events and appli-
cations’ execution types (a.k.a., application types) like whether the applications can
run batch-tasks or not?

– From the perspective of applications, are there strong or weak correlations between
task events and running features like job priority and task scheduling class1?

– How to build a simulation model based on the above characterization work, to
emulate Google jobs/tasks and events? What is the accuracy of the simulation as
compared to the original Google trace?

Our work will particularly benefit the further research on cloud resource allocation
in the long run. As a matter of fact, many contemporary cloud resource allocation strate-
gies already tried to optimize the performance, by taking advantage of pre-knowledge
about application workload or features. For example, Meng et al. [6] endeavored to
optimize the resource allocation by analyzing the compatibility of running applica-
tions encapsulated in virtual machines (VM) based on their resource usage patterns.
Inter-cloud [7] and Stillwell’s virtual resource allocation strategy [8], both assume
application service workload, and behaviors are predictable in their cloud service

1 Scheduling class (0–3), according to [3], roughly represents how latency sensitive a job/task is, with 3
representing a more latency-sensitive task and 0 representing a non-production task.

123

Characterizing and modeling cloud applications/jobs 141

provisioning model. Other simulation research (such as [9,10]) on cloud computing
always emulate the cloud application workload or events before its further investi-
gation. Obviously, comprehensive characterization of cloud application features is a
prerequisite for the further improvement of cloud system performance.

To the best of our knowledge, our work is the first attempt to comprehensively study
the statistical features of cloud applications based on a real production trace. Although
Google just released 1-month period of trace data involved with 12 k hosts, one can
emulate Google job submissions and related task events based on our simulation
model, for longer test period like 1 year and a larger system scale with more hosts.

The remainder of the paper is organized as follows. In Sect. 2, we briefly introduce
the Google trace and show the overview of Google’s job scheduling system, which
serves as a fundamental background of the following analysis. In Sect. 3, we present
some key findings about Google application properties, such as the distribution of
task events based on application types and classification of applications with opti-
mized K-means clustering algorithm. In Sect. 4, we explore the correlation between
application properties and running features, including job priority and task scheduling
class. In Sect. 5, we discuss how to simulate jobs based on the characterization of
Google application features, and also evaluate the validity of our simulation model by
comparing to the original trace. We comprehensively discuss the related works and
highlight the key contributions of our work in Sect. 6. We conclude the paper with a
vision of the future work in Sect. 7.

2 System overview

A Google data center consists of thousands of hosts that are connected via a high-speed
intra-network. One or more schedulers receive and process a large number of user
requests (a.k.a., jobs), each of which is comprised of one or more tasks. For instance,
a map-reduce [11] program will be treated as a job with multiple reducer tasks and
mapper tasks. Different jobs are assigned with different scheduling priorities, and there
are 12 priorities in total. Each task (actually represented as a Linux program possibly
consisting of multiple processes) is always generated with a set of user-customized
requirements (such as the minimum CPU rate and memory size).

According to Google’s usage trace format [4], each task can only exist in one of
the following four states, unsubmitted, pending, running and dead. The detailed task
scheduling mechanism follows a state-transition graph, which can be found in [4]. The
task states transit based on various task events, and there are totally nine different event
types, which are represented as 0 (task submission), 1 (schedule), 2 (evict), 3 (fail), 4
(finish), 5 (kill), 6 (lost), 7 (update_pending), and 8 (update_running), respectively.

Based on Google’s task processing model [4], Google traced over 650 k jobs that
were scheduled across over 12,000 heterogeneous machines within 1 month. More than
six metrics are collected during the 1 month of task-event monitoring, such as CPU
usage, assigned memory, observed real memory usage, page-cache memory usage,
disk I/O time, and disk space.

Each job corresponds to a specific application, which is named as “logic job name”
in Google trace. Berkeley’s report [12] simply reveals some features of Google appli-

123

142 S. Di et al.

cations. For example, there are totally about 40 k different applications in the trace.
The number of jobs per application loosely follows a Zipf-like distribution, and a few
applications are shared among an extremely large number of jobs (e.g., up to 22 k).
In this paper, we intensively characterize the Google application features to support a
precise simulation of Google cloud environment.

3 Characterization of Google application properties

In this section, we mainly analyze the statistical properties of Google applications.
For example, the distribution of the number of jobs/events per application, the distri-
bution of task events based on various application types, the optimized clustering for
applications based on task events and resource utilization.

3.1 Mass-count disparity of task events and resource usage

We first present the distribution of the number of jobs/events per application, through
mass-count disparity evaluation. Mass-count [13] is a very important metric used to
extract the key features (such as heavy tails) for specific distributions. It is made up of
the “count” distribution and the “mass” distribution. The “count” distribution simply
refers to the cumulative distribution function (CDF) as it counts how many items
are smaller than certain size. The “mass” distribution weights each item, specifying
the probability that a unit of mass belongs to an item. Specifically, their values are
calculated based on formula (1) and formula (2), where f (t) refers to the probability
density function.

Fc(x) = Pr(X < x) (1)

Fm(x) =
∫ x

0 t · f (t)dt
∫ ∞

0 t · f (t)dt
(2)

By comparing the two curves (mass and count), we can determine whether the
distribution follows Pareto principle [14], heavy tails, or other statistical features. In
the analysis, joint ratio (a kind of Gini coefficient [13]) is a critical measure index,
defined as X/Y , meaning that X % of the items account for Y % of the mass and Y % of
the items account for X % of the mass. A typical Pareto principle means that X and Y
are very small and very big, respectively, for example, X = 10 % and Y = 90 %. The
mm-distance (abbreviated as mmdis.) shown in the figure is defined as the horizontal
distance of the two points that are right in the middle of the CDF of the count curve and
mass curve. Longer distance means a stronger Pareto principle (a more non-uniform
distribution about the mass).

Figure 1a, b shows the mass-count disparity, i.e., the mass per application versus
the count per application.

Statistics indicate that 60 % of applications each just have only one job and over 80 %
of applications have no more than 82 task events. That is, the number of jobs/events
per application for a large majority of applications is very small. Through the two

123

Characterizing and modeling cloud applications/jobs 143

 0

 0.2

 0.4

 0.6

 0.8

 1

0 50 100 150 200

C
D

F

of Jobs per Application

joint ratio=13.3%/86.9%

mmdis=403.5

count
mass

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2000 4000 6000 8000

C
D

F

of Events per Application

joint ratio=5.6%/94.4%

mmdis=46110

count
mass

Fig. 1 Mass-count disparity of the number of jobs/events per application

figures, we can also clearly observe a typical Pareto principle. Specifically, 86.7 % of
jobs belong to only 13.3 % of applications and 13.3 % of jobs belong to 86.7 % of
applications. Similarly, Fig. 1b shows that only 5.6 % of task events belong to 94.4 %
of applications and 94.4 % of task events belong to only 5.6 % applications. That is,
the distribution of the number of jobs/events is extremely non-uniform and a large
majority of applications only account for very few jobs/events.

We also study the distribution of the CPU workload (or CPU usage) and memory
workload (or memory usage) per application, through mass-count disparity evaluation.
The CPU workload is evaluated by core seconds. For example, if one job has two
tasks executed in parallel, each of which is using two cores all the time and their
lengths are 100 and 200 s, respectively, then this job’s CPU workload is equal to
100 × 2 + 200 × 2 = 600. A job’s total memory workload is evaluated by memory
size seconds. For example, if one job has two tasks, each of which consumes 0.05
memory size2 on average, and their execution lengths are both 100 s, then, the job’s
total memory workload is equal to 0.05 × 100 × 2 = 10. One application’s workload
on CPU or memory is computed as the average value of all of its job workloads in the
trace.

In comparison to task events, we just take into account the resource usage of 18 k
valid applications, which are completed successfully as recorded in the trace. Via
Fig. 2, we find that both CPU workload and memory workload per application follow
a considerably typical Pareto principle. Specifically, only 1.5 % (1.8 %) of applications
contribute to up to 98.5 % (98.2 %) of CPU (memory) usage on average, and 98.5 %
(1.8 %) of applications consume extremely few CPU (memory) usage, i.e., only 1.5 %
(1.8 %). In other words, the resource utilization per application in a simulated cloud
environment is supposed to conform to such a Pareto principle, otherwise, the emulated
benchmark is skewed against the reality more or less.

2 Google trace does not expose the exact memory size used by jobs but their scaled values compared to the
maximum memory capacity of each node. For example, suppose the maximum memory capacity on a host
is 64 GB, 0.05 memory size means 0.05 × 64 = 3.2 GB.

123

144 S. Di et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 500 1000 1500 2000

C
D

F

Mean CPU Usage per Application

ratio=1.5%/98.5%

mmdis=1.217m

count
mass

 0

 0.2

 0.4

 0.6

 0.8

 1

0 500 1000 1500 2000

C
D

F

Mean MEM Usage per Application

ratio=1.8%/98.2%

mmdis=396k

count
mass

Fig. 2 Mass-count disparity of resource usage per application

3.2 Task event distribution based on application types

Based on the job’s intrinsic structure (i.e., how many tasks per job and how to con-
nect them), we split the 40 k applications into four execution types (or application
types), single-task application, sequential-task application, batch-task application and
mix-mode application. Single-task application means that the corresponding job just
has only one task. Sequential-task application indicates that for this application, the
tasks in each corresponding job are generated (or invoked, submitted) in series. That
is, the workload of a whole job will be completed in form of many small tasks con-
nected one by one, and no two tasks’ execution periods overlap each other. Such an
application type often implies frequent fail/evict/kill/lost events3, which is consistent
with Berkeley report [12] (many Google jobs suffer from the crash-loop phenomenon,
wherein the tasks submitted are repeatedly failed, evicted, killed or lost). For batch-
task applications, each job contains at least two tasks executed in an embarrassingly
parallel pattern. Mix-mode application indicates a mixed type of the two application
types, sequential-tasks and batch-tasks.

Table 1 shows the distribution of the number of applications and various task events
per application type.

It is observed that most of applications (over 64 %) each just have single task,
and 25 % applications correspond to batch tasks. Only 2.6 and 8.3 % of applications
raise sequential-tasks and mix-mode tasks, respectively. Through this table, not only
can we realize that finish events and fail events account for the major portion in all
of task events, we can also compare the number of task events based on different
application types. For example, we find that evict events rarely appear for single-task
jobs, but usually happen in either a batch-task application or a mix-mode application.

3 According to Google trace [4], there are different factors for task interruptions: (1) failure event: a task
or job was descheduled (or, in rare cases, ceased to be eligible for scheduling while it was pending) due to a
task failure; (2) evict event: a task or job was descheduled because of a higher priority task or job, because
the scheduler overcommitted and the actual demand exceeded the machine capacity, because the machine
on which it was running became unusable, or because a disk holding the task’s data was lost; (3) kill event:
a task or job was canceled or another job or task on which this job was dependent died; (4) lost event: a
task or job was presumably terminated with a missing record.

123

Characterizing and modeling cloud applications/jobs 145

Table 1 Distribution of events w.r.t. application types

Sing.-task Seq.-task Batch-task Mix-mode

of applications 25,513 1,015 9,910 3,286

of evict events 41,004 546,302 1, 645,534 3, 631,513

of fail events 165,551 69,565 11, 242,109 2, 352,544

of finish events 368,886 0 1, 654,416 16, 194,673

of kill events 151,932 260,439 1, 934,749 8, 002,560

of lost events 113 904 1,138 6,599

Only 0.5 and 1.2 % of fail events belong to single-task applications and sequential-
task applications, respectively, while about 81.3 % belong to batch-task applications.
Also, both the kill events and lost events mainly belong to batch-task application and
mix-mode application. In addition, the finish events mainly exhibit with mix-mode
applications. This means that mix-mode application type works much more effectively
than other types. In contrast, there are no sequential-task applications finished normally
based on the Google trace. This further confirms a typical crash-loop phenomenon, as
reported by Reiss et al. [12].

3.3 Optimized clustering of Google applications

We further cluster applications based on the statistics of task events and resource uti-
lization. We believe such a work revealed some crucial features about Google appli-
cations hidden in the trace, which will definitely benefit the in-depth understanding
and simulation of a large-scale cloud benchmark in the long run.

The major methodology is K-means clustering algorithm [15], since it can effec-
tively partition data into Voronoi cells [16]. Its outcome contains multiple sets each
containing a unique center and the Euclidean distances of the samples in a set to the
set’s center must be smaller than to any other sets’ centers. Given various numbers of
sets, the clustering may be largely different, hence, we also explored the optimized
number (i.e., optimized K) of sets under different classification degrees.

The objective of our K-means clustering algorithm is to cluster the applications into
several sets, such that the within-cluster sum of squares (WCSS) could be minimized
under a specific degree of classification. We define merge ratio (MR) to be the ratio
of distance(α, β) to the average distance among all centers (denoted by d̄), where
distance(α, β) denotes the distance between two set centers α and β. We also define
a threshold, called merge ratio threshold (denoted by λ), to determine the degree of
classification. Obviously, λd̄ will serve as the threshold in merging two set centers:
if the two set centers are closer than λd̄, the corresponding sets should be merged.
In general, λ is in the range (0,1]. We denote by KM(k, S, ϕ) the converged solution
to the clustering on the sample set S via K-means clustering algorithm, and denote
the set of corresponding centers as CS(k, S, ϕ), where ϕ indicates the initial set of k
centers.

123

146 S. Di et al.

Algorithm 1 K-Optimization Algorithm
Input: N sample data, max # of sets (denoted M), λ (Merge Ratio Threshold);
Output: the number of sets, converged centers, and classified sets of data
begin
1: CS = the set of M Centers initialized by Forgy method [26].
2: repeat
3: Compute KM(|CS|,S,CS);/*|CS| denotes # of elements in CS*/
4: Compute average distance for CS, denoted as d;
5: if (∃ α ∈CS,β ∈CS, distance(α,β)< λ · d) then
6: CS=MergeCenters(CS,λ · d);/*Merge nearby centers in CS*/
7: else
8: break;
9: end if
10: until (|CS|=2);
11: Output |CS|, CS, and KM(|CS|,S,CS);
end

Algorithm 1 aims to optimize the clustering for Google applications, with optimized
number of sets. In our experiments, the initial maximum number of sets (i.e., M) is set
to 100, and we use Forgy method to randomly find the optimal solution to the initial
case. After that, two relatively nearby centers will be merged by using their middle
point (line 6) and a new K-means clustering will be performed based on the new set
of centers. The two steps will repeat until each pair of centers are farther than λ · d,
where d refers to the average distance among the centers of the sets.

3.3.1 Task event-based application clustering

Figure 3 shows the optimized clustering of Google applications based on task event
trace, under different degrees of classification. We zoom in the first three sub-
figures for clear observation. Based on the five types of task events (as shown
in Table 1), there are totally five dimensions per application. The overall clus-
tering is performed based on the normalized probability of each task event type
per application. For example, if the numbers of the five events are 100, 200,
300, 400, 500, respectively, for one application, the coordinate of this application
will be (1

15 , 2
15 , 3

15 , 4
15 , 5

15). The degree of classification is determined by merge
ratio threshold (denoted as λ), which is defined in Appendix. The lower λ is, the
finer granularity of the classification is. For example, when λ is set to 0.1 and
0.5, respectively, all applications can be grouped into 71 sets and 11 sets, respec-
tively.

From Fig. 3a–i, we observe that the number of applications per set does not follow
a uniform or normal distribution but a Pareto distribution with a long tail. That is,
most of clustering sets each just contain dozens of or hundreds of applications, while
minority of sets each contains thousands of applications or more. For example, Fig.
3d shows that the largest set contains over 18 k applications while the smallest set just
contains 13 applications.

As shown by the above figure, the applications can be classified based on the dis-
tribution of task/job event types, based on which we can deeply understand and accu-

123

Characterizing and modeling cloud applications/jobs 147

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Fig. 3 Distribution of applications in the optimized clustering based on task events

rately simulate the task/job events with respect to application types. Table 2 shows
the centers of 4-set clustering (λ = 0.8) and 2-set clustering (λ = 0.9), respec-
tively. Based on the 4-set clustering, we find that if the task events of an applica-
tion are mostly evict events, the remaining events will be likely kill events, which
accounts 18 % in the total number of events. Similarly, if the fail events dominate
the task events for a particular application (its probability is about 67.5 %), its kill
events will also exhibit prominently in the rest of events (the likelihood is up to

0.18
1−0.675 = 55.4 %). By contrast, if an application is often finished (killed) eventually
(e.g., with 92.6 % finish rate), other tasks of this application will likely be finished
or killed. In addition, since the numbers of applications in the four sets are about 2.7,
1.5, 13.5, and 22 k, respectively, we know that most of applications should termi-
nate with either a finish event or a kill event. Note that kill event [3] is mainly due
to an external factor like the cancelation by its user or the death of another depen-
dent job, thus it may also be counted as a normal event by excluding the external
factors like interruption of users. Hence, it can be concluded that a large major-
ity of applications are prone to be finished normally without considering external
interruptions.

123

148 S. Di et al.

Table 2 Centers of clustering
sets based on task events

(Evict rate, fail rate, finish rate, kill rate,
lost rate)

4-Set
classification
(λ= 0.8)

(0.616, 0.023, 0.053, 0.181, 0.00025)

(0.039, 0.675, 0.106, 0.180, 0.00035)
(0.019, 0.008, 0.083, 0.890, 0.00025)

(0.007, 0.005, 0.926, 0.061, 0.00025)

2-Set
classification
(λ= 0.9)

(0.012, 0.011, 0.919, 0.058, 0.00025)

(0.109, 0.059, 0.074, 0.737, 0.00025)

3.3.2 Workload based application clustering

We also study the application clustering based on workload (or resource utilization).
We calculate the mean CPU workload and mean memory workload for each application
based on the workloads of its corresponding jobs. Then, we run our optimized clus-
tering algorithm on all of 18 k valid applications. For each application, there are two
dimensions, which indicate the estimated CPU workload (core seconds) and memory
workload (memory size seconds) over time, respectively. Statistics show that a large
majority of applications use less than one core seconds on average and only a tiny of
them (batch-task applications) consume over 10 core seconds on average. Accordingly,
we mainly focus on the major portion, i.e., the applications whose mean workloads
are not extremely large. That is, we filter out the applications whose radiuses [i.e., the
distance between its coordinate to the origin point—(0,0)] are farther than a threshold
(namely radius threshold, denoted as μ). We perform the clustering algorithm on all of
Google applications, based on various merge rate thresholds (λ) and radius thresholds
(μ).

In Fig. 4, we present the distribution of the number of applications in the optimized
clustering sets based on workload. We observe the number of applications per set
always follows a Pareto-similar distribution (or power law). With bigger λ or bigger
μ, the granularity of classification becomes coarser. For example, Fig. 4i shows there
are only three clustering sets, if the distance between any pair of centers is kept bigger
than 0.5 times as long as the average distance and any radius is limited to be no larger
than 40.

We further present the locations of the centers of the sets classified in Fig. 5. The
centers of the three classified sets shown in Fig. 5i are (11.198, 21.835), (21.673, 5.351),
and (1.992, 1.420), respectively. It is clearly observed that majority of applications
are with quite low workload (or resource utilization) in the system. In addition, we
observe that the number of applications in the sets classified based on the workload
also follows a Pareto-similar distribution. That is, for a few sets, each contains an
extremely large number of applications with little resource consumption, while most
of classified sets contain a small portion of applications with high resource utilization
per set. Note that most of applications are located near to the origin point (0,0), which
is due to either Google application’s low CPU utilization and memory usage or its short

123

Characterizing and modeling cloud applications/jobs 149

(a) (b) (c)

(d) (c) (f)

(g) (h) (i)
Fig. 4 Distribution of applications in optimized workload clustering

execution length. This means that majority of Google applications’ total workloads
are tiny.

4 Correlation of Google application properties and running features

We study the correlation of Google application properties (mainly about statistics
of different types of task events) and running features, including job priority and
scheduling class. In Google trace, priority (1–12) and scheduling class (0–3) are used
in job scheduling. Bigger priority value indicates higher execution priority. Bigger
value of scheduling class implies a more latency-sensitive task (e.g., serving revenue-
generating user requests) while smaller value means a non-production task (e.g., devel-
opment, non-business-critical analysis, etc.).

In our study, we find there exists a partial correlation (or weak correlation). In the
following text, we first show the distribution of the number of applications based on
running features, including scheduling class and job priority. And then, we characterize
the correlation between application task events and the running features.

123

150 S. Di et al.

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

M
em

or
y

W
or

kl
oa

d

CPU Workload

Application Points
Set’s Center

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

CPU Workload

Application Points
Set’s Center

M
em

or
y

W
or

kl
oa

d

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

M
em

or
y

W
or

kl
oa

d

CPU Workload

Application Points
Set’s Center

 0

 5

 10

 15

 20

 0 5 10 15 20

M
em

or
y

W
or

kl
oa

d

CPU Workload

Application Points
Set’s Center

 0

 5

 10

 15

 20

 0 5 10 15 20

M
em

or
y

W
or

kl
oa

d

CPU Workload

Application Points
Set’s Center

 0

 5

 10

 15

 20

 0 5 10 15 20

M
em

or
y

W
or

kl
oa

d

CPU Workload

Application Points
Set’s Center

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 5 10 15 20 25 30 35 40

M
em

or
y

W
or

kl
oa

d

CPU Workload

Application Points
Set’s Center

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 5 10 15 20 25 30 35 40

M
em

or
y

W
or

kl
oa

d

CPU Workload

Application Points
Set’s Center

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 5 10 15 20 25 30 35 40

M
em

or
y

W
or

kl
oa

d

CPU Workload

Application Points
Set’s Center

Fig. 5 Application workload and centers of clustering sets

Figure 6a presents the percentage of applications with respect to the job priority.
It is observed that applications are distributed non-uniformly based on job priorities.
All applications can be classified into three groups, low-priority, mid-priority, and
high-priority. Most of applications are located at priority 1, 2, 3, 5, 9, and 10. Figure
6b shows the percentage of applications with respect to job scheduling class. Since
larger scheduling class value implies more latency-sensitive task and smaller value
means a non-production task, Fig. 6b indicates that Google applications are not very
sensitive to latencies and tend to be non-production tasks in general.

Figure 7 shows the number of task events w.r.t. task features, including job priority
and task event type. We can observe that a large majority of task events occur with
relatively low job priorities like 1, 2, 3, and 5. The distribution of task events w.r.t.
event types is also fairly non-uniform, based on Fig. 7b. Specifically, in comparison to
over 45 million task submission events, there are <20 million task finish events and
about 10 million task kill events (Note that kill event is due to external interrupt by task
user, so it may not be treated as abnormal event.). That is, there are over 45−20−10

45 = 1
3 of

abnormal task events, such as task fail, task evict, and task lost. In other words, when
emulating a real-cloud benchmark or environment, one has to carefully investigate the
situation with such a high rate of abnormal task events.

123

Characterizing and modeling cloud applications/jobs 151

 0

 5%

 10%

 15%

 20%

 25%

 30%

1 2 3 4 5 6 7 8 9 101112P
er

ce
nt

ag
e

of
 A

pp
lic

at
io

ns

Priority

 0
 5%

 10%
 15%
 20%
 25%
 30%
 35%
 40%
 45%

0 1 2 3P
er

ce
nt

ag
e

of
 A

pp
lic

at
io

ns

Scheduling Class

Fig. 6 Percentage of applications w.r.t. static states

 0

 10M

 20M

 30M

 40M

 50M

 60M

 70M

 80M

1 2 3 4 5 6 7 8 9 101112

N
um

be
r

of
 T

as
k

E
ve

nt
s

Priority

 0
 5M

 10M
 15M
 20M
 25M
 30M
 35M
 40M
 45M
 50M

0 1 2 3 4 5 6 7 8

N
um

be
r

of
 T

as
k

E
ve

nt
s

Event Type

(b)(a)
Fig. 7 Distribution of task events w.r.t. properties

 0

 2M

 4M

 6M

 8M

 10M

 12M

1 2 3 4 5 6 7 8 9 10 11 12

N
um

be
r

of
 T

as
k

E
ve

nt
s

Priority

evict events
fail events
finish events
kill events
lost events

Fig. 8 Distribution of event types w.r.t. priority

We statistically exploit the distribution of task events based on job priorities, which
reveals a partial correlation (or weak correlation) between task event types and job
priorities. Through Fig. 8, it is observed that a large majority of task evict events

123

152 S. Di et al.

 0

 2M

 4M

 6M

 8M

 10M

 12M

 14M

 16M

0 1 2 3

N
um

be
r

of
 T

as
k

E
ve

nt
s

Scheduling Class

evict events
fail events
finish events
kill events
lost events

Fig. 9 Distribution of event types w.r.t. scheduling class

belong to the lowest priority tasks, which is because of a fairly high probability of low-
priority tasks being preempted by high-priority ones. We also observe that the number
of normal task events (including task finish events and task kill events) decreases with
increasing priorities for low-priority task events (e.g., priority value = 1, 2, 3). This is
mainly due to the decreasing number of task events with increasing task priorities. In
comparison, we find that the normal event ratios (defined as the ratio of the number of
normal events to the total number of five types of events listed in Fig. 8) for relatively
low priorities (=1, 2, 3, 5) are 35.6, 68.9, 94.0, and 95.5 %, respectively. This means
that priority is a key factor that determines the task event ratio for low-priority tasks
to a certain extent, because the tasks with lower priorities are prone to be preempted.
However, such a rule does not fit the high-priority tasks. For example, the percentages
of task finish events reach up to 100 % for the three priorities, 6, 8, and 12, while the
normal event ratios for priority 7, 9, 10, and 11 are limited to 92.2, 92.6, 17.3, and
30.0 %, respectively.

Finally, we present the distribution of task events based on scheduling class, in
Fig. 9. One interesting observation is that the number of task events for each of the
three types (evict, fail and finish) decreases quickly with increasing scheduling class
values. Moreover, unlike the correlation between task events and priority, the normal
event ratios based on the four scheduling class values are 57.3, 57.9, 82.6, and 38.5 %,
respectively, delivering a rather uniform distribution especially for low-scheduling
class tasks.

5 Simulation model based on Google application features

Based on Google application features extracted from Google’s 1-month trace data,
we build a statistical model that can simulate Google jobs and tasks submitted onto
a large-scale Google data center. In this section, we first introduce the simulation
model, and then evaluate it by comparing the generated workload/hostload to that of
the original trace data.

123

Characterizing and modeling cloud applications/jobs 153

Fig. 10 Simulation model of cloud jobs/tasks based on Google trace

5.1 Statistical simulation model of job/task emulation on a Google data center

We present the simulation model for emulating Google jobs (tasks) in Fig. 10. It
can be split into five layers from bottom to top, to perform K-means clustering on
applications, statistics analysis on applications, correlation analysis of applications,
correlation analysis on jobs/tasks, and simulation of Google jobs/tasks, respectively.
The output of the lower layers serves as the input of the higher layers.

We describe each layer shown in Fig. 10 as follows.

– K-means clustering analyzer: this layer is used to generate a group of set cen-
ters, which can differentiate applications based on their properties like resource
utilization per application. It can help researchers to justify the applications’ char-
acteristics individually. Each clustering set corresponds to an application template,
based on each of which we can generate a set of application instances, according
to the simulation requirements.

– Statistics analyzer of application types: this layer is used to specify application
types for the simulated application instances. It determines whether an application
instance can have multiple tasks and how the tasks are connected per job.

– Analyzer of correlation between application/job/task properties and their running
features: this layer is used to specify the running features of applications/jobs/tasks,
related to how many jobs per application, application’s job priority and scheduling
class, and so on. At this layer, there will be some job/task templates generated,
which can be used to further emulate job/task instances.

– Analyzer of correlation of jobs vs. tasks: when emulating a job instance, a set of
tasks and task events will be generated beforehand. Each task is associated with
a set of requests and utilization on different types of resources like CPU rate and
memory size. A task is also associated with a set of events such as evict and fail
events. They will be simulated based on the statistics of events over Google trace.

– Simulation of jobs/tasks: finally, we can finish the whole simulation according to
the characterization of application properties. Each task simulation is executed in
terms of the state transition graph, which can be found in [3]. Various job/task events
(including submission, evict, failure, kill, and so on) are generated in accordance
with the statistics of the job/task arrival intervals extracted from the 1-month Google
trace, to be shown in next section. The resource utilization of a simulated task is

123

154 S. Di et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Job Interval (Second)

Distribution of Samples
Fitted Exponential Distribution

Fitted Geometric Distribution
Fitted Laplace Distribution
Fitted Normal Distribution
Fitted Pareto Distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

C
D

F

Task Arrival Interval (Second)

Distribution of Samples
Fitted Exponential Distribution

Fitted Geometric Distribution
Fitted Laplace Distribution
Fitted Normal Distribution
Fitted Pareto Distribution

Fig. 11 Distribution of job/task arrival interval

generated based on the usage statistics (or distribution) of all of the tasks with the
same job.

Note that we do not specify job scheduling policy in our simulation model, because
of two factors. On one hand, Google trace providers have not disclosed the details
about their scheduling policies because of privacy, so this part is a black box for us.
On the other hand, in general, the users actually intend to design their own particular
scheduling policies for their own simulations to suit various purposes, thus, we believe
simulating Google jobs/tasks based on Google trace already meets majority of users’
needs.

5.2 Evaluation of simulation model

In this part, we present the evaluation results based on our simulation model, to confirm
its validity. We first make use of maximum likelihood estimate to analyze the proba-
bility distribution of job/task arrival interval. Then, we present the simulation effect
through the five-layer simulation model, by comparing the properties like workload
of the simulated jobs/tasks to those in original trace.

To simulate the dynamic arrivals of jobs/tasks, we need to study the job arrival
intervals based on Google trace. In Fig. 11a, we present the distribution of the overall
job arrival intervals as well as some well-known probability distribution fitting curves
generated via maximum likelihood estimate method. It is observed that the job arrival
intervals do not follow any well-known probability distributions explicitly. On the
other hand, we show in Fig. 11b the distribution of task arrival intervals on a particular
Google host. It is observed that the best-fit probability distribution of task arrival
intervals on each host is exponential distribution to a certain extent. That is, the task
arrival follows a Poisson-similar process [17] in Google trace.

In our simulation, we do not adopt any off-the-shelf distributions (e.g., exponential
distribution) to emulate the task arrival intervals, because thus would cause skewness
as observed. Instead, we randomly select job/task intervals from all of the interval sam-
ples listed, such that the generated job/task intervals exactly approach the probability
distribution of Google trace.

123

Characterizing and modeling cloud applications/jobs 155

 0

 5

 10

 15

 20

 0 5 10 15 20

M
em

or
y

U
sa

ge

CPU Usage

Set #1
Set #2
Set #3
Set #4

Application Samples
Centers of Sets

Fig. 12 K-means clustering sets and sampled applications

As follows, we evaluate the simulation effect of our job/task simulation model
(Fig. 10) through an example. Suppose a user wants to investigate and simulate the
jobs/tasks based on particular applications with distinct resource utilization on CPU
rate and memory size, and the parameters of K-means clustering algorithm are set as
λ = 0.5 and μ = 20. Then, he/she can simply perform the simulation based on the
statistics with our characterization.

We show the K-means clustering results (four sets classified) based on resource
utilization in Fig. 12. In each set, we randomly select 20 applications as the basic
application templates to generate jobs for further investigation.

As follows, we simulate jobs/task events in accordance with the trace-based job/task
arrival intervals. Based on the generated jobs/tasks, we further compute the statistics
(including average resource utilization per application and hostload values based on
tasks’ resource utilizations).

We compute the average CPU/memory utilization for each of the 80 sampled
applications based on the simulated jobs/tasks, and compare them to that of origi-
nal jobs/tasks in the trace, as shown in Fig. 13. From Fig. 13a, it is observed that the
mean resource utilization of our simulated tasks per application and the statistics in the
trace are fairly similar to each other. We also evaluate the simulated resource utilization
via error ratio, which is defined as the ratio of the simulation error to the resource uti-
lization of original tasks in the trace, i.e., the difference of utilization between simulation and trace

the mean resource utilization in the trace .
Through Fig. 13b, we can observe that 95+ % of tasks’ simulation errors are <20 %,
w.r.t. the mean CPU and memory utilization per application.

We also simulate the 1-year hostload by summing the emulated tasks’ resource
utilization on the same host over time, and compare it to the statistics of the original
1-month trace in Fig. 14. It is observed that the distribution of the hostload values
simulated is very close to that of the ones aggregated based on the original trace.
With the same CDF values, the average values of the emulated hostload and original
hostload differ within 10 %, confirming the accuracy of our simulation. We can also
observe that the hostload values summed based on emulated tasks exhibit higher than

123

156 S. Di et al.

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 0.1

 0 10 20 30 40 50 60 70 80

R
es

ou
rc

e
U

til
iz

at
io

n

Application ID

Mean CPU of Simulation
Mean CPU of Trace

Mean MEM of Simulation
Mean MEM of Trace

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

C
D

F

Error Ratio

CPU Utilization

Memory Utilization

Fig. 13 Comparison between simulation and trace w.r.t. application

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

average hostload value

original one-month hostload
emulated one-year hostload

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Variance of Hostload

original one-month hostload
emulated one-year hostload

Fig. 14 Evaluation of hostload simulation

that of the original trace. This is because the original Google tasks are executed with
some constraints and scheduling policies while the emulated tasks are not.

6 Related work

Recently, there have been many existing works characterizing Google’s trace for the
in-depth understanding of the cloud environment. Sharma et al. [18] developed a new
metric called Utilization Multiplier (UM) based on task placement constraints and
machine properties, to precisely characterize the impact of task constraints to the task
scheduling delay. They also studied how to synthesize representative task constraints
and machine properties, and how to incorporate this synthesis into existing perfor-
mance benchmarks. Mishra et al. [19] classified Google task workload by leveraging
some off-the-shelf algorithms like K-means clustering [15], while our K-means clus-
tering algorithm is performed on application workload. Zhang et al. [20] characterized
the task usage shapes in Google clusters. All of the three works are based on a rather
small set of 4-day Google trace that was only used internally by Google Inc.

123

Characterizing and modeling cloud applications/jobs 157

Since Google publicly released a large set of 1-month trace [3,4], more and more
researchers have been extensively studying the characteristics of Google cloud envi-
ronment in different facets. Liu and Cho [21] roughly characterized such a trace,
including machine population, statistics of daily machine events and job/task events.
In comparison to their work, our previous work [5] characterized Google workload and
hostload more comprehensively, including various statistical analysis (such as mass-
count disparity and quantile–quantile plot) about job priority, job/task length, job sub-
mission frequency, hostload fluctuation, peak resource usage, job queuing state, etc.
We also provided a clear comparison between Google workload and Grid workload.
As compared to our previous work, Reiss et al. [12] addressed some new insights about
Google trace. For example, they carefully characterized resource requests vs. resource
usage, the relative distribution and discussed challenges in Google task scheduling.

In addition to the research based on Google trace, there are some characterization
works based on other cloud systems. Ganapathi et al. [22] adopted a so-called ker-
nel canonical correlation analysis (KCCA) method to model and predict the workload
based on hadoop distributed file system (HDFS) [23] and map-reduce mechanism [11].
Li et al. [24] proposed a CloudProphet framework to predict the application perfor-
mance, in terms of the non-production trace that is generated from a self-implemented
prototype. Jackson et al. [25] provided a performance analysis of HPC applications
on the Amazon Web Service platform. They show that network communication is a
serious bottleneck for HPC applications when running on widely distributed sites over
WAN.

In comparison to all of the research described above, we focus on the static/dynamic
features and resource utilization of Google applications. We address at least two new
insights about Google applications. On one hand, we characterize the features of
application workload/events in terms of various application types and via K-means
clustering with optimized number of sets. On the other hand, we comprehensively
analyze the correlation between application properties and running features, which
can serve as a foundational support to a more precise simulation of cloud benchmark
in the long run. Finally, we build a simulation model based on the characterized Google
application features, and confirm its accuracy by comparing the statistics between its
emulated tasks to the ones in the original trace. Our work significantly advances beyond
the simple workload characterization like [5,12,18–21].

To summarize, we compare all of related works to our work in Table 3.

7 Conclusion and future work

In this paper, we glean some new insights about Google application properties and
features based on a 1-month Google trace with about 40k applications, and also build a
five-layer model for simulating Google jobs/tasks. Some key findings are listed below.

– The number of jobs/events per application follows a typical Pareto principle (joint
ratio ≈ 10 %) and the resource utilization per application follows an extremely
typical Pareto principle (joint ratio 2 %).

– All applications can be split into four types based on whether they allow batch-task
execution mode. There exists a certain correlation between task events and the four

123

158 S. Di et al.

Table 3 Summarization of related works

Related work Focus and features Limitation

Sharma et al. [18] Task placement constraints and machine properties Only 4-day trace

Mishra et al. [19] Classification of Google task workload Only 4-day trace

Zhang et al. [20] Characterization of Google task usage shapes Only 4-day trace

Liu and Cho [21] Population, task/macihne events, etc. A rough analysis

Our previous work [5] Compare Google trace and Grid trace Miss app features

Reiss et al. [12] Comprehensive study of Google trace Miss app features

Ganapathi et al. [22] Model and predict workload based on HDFS Miss app features

Li et al. [24] Prediction of app performance Non-real trace

Jackson et al. [25] HPC performance analysis over AWS Miss app features

application types. For example, about 81.3 % of fail task events belong to batch-task
applications.

– We also design a K-means clustering algorithm with optimized number of sets to
classify applications based on task events and resource utilization (or workload).
We observe a Pareto-similar distribution on the number of applications per set.

– There exists a partial correlation between Google application properties and run-
ning features. The running states of tasks with low priorities are determined by
priority levels. The normal event ratio increases with increasing priorities for low-
priority tasks, while that exhibits a rather uniform distribution especially for low-
scheduling-class tasks.

– The simulation model built with the above characterized application features can
effectively emulate Google jobs/tasks and relative events in accordance with the
original Google trace. 95+ % of tasks’ simulation errors are <20 %, confirming a
high accuracy of our simulation model.

We believe our work is fairly significant especially to the in-depth understanding
of the characteristics and behaviors of cloud applications. In the future, we plan to
further complete our simulation model by adding various scheduling policies, further
simplifying the use of our model for users.

Acknowledgments We thank Google Inc, in particular Charles Reiss and John Wilkes, for making their
invaluable trace data available. This work is supported by ANR project Clouds@home (ANR-09-JCJC-
0056-01), also in part by the Advanced Scientific Computing Research Program, Office of Science, U.S.
Department of Energy, under Contract DE-AC02-06CH11357, and by the INRIA-Illinois Joint Laboratory
for Petascale Computing. This paper has been created by UChicago Argonne, LLC, Operator of Argonne
National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is
operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others
acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce,
prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or
on behalf of the Government.

References

1. Armbrust M, Fox A, Griffith R, Joseph A et al (2009), Above the clouds: a Berkeley view of cloud
computing. EECS, University of California, Berkeley, Technical Report. UCB/EECS-2009-28

123

Characterizing and modeling cloud applications/jobs 159

2. Vaquero L, Rodero-Merino L, Caceres J, Lindner M (2009) A break in the clouds: towards a cloud
definition. SIGCOMM Comput Commun Rev 39(1):50–55

3. Wilkes J (2011) More Google cluster data. Google research blog. http://googleresearch.blogspot.com/
2011/11/more-google-cluster-data.html

4. Reiss C, Wilkes J, Hellerstein J (2012) Google cluster-usage traces: format + schema. Google Inc.,
Mountain View, USA, Technical Report

5. Di S, Kondo D, Cirne W (2012) Characterization and comparison of cloud versus grid workloads.
IEEE international conference on cluster computing (cluster’12), pp 230–238

6. Meng X, Isci C, Kephart J, Zhang L, Bouillet E, Pendarakis D (2010) Efficient resource provisioning in
compute clouds via vm multiplexing. In: Proceedings of the 7th international conference on autonomic
computing (ICAC’10), New York, ACM, pp 11–20

7. Buyya R, Ranjan R, Calheiros R (2010) Intercloud: utility-oriented federation of cloud computing
environments for scaling of application services. In: 10th international conference on algorithms and
architectures for parallel processing (ICA3PP’10), pp 13–31

8. Stillwell M, Vivien F, Casanova H (2012) Virtual machine resource allocation for service hosting on
heterogeneous distributed platforms. In: Proceedings of IEEE 26th international conference on parallel
distributed processing symposium (IPDPS’12), pp 786–797

9. Calheiros R, Ranjan R, Beloglazov A, De-Rose C, Buyya R (2011) Cloudsim: a toolkit for modeling
and simulation of cloud computing environments and evaluation of resource provisioning algorithms.
Softw Pract Exp 41(1):23–50

10. Di S, Wang C-L (2013) Dynamic optimization of multi-attribute resource allocation in self-organizing
clouds. IEEE Trans Parallel Distrib Syst (TPDS) 24(3):464–478

11. Dean J, Ghemawat S (2004) MapReduce: Simplified data processing on large clusters. In: 5th USENIX
symposium on operating systems design and implementation (OSDI’04), pp 137–150

12. Reiss C, Tumanov A, Ganger G, Katz R, Kozuch M (2012) Towards understanding heterogeneous
clouds at scale: Google trace analysis. Intel science and technology center for cloud computing.
Carnegie Mellon University, Pittsburgh, Technical Report ISTC-CC-TR-12-101

13. Feitelson D (2011) Workload modeling for computer systems performance evaluation. http://www.cs.
huji.ac.il/~feit/wlmod/

14. Koch R (1997) The 80/20 principle: the secret of achieving more with less. Nicholas Brealey
15. MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In:

Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, pp 281–297
16. Okabe A, Boots B, Sugihara K, Chiu S (2000) Spatial tessellations: concepts and applications of

voronoi diagrams, 2nd edn. Series in probability and statistics. Wiley, England
17. Ross S (2010) Introduction to probability models, 10th edn. Academic Press, Burlington
18. Sharma B, Chudnovsky V, Hellerstein J, Rifaat R, Das C (2011) Modeling and synthesizing task

placement constraints in google compute clusters. In: Proceedings of the 2nd ACM symposium on
cloud computing (SOCC’11), New York, ACM, pp 3:1–3:14

19. Mishra A, Hellerstein J, Cirne W, Das C-R (2010) Towards characterizing cloud backend workloads:
insights from Google compute clusters. SIGMETRICS Perform Eval Rev 37(4):34–41

20. Zhang Q, Hellerstein J.L., Boutaba R (2011) Characterizing task usage shapes in google compute
clusters. Large scale distributed systems and middleware, workshop (LADIS’11)

21. Liu Z, Cho S (2012) Characterizing machines and workloads on a Google cluster. In: 8th international
workshop on scheduling and resource management for parallel and distributed systems (SRMPDS’12),
pp 397–403

22. Ganapathi A, Chen Y, Fox A, Katz RH, Patterson DA (2010) Statistics-driven workload modeling for
the cloud. ICDE workshops’10, pp 87–92

23. Shvachko K, Kuang H, Radia S, and Chansler R (2010) The hadoop distributed file system. In: IEEE
26th symposium on mass storage systems and technologies (MSST’10), pp 1–10

24. Li A, Zong X, Kandula S, Yang X, Zhang M (2011) Cloudprophet: Towards application performance
prediction in cloud. ACM SIGCOMM student poster, pp 426–427

25. Jackson K.R., Ramakrishnan L, Muriki K at al (2010) Performance analysis of high performance
computing applications on the amazon web services cloud. In: Proceedings of the IEEE 2nd inter-
national conference on cloud computing technology and science (CloudCom’10). Washington, DC,
IEEE Computer Society, pp 159–168

123

http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://www.cs.huji.ac.il/~feit/wlmod/
http://www.cs.huji.ac.il/~feit/wlmod/

160 S. Di et al.

26. Hamerly G, Elkan C (2002) Alternatives to the k-means algorithm that find better clusterings. In: Pro-
ceedings of the 17th international conference on Information and knowledge management (CIKM’02),
New York, ACM, pp 600–607

123

	Characterizing and modeling cloud applications/jobs on a Google data center
	Abstract
	1 Introduction
	2 System overview
	3 Characterization of Google application properties
	3.1 Mass-count disparity of task events and resource usage
	3.2 Task event distribution based on application types
	3.3 Optimized clustering of Google applications
	3.3.1 Task event-based application clustering
	3.3.2 Workload based application clustering

	4 Correlation of Google application properties and running features
	5 Simulation model based on Google application features
	5.1 Statistical simulation model of job/task emulation on a Google data center
	5.2 Evaluation of simulation model

	6 Related work
	7 Conclusion and future work
	Acknowledgments
	References

