
J Supercomput (2014) 69:547–560
DOI 10.1007/s11227-014-1092-2

Lightweight dynamic partitioning for last-level cache
of multicore processor on real system

Ludan Zhang · Yi Liu · Rui Wang · Depei Qian

Published online: 20 January 2014
© Springer Science+Business Media New York 2014

Abstract With rapid development of multi/many-core processors, contention in
shared cache becomes more and more serious that restricts performance improvement
of parallel programs. Recent researches have employed page coloring mechanism to
realize cache partitioning on real system and to reduce contentions in shared cache.
However, page coloring-based cache partitioning has some side effects, one is page col-
oring restricts memory space that an application can allocate, from which may lead to
memory pressure, another is changing cache partition dynamically needs massive page
copying which will incur large overhead. To make page coloring-based cache partition
more practical, this paper proposes a malloc allocator-based dynamic cache partition-
ing mechanism with page coloring. Memory allocated by our malloc allocator can be
dynamically partitioned among different applications according to partitioning policy.
Only coloring the dynamically allocated pages can remit memory pressure and reduce
page copying overhead led by re-coloring compared to all-page coloring. To further
alleviate the overhead, we introduce minimum distance page copying strategy and lazy
flush strategy. We conduct experiments on real system to evaluate these strategies and
results show that they work well for reducing cache misses and re-coloring overhead.

Keywords Multicore · Cache partition · Dynamic re-coloring · Page copying ·
Malloc allocator

1 Introduction

Multicore processors have become prevalent and hit the market at all fronts. The trend
of integrating many-cores on a single chip can make performance more sensitive to

L. Zhang · Y. Liu (B) · R. Wang · D. Qian
Department of Computer Science and Engineering, Beihang University, Beijing, China
e-mail: yi.liu@jsi.buaa.edu.cn

123



548 L. Zhang et al.

contention for shared resources on multicore processors, especially at shared cache
level. Shared cache contention will significantly exacerbate the existing memory wall
and restrict the performance benefit of multicore processors.

Cache partitioning is a solution to reduce cache contention among co-running
threads/processes. However, without particular hardware support, most research works
conducted cache partitioning by simulation which is lack of accuracy. While in most
modern architectures, caches are physically indexed and way associative, recent efforts
have implemented software cache partitioning with page coloring [1,2], making it pos-
sible to partition cache on most commercial computers. However, page coloring-based
cache partitioning has some inevitable side effects on performance of systems [3]. One
is that page coloring restricts memory space that an application can allocate. An appli-
cation may suffer from memory pressure when pages of its assigned color ran out,
while pages of colors assigned to other applications are abundant. Another serious
problem is the overhead caused by dynamic re-coloring. When dynamically changing
cache partition, cache space assigned to the application is adjusted through changing
its color-set and copying data from old pages to new pages whose color is within
the new color set. However, frequent re-coloring may cause more overhead than the
benefit of cache partitioning.

To make page coloring-based cache partitioning more practical, we only color
dynamically allocated pages. As accessing data in pages allocated at run time is one of
the main cause of shared cache contention, only coloring dynamically allocated pages
can reduce cache contentions, while at the same time, reduce the cost of copying pages
for dynamic re-coloring compared to all-page coloring.

Thus, this paper implements dynamic cache partitioning combined with a cache
and application-aware malloc allocator. The allocator allocates pages according to
the color-set assigned to the application. Our partition policy assures that different
applications allocate pages in different color-set, hence their accessed region in shared
cache is partitioned. Cache partition can be adaptively adjusted by changing the color
of pages allocated by the malloc allocator. To alleviate the overhead of dynamic re-
coloring, this paper proposes a minimum distance page copying strategy to reduce
the number of page copying and introduces page copying delay strategy to avoid
unnecessary page copying.

The contributions of this paper include: (1) in order to reduce the side effects of
page coloring, we implement cache partition through a cache and application-aware
memory allocator which only color dynamically allocated pages; (2) our minimum
distance page copying strategy and lazy flush strategy can reduce dynamic re-coloring
overhead further, making page coloring-based cache partitioning more practical. (3)
We propose a type recognition-based cache partitioning policy and introduce the type
recognition approach in this paper. (4) Our approach needs no changes on either source
code of the application or the OS kernel.

Experiments show that our approach can effectively improve performance of co-
running applications through cache partitioning for as high as 14.28 %; We can draw the
conclusion that only coloring the dynamically allocated pages can reach the purpose
of reducing cache contention miss. Overhead caused by dynamic re-coloring can be
reduced significantly through our minimum distance page copying strategy(more than
55 % on average) when partitioning frequency is high. The minimum distance page

123



Lightweight dynamic partitioning for last-level cache 549

copying policy is more beneficial to application with larger dataset and shorter data
reuse distance.

The rest of this paper is organized as follows: Section 2 introduces related work.
Section 3 details the malloc allocator-based dynamic cache partitioning mechanism
and the strategy to reduce re-coloring overhead. These are evaluated in Sect. 4 and we
conclude the paper in Sect. 5.

2 Related work

2.1 Page coloring

In physically indexed and set-associative caches, physical addresses of data are used
to map data into cache sets. The bits for hashing data into cache are represented by
the color of the page.

Page coloring can be used to control the mapping from virtual memory to processor
cache. By controlling color-set assigned to an application, we can control the exact
cache region the application can access.

Page coloring technology was first used to ensure the stability of the program’s
performance, [4–6] used page coloring to enhance the performance of a single program.
In recent years, page coloring has been applied to cache partitioning [1,2].

What relates to page coloring is dynamic re-coloring. Dynamic re-coloring can
change the data placement of the process, making cache partition adjusted at runtime.
However, this operation involves massive page copying which incurs high overhead.

2.2 Software cache partitioning

Software cache partitioning uses page coloring technology to reduce contentions in
shared cache. Zhang et al. [1] noted that although the overhead caused by dynamic re-
coloring cannot be ignored, software cache partitioning makes it possible to study the
cache partitioning strategy on actual machine, which is more accurate than simulation.
But they excluded the re-coloring overhead for the purpose of evaluating hardware-
based scheme. ULCC [7] is a software library, programmer can use functions provided
by ULCC to manage and optimize the use of shared cache in multicore. However using
ULCC to manage shared cache requires modifications to source code of the application
which set high requirements for the programmer and the management is static. Soft-
OLP [8] is an object-level cache partitioning tool, which uses binary instrumentation
techniques to calculate the reuse distance of the object which conduct their partitioning
policy. While binary instrumentation makes the program slowdown significantly, Soft-
OLP still does not have generality. Ccontrol [9] provides an open-source software and
one can use it to restrict the cache region that an application can access, but it is a static
cache partition software without any partitioning strategy [3] is the closest work related
to our approach, to alleviate the coloring-induced adverse effects in practice, they pro-
posed a hot-page coloring approach only enforcing coloring on most frequent visited
pages. They determine the most frequent accessed pages by traversing the page table.
However, this requires modifications to the OS kernel and traversing page table is also a
big time consumer. They focused on how to determine the heat of each page and reduce

123



550 L. Zhang et al.

the overhead of traversing page table. Our work also employed partial page coloring.
While [3] only color K hottest color, they need to compute and record access frequency
of each page, which incurred additional overhead. Their approach may encounter error
prediction sometimes which will make page re-coloring meaningless. To avoid such
additional overhead, we only color the dynamically allocated pages which are also
frequently accessed. We focused on how to make re-coloring overhead minimal.

3 Malloc allocator-based dynamic cache partitioning mechanism

Our malloc allocator-based dynamic cache partitioning mechanism includes two
stages. First, when an application asks for pages at runtime, our malloc allocator
will allocate pages according to the color-set assigned to the application. Our partition
policy assures that different applications allocate pages in different color-set, hence
their accessed region in shared cache is partitioned. When the co-running applica-
tions change, the color-set of the running application will be adjusted adaptively, then
copying data from old pages to new pages whose color is in the new color-set. While
physical pages that containing the data in heap memory change, the cache region that
those data mapped to is also changed.

The overall design of our mechanism include four components: loadable module,
dynamic malloc allocator, page copying component and policy maker. We manage
pages according to their colors with a dynamically loadable module, which provides
interface to other components to manage and color pages of a given process. An
environment variable, LD_PRELOAD, is used to substitute application’s dynamic
link library so that its requests for memory at runtime is satisfied by our malloc
allocator. Page copying component is activated when changing cache partition and
it reduces overhead caused by page re-coloring. The policy maker makes partition-
ing decision adaptive and provides information needed by malloc allocator and page
copying component.

We will introduce two strategy here, one is type recognition-based partition policy
which decides color-set assigned to each co-running application; the other is the strat-
egy to reduce re-coloring overhead of changing cache partition. This section details the
type recognition-based partition policy and re-coloring overhead reducing strategy.

3.1 Type recognition-based partition policy

3.1.1 Partition policy

Our adaptive cache partition policy adjusts partition dynamically according to the type
and miss-ratio curve of co-running applications. The applications are classified into
four types according to their cache access patterns. Applications of type A are very
sensitive to the last-level cache size. Applications of type B are little sensitive to last-
level cache size. Applications of type C and D are last-level cache size inelastic, while
cache miss of type C remains high and that of type D keeps low. Applications from
type A to type D have priorities from the highest to the lowest. We categorize appli-
cations into four types because our cache partition policy favors cache size demand

123



Lightweight dynamic partitioning for last-level cache 551

for applications with higher priority. We define cache size demand for an application
as the minimum cache size to guarantee its performance. Our policy calculates the
cache size demand according to miss-ratio curve. It is the point from where the miss-
ratio changes with cache size gently, before the point miss-ratio drops with cache size
becoming larger. To improve overall system performance when two applications of
different types co-running sharing last-level cache, the cache size demand of appli-
cation with higher priority is satisfied first and assign more cache size to it. When
applications with the same type run simultaneously, cache size are increased for each
application according to the proportion of their cache size demand.

A type recognition approach is used to identify the type of an application, which is
discussed in the following.

3.1.2 Type recognition approach

(a) Pattern normalization: to identify the type of an application, we measure last-level
cache misses under various partition sizes and generate its miss-ratio curve. To
normalize the sampled data, a coarse granularity coordinate is introduced that
treats every 16 colors as one unit on the X axis, and every five miss-ratio as one
unit on the Y axis. The normalized feature is extracted via the following process:
Step 1 First, calculate the coarse point in the coarse coordinate. As our system

has 64 colors, we can reduce point on miss-ratio curve to four points—the
value of x coordinate is from 1 to 4. The value of y coordinate is the average
value the miss-ratio curve passed by in the interval which is represented
by coarse x coordinate.

Step 2 Second, calculate the coarse slope value between each consecutive coarse
point. The slope list has three value, because that there are four coarse
points. Coarse slope value is defined by Eq. (1), if two consecutive points
in the coarse coordinate are (x1,y1) and (x2,y2), respectively.

slope = y2 − y1

x2 − x1
(1)

Step 3 The normalized pattern is defined as a bit string with 3 bit according to
slope value list. If the slope value is non-zero, then its corresponding bit
is 1, otherwise is 0. Non-zero means miss-ratio decreases sharply with
cache size becoming larger and zero means miss-ratio is not sensitive to
the cache size in the interval.

As Fig. 1 shows, the benchmark sphinx has four coarse points (1,13), (2,12), (3,10)
and (4,7). The corresponding coarse slope value between each two consecutive
points is −1, −2, −3. Thus, the pattern of sphinx is ”111”. We normalize the
pattern of the application with bit string, making it possible to recognize the
pattern of an application with little normalized point and those points contain
enough information.

(b) Pattern recognition: if the normalized pattern has three bits as ”1” , it is recognized
as type A. Similarly, an application is recognized as type B if its pattern contains

123



552 L. Zhang et al.

Fig. 1 Normalized pattern of sphinx

one or two non-zero bits. For ”000” pattern, if the coarse point on Y axis is bigger
than 1, then the type is C, otherwise the type is D. Through the approach, sphinx
is recognized as type A.

3.2 Re-coloring overhead reducing strategy

Our mechanism changes cache partition adaptively by changing the color-set of
dynamically allocated pages. On one hand, it is implemented by copying data from
old pages to new pages in the new color-set. On the other hand, malloc allocator will
allocate pages according to the new color-set from then on. In order to reduce the
overhead of page copying, it is necessary to minimize the number of page copying
and postpone the copying operation.

3.2.1 Minimum distance page copying policy

After new color-set is calculated, we then assign color in the new color-set to each page.
Continuous allocated pages should have different colors, the reason is that according to
the locality principle, spatially continuous pages are often accessed temporal continu-
ously. If continuous accessed pages have the same color, it is likely to make that cache
region become a hot spot. Also, colors cannot be assigned arbitrarily to keep color bal-
ance. Color balance means pages of an application should scatter cross colors assigned
to it and the page number of each color should be almost the same. First, we calculate
page number of each color in target color-set in a balanced way (almost equal). In
order to reduce the number of page copying, we maintain a current_map array which
records the current color of each page, we will calculate the target_map array which
stores target color of each page after re-coloring. Among the coloring decision with

123



Lightweight dynamic partitioning for last-level cache 553

page number of each target color determined, the distance between target_map array
and current_map array is the minimum. The distance between two arrays refers to the
number of different items between them. The pseudo-code is shown in Algorithm 1.

Input: current_map array , N : number of pages , CN : target color number
Output: target_map array
1: //count[1...CN] records page number of each target color after remapping
2: count[1...CN]=N/CN
3: count[1...N%CN]++
4: for i = 1 to N do
5: c = current_map[i] //c is current color of page i
6: //if the assignable number of color c is greater than 0
7: if count[c] >0 then
8: //maintain the current color of page i as c
9: target_map[i]=c
10: //update the assignable page number of color c
11: count[c]- -
12: else
13: //the assignable number of color c is 0
14: choose a new color nc who has enough assignable page in round-robin way
15: target_map[i]=nc //change color of page i to nc
16: // update the assignable page number of color nc
17: count[nc]- -
18: end if
19: end for

Algorithm 1: Minimum distance page copying

After the target_map[i] is calculated, if it is not equal to current_map[i], the color
of page i needs to be changed. As the distance between target_map and current_map
is the shortest, the number of pages whose color needs to be modified is the minimal
and the number of page copying is also minimized.

3.2.2 Page copying delay strategy

We implement lazy page copying (proposed by Zhang et al. [1]) which delays page
copying to the time of first access. We have strengthened lazy page copying with lazy
flush policy. Delaying page copying to the time of first access, on one hand, can prevent
memory allocation from becoming performance bottleneck. On the other hand, before
the page being accessed, its color may be modified again, delaying copying can avoid
such meaningless page copying. To modify the color of a page from A to B, we first
set the target color of the page as B, then clear the the corresponding entry of the page
in page table entry. After that, any subsequent access to that page will trigger page
fault error, at that time our page fault handler will be invoked and copy data from old
page to new page with color B and free the original page.

The following describes our lazy flush policy.
After the entry of the page in page table is cleared, the original page is still cached

and the old value of page table entry is also cached in TLB. So we need to refresh the
data cache and invalidate TLB. Since the refresh operation often leads to compulsory

123



554 L. Zhang et al.

misses, it should be executed as less as possible. To satisfy this requirement, lazy
flush strategy is proposed: traversing the target_map and current_map array after the
target_map array being calculated, if the value of current_map and target_map is
different from the current page, then clear the entry of the page in page table. Finally,
flushing cache and TLB until all pages are processed.

3.2.3 Analysis of overhead

In principle, the overhead of re-coloring is composed of two parts: the first part is
overhead of copying pages from old colors to new ones; and the second part is overhead
of re-coloring algorithm itself. Compared to traditional solutions, our approach only
coloring dynamically allocated pages instead of all pages, hence the number of page
copying can be reduced significantly. As for the overhead of re-coloring algorithm,
it can be concluded from pseudo-code shown in Algorithm 1 that the complexity
of our minimum distance page copying policy is O(N), where N is the number of
pages.

4 Evaluation

Our approach is evaluated on a dual-core Intel Core 2 platform, of which each core
has a 32KB, 8-way associative private cache, and two cores share a single 6MB, 24-
way set-associative L2 cache. Page size is 4KB and physical pages can be divided
into 6MB/(4K × 24)=64 colors. We use Ubuntu 10.04 with linux kernel 2.6.32.
Execution performance data are collected using perf [10]. 12 benchmark applications
from SPEC CPU2006 [11] are used in our experiment, which can be categorized to
four types according to our type recognition approach, shown in Table 1.

The miss-ratio curve of the 12 benchmarks is shown in Fig. 2.

4.1 Evaluation of performance

To evaluate performance improvement of our adaptive type recognition-based cache
partitioning policy, we select 10 out of the 12 benchmarks and divide them into two
groups as:

group 1 = {mcf, GemsFDTD, libquantum,lbm}

Table 1 Category of
benchmarks

Type Benchmarks

A Bzip2, mcf, sphinx
B H264ref, GemsFDTD, libquantum
C zeusmp, bwaves, lbm, sjeng
D gromacs, namd

123



Lightweight dynamic partitioning for last-level cache 555

Fig. 2 Miss-ratio curve of benchmarks

group 2 ={bzip2, mcf, sphinx, h264ref, GemsFDTD, libquantum, zeusmp, bwaves,
lbm, gromacs}

Each time we select a benchmark from group1 and the other from group2, co-locate
them on neighboring two cores sharing L2 cache. We compare system performance
under two policies:

1. In default sharing, applications freely compete for the shared cache space.
2. In type recognition-based partitioning policy, cache partitioning is conducted by

the type and miss-ratio curve of co-running applications. When an application’s
co-runner changes, the partition size will be re-arranged adaptively.

123



556 L. Zhang et al.

Fig. 3 Normalized performance of co-running applications

Supposing the execution time of each two application is ts1 and ts2 when they run
alone and utilizing the whole cache. When they run together sharing the L2 cache,
their corresponding execution time is tp1 and tp2. Our performance metric is defined
by Eq. (2):

p = 1

2

(
ts1

tp1
+ ts2

tp2

)
(2)

Then the ideal performance is 1.0 if two applications co-run without any interfer-
ence.

Figure 3 shows normalized performance of the system when application on the
X axis co-runs with lbm, mcf, GemsFDTD and libquantum under two policies. The
results demonstrate that our partition policy achieves performance improvement as
high as 14.28 and 3.82 % on average. The average value is not high because that not
all of applications benefit much from cache partitioning due to their work-set and
access pattern. For example, co-running with libquantum, lbm, GemsFDTD and mcf,
sphinx causes high performance degradation to the system compared to running alone,
due to their heavy demand on shared cache which is consistent with the conclusion
of [12]. H264ref and gromacs have little impact on system performance. Hence it
benefits little from cache partitioning when co-running with h264ref and gromacs.
When lbm,libquantum,GemsFDTD and mcf co-runs with bzip, our policy can achieve
10.84 % performance improvement on average and only 4.26 % on average when they
run simultaneously with h264ref. The performance of two sets—mcf vs. Bzip and
mcf vs. sphinx—declined compared to default sharing, it is mainly because that mcf,
bzip and sphinx are applications of type A, which is sensitive to the cache size. When
two applications of type A co-run, cache partitioning cannot meets both requirements
in cache size, due to their high demand in cache size. Although cache partitioning
can reduce contention miss between two applications, it will increase capacity miss at
the same time. The performance degradation due to a substantial increase in capacity
miss negates the benefit gained by the reduction of contention miss. So partition
policy requires trade-off between the capacity miss and contention miss caused by
cache partitioning.

123



Lightweight dynamic partitioning for last-level cache 557

4.2 Evaluation of overhead

To evaluate re-coloring overhead, which depends on frequency of the cache partition-
ing operation, we execute partitioning operation in different time intervals from 600 to
1,000 ms, and run only one application each time to eliminate interferences from other
applications. We change the cache size from 44 to 64 colors for each time interval.
Cache size for 64 colors corresponds to the whole cache area. Size corresponding to
44 colors is larger than most application’s cache size demand except that of type A
on our platform, so the interference of capacity miss can be reduced. We compare the
cost under two policies:

1. In default page copying policy, we re-assign target colors to pages in a round-
robin way, distributing pages to all assigned colors in a balanced way just as other
research did.

2. In minimum distance page copying scheme, we re-assign target colors to pages
according to the calculated target_map array and at the same time keep the color
balanced.

The evaluation uses four benchmarks:lbm(type C, memory intensive), sjeng(type C,
memory intensive), sphinx(type A,compute intensive) and libquantum(type B, com-
pute intensive).

The re-coloring cost metric is defined as re-coloring number per page, that is, total
number of page copying divided by page number of the application. Figure 4 shows
the cost of each application. Our minimum distance policy can reduce re-coloring
cost by more than 55 % on average (71.27 % for lbm, 70.63 % for sjeng, 36.95 %
for sphinx and 40.53 % for libquantum) compared to the default policy. Re-coloring
cost decreases as the partitioning time interval increases gradually. The figure also
shows that re-coloring cost of lbm and sjeng is high, the reason is that work-set of
these two applications is large and data reuse distance is short, while the cost of sphinx
and libquantum is low, because that their data reuse distance is longer and work-set is
smaller relatively.

Figure 5 shows normalized execution time of each application under two different
page copying policies, the execution time is normalized to that of running alone without
interference from other applications and cache partitioning. The figure shows that
execution time decreases when the partitioning time interval becomes longer. The
minimum distance page copying policy achieves better performance than the default
policy. lbm and sjeng are memory intensive and have large dataset, hence frequent
changes of their cache partition trigger massive page copying, making their execution
time increased significantly. The result is consistent with Fig. 4. However, adjusting
cache partition frequently makes execution time increased significantly for sphinx
because that it is type A and sensitive to cache size. Execution time of libquantum is
not affected that much because its re-coloring number per page is low and it is not that
sensitive to cache size. Our policy improved their performance by 16.49 % for lbm,
12.28 % for sjeng, 1.43 % for sphinx and 0.38 % for libquantum compared to the default
one. The minimum page copying policy contributes little performance improvement
for sphinx and libquantum, the reason is that their dataset is small and they are compute-
intensive. We can draw the conclusion that re-coloring cost is related with the reuse

123



558 L. Zhang et al.

Fig. 4 Re-coloring cost under two different page copying policies

distance, size of dataset, memory access pattern of the application and the frequency
of cache partitioning operation. The influence of reuse distance is due to delaying page
copying to the time it is accessed. Thus, the minimum distance page copying policy
is more beneficial to applications with larger dataset and shorter data reuse distance.

5 Conclusion and future work

In order to reduce shared cache competitions in multicore processors and make page
coloring-based cache partition more practical, this paper presents a malloc allocator-
based cache partitioning mechanism with dynamic page coloring, in which memory
allocated by our malloc allocator can be dynamically partitioned among different appli-
cations according to partitioning policy. To further reduce overhead of page copying
led by re-coloring, a minimum distance page copying strategy and lazy flush strategy
are proposed in this paper.

Our approach is implemented on real system. Experiment results show that our
adaptive cache partition policy can improve performance of co-running applications,
and to achieve better performance, trade-off between contention miss and capacity miss
is required for partition policy. The cost of re-coloring can be alleviated significantly

123



Lightweight dynamic partitioning for last-level cache 559

Fig. 5 Normalized execution time of applications under two page copying policies

by our minimum distance page copying policy, which is more beneficial to applications
with larger dataset and shorter data reuse distance.

In future work we will focus on two aspects. First, how to implement malloc
allocator-based cache partitioning mechanism on emerging many-core processors,
in which last-level shared cache tends to be distributed into processing cores, namely
tiles, making access delay different for different region of the cache; second, how to
support real applications such as [13] rather than benchmarks generally consisted of
small programs with small dataset.

Acknowledgments We thank the anonymous reviewers for their insightful comments, which greatly
improved the quality of this manuscript. This work is supported by National Science Foundation of China
under Grant No. 61073011 and 61133004, and National High-Tech Program of China (863 program) under
Grant No. 2012AA01A302.

References

1. Lin J, Lu Q, Zhang X et al (2008) Gaining insights into multicore cache partitioning: bridging the gap
between simulation and real systems. In: Proceedings of the 14th international symposium on high
performance computer architecture (HPCA-14), Salt Lake City

2. Soares L, Tam D, Stumm M (2008) Reducing the harmful effects of last-level cache polluters with an
OS-level, software-only pollute buffer. In 41th international symposium on microarchitecture

123



560 L. Zhang et al.

3. Zhang X, Dwarkadas S, Shen K (2009) Towards practical page coloring-based multicore Cache man-
agement. In: Proceedings of the 4th ACM European conference on computer systems (EuroSys’09),
pp 89–102

4. Taylor G, Davies P, Farmwald M (1990) The TLB sliceCa low-cost high-speed address translation
mechanism. In: Proceedings of the ISCA’90, pp 355–363

5. Kessler RE, Hill MD (1992) Page placement algorithms for large real-indexed caches. ACM Trans
Comput Syst 10(4):338–359

6. Bugnion E, Anderson J, Mowry T et al (1996) Compiler-directed page coloring for multiprocessors.
ACM SIGPLAN Not 31(9):244–255

7. Ding X, Wang K, Zhang X (2011) ULCC: a user-level facility for optimizing shared cache performance
on multicores. In: Proceedings of 16th ACM SIGPLAN annual symposium on principles and practice
of parallel programming (PPoPP 2011), 12–16 Feb 2011

8. Lu Q, Lin J, Zhang X et al (2009) Soft-olp: improving hardware cache performance through software-
controlled object-level partitioning. In: Proceedings of the 18th international conference on parallel
architectures and compilation techniques (PACT), pp 246–257

9. Perarnau S, Tchiboukdjian M, Huard G (2011) Controlling cache utilization of hpc applications. ACM.
In: Proceedings of the international conference on supercomputing, pp 295–304

10. perf. http://perf.wiki.kernel.org/.2011
11. SPEC CPU2006. http://www.spec.org/cpu2006.2006
12. Tang L, Mars J, Soffa ML (2011) Contentiousness vs. sensitivity: improving contention aware runtime

systems on multicore architectures. In: Proceedings of the 1st international workshop on adaptive
self-tuning computing systems for the Exaflop Era, San Jose, June 2011

13. Zhu X, Li K, Salah A (2013) A data parallel strategy for aligning multiple biological sequences on
multi-core computers. Comput Biol Med 43(4):350–361

123

http://perf.wiki.kernel.org/.2011
http://www.spec.org/cpu2006.2006

	Lightweight dynamic partitioning for last-level cache of multicore processor on real system
	Abstract
	1 Introduction
	2 Related work
	2.1 Page coloring
	2.2 Software cache partitioning

	3 Malloc allocator-based dynamic cache partitioning mechanism
	3.1 Type recognition-based partition policy
	3.1.1 Partition policy
	3.1.2 Type recognition approach

	3.2 Re-coloring overhead reducing strategy
	3.2.1 Minimum distance page copying policy
	3.2.2 Page copying delay strategy
	3.2.3 Analysis of overhead


	4 Evaluation
	4.1 Evaluation of performance
	4.2 Evaluation of overhead

	5 Conclusion and future work
	Acknowledgments
	References


