
J Supercomput (2014) 68:978–995
DOI 10.1007/s11227-013-1076-7

A lightweight active service migration framework for
computational offloading in mobile cloud computing

Muhammad Shiraz · Abdullah Gani

Published online: 14 January 2014
© Springer Science+Business Media New York 2014

Abstract Cloud computing enables access to the widespread services and resources
in cloud datacenters for mitigating resource limitations in low-potential client devices.
Computational cloud is an attractive platform for computational offloading due to the
attributes of scalability and availability of resources. Therefore, mobile cloud com-
puting (MCC) leverages the application processing services of computational clouds
for enabling computational-intensive and ubiquitous mobile applications on smart
mobile devices (SMDs). Computational offloading frameworks focus on offloading
intensive mobile applications at different granularity levels which involve resource-
intensive mechanism of application profiling and partitioning at runtime. As a result,
the energy consumption cost (ECC) and turnaround time of the application is increased.
This paper proposes an active service migration (ASM) framework for computational
offloading to cloud datacenters, which employs lightweight procedure for the deploy-
ment of runtime distributed platform. The proposed framework employs coarse gran-
ularity level and simple developmental and deployment procedures for computational
offloading in MCC. ASM is evaluated by benchmarking prototype application on
the Android devices in the real MCC environment. It is found that the turnaround
time of the application reduces up to 45 % and ECC of the application reduces up
to 33 % in ASM-based computational offloading as compared to traditional offload-
ing techniques which shows the lightweight nature of the proposed framework for
computational offloading.

M. Shiraz (B) · A. Gani
Mobile Cloud Computing Research Lab, Faculty of Computer Science and Information Technology,
University of Malaya, Kuala Lumpur, Malaysia
e-mail: muh_shiraz@yahoo.com; muh_shiraz@siswa.um.edu.my

A. Gani
e-mail: abdullah@um.edu.my

123

A lightweight active service migration framework 979

Keywords Mobile cloud computing · Mobile application · Distributed system ·
Application offloading · Lightweight

1 Introduction

The latest developments in mobile computing technology have changed user pref-
erences for computing. Smartphones have replaced the traditional computing and
communication devices as an all-in-one device [1]. It is predicated that by 2015 more
than 240 million business customers will be leveraging cloud computing services
through mobile devices which will drive revenues of $5.2 billion [2]. Therefore, smart
mobile devices (SMDs) are the future computing devices with high user expectations
for accessing computational-intensive applications. For example, natural language
translators [3,4], speech recognizers [5], optical character recognizers, image proces-
sors [6,7], online computational-intensive games, video processing [8] and wearable
devices for handicapped people [9]. Such applications require high computing power,
memory, and battery power on resource-constrained SMDs [10]. However, SMDs
are still low-potential computing devices having limitations in storage capacity, CPU
potential and battery lifetime. Therefore, mobile cloud computing (MCC) provides
software-level solutions for mitigating resource constraints in SMDs [11].

Cloud computing implements different service provision models for the provision
of cloud resources and services to SMDs. For example, a number of online file storage
services are available on cloud server for providing off-device storage services; such
as, Amazon S3 [12], Google Docs [13], MobileMe [14], and DropBox [15]. Compu-
tational clouds augment the computing potentials of client devices including PDAs
and smartphones. MCC employs the services and resources of cloud datacenters for
enabling off-device storage services [12–15] and accessing the application process-
ing services of cloud server nodes [16,17]. MCC employs a number of augmentation
procedures for SMDs, such as screen augmentation, energy augmentation, storage
augmentation and application processing augmentation of SMD [11]. From one per-
spective, the processing potential of SMDs is increasing rapidly. For instance, Galaxy
S3 (Samsung Exynos 4412, four cores, ARMv7 Cortex A9) and Galaxy S4 (two mod-
els: Samsung Exynos 5 Octa 5410 8 cores, ARMv7 Cortex A15; Quad-core Qualcomm
Snapdragon 600, CPU Krait 300). However, powerful processing hardware is energy
starving. Therefore, MCC employs computational offloading for enabling complicated
and ubiquitous mobile applications. Examples of the recent applications which employ
computational offloading include Apple’s iCloud and Amazon’s Silk. Apple’s iCloud
[16] provides on-demand access automatically to applications, such as music, photos,
apps, calendars, documents. Amazon EC2 and Microsoft Azure host the application
store of Apple’s iCloud. Similarly, Silk application [17] is a cloud-accelerated “split
browser” which resides on both Kindle Fire and EC2. For each web page request,
Silk dynamically determines the distribution of computational load between the local
SMD and remote Amazon EC2. Silk considers the objective functions of network
conditions, page complexity and the location of any cached content. The traditional
frameworks for computational offloading [18–20] employ computational offloading
at different granularity levels which require additional support from application devel-

123

980 M. Shiraz, A. Gani

opers at design time. Application developers classify the components of the mobile
applications as local or remote. Similarly, the loosely coupled and intensive compo-
nents of the mobile application are tagged as remote, whereas the tightly coupled or
slightly intensive components are labeled as local. Such models implement applica-
tion profiling mechanism to evaluate the feasibility of outsourcing the remotely tagged
components of mobile application [21–23]. Therefore, the deployment of distributed
application processing platform is time consuming and resource intensive.

We propose a lightweight ASM framework for the distributed processing of inten-
sive mobile application in MCC. ASM framework requires a simple procedure for
application development and employs a lightweight mechanism for computational
offloading. The model is implemented for outsourcing the running instance(s) of
mobile application at service-level granularity to remote server nodes. We evaluate
the proposed framework by benchmarking prototype application in the real MCC
environment. The significance of proposed framework is validated by comparing the
performance of the proposed framework with traditional computational offloading
frameworks which employ finer granularity for computational offloading [18–20,24].
Analysis of the results indicates that computational offloading reduces resource uti-
lization (CPU, RAM, battery) on mobile device. Furthermore, by employing ASM
framework for computational offloading the energy consumption cost and turnaround
time of the application is reduced considerably. For instance, the turnaround time of
the application reduces up to 45 % and energy consumption cost (ECC) of the appli-
cation reduces up to 33 % in ASM-based computational offloading as compared to
traditional offloading techniques which shows the lightweight nature of the proposed
framework for computational offloading. The paper is structured as follows.

Section 2 discusses the state-of-the-art for computational offloading in MCC. Sec-
tion 3 explains the architecture, working and features of the proposed framework.
Section 4 explains the methodology used for the evaluation of proposed framework.
Section 5 discusses results and empirical findings. Finally, Sect. 6 concludes the paper
and proposes future directives.

2 Related work

Computational offloading is endeavored as software-level solution for mitigating low
computing potentials of SMDs [25]. In the recent years, a number of cloud-based com-
putational offloading frameworks are proposed which are implemented by outsourcing
mobile application at different granularity levels [18–20,24]. The following section
reviews recent approaches for computational offloading. CloudClone [26] seamlessly
offloads the complete image of the running application to the nearby computer. The
framework exploits unique augmentations strategies for different types of applica-
tions. VM-based Cloudlets architecture [27] uses the procedure of copying the entire
processing environment of the mobile device into remote cloudlet. A cloudlet is a
trustable remote computer which provides the services of outsourced processing of
application to SMD. A VM-based CloneCloud approach [19] extends the concept of
CloudClone [26] to computational clouds. The framework implements thread-level
granularity for the partitioning of the mobile application at runtime. The framework

123

A lightweight active service migration framework 981

is based on copying the complete application processing environment of SMD to the
cloud server node. Mirror server [28] augments smartphones by configuring mirror
server in the telecommunication server provider platform. The framework augments
smartphones in three distinct ways: security (file scanning), storage (file caching) and
computation offloading. Mirror server maintains VM template for each of the different
types of mobile devices platform. The VM template for each mobile device is kept
with default configurations and a new VM instance is created for offloaded compo-
nent of the mobile application. Offloading the entire image of the running application
involves the overhead of VM cloning, VM instance migration and VM configuration
on the remote server node [22].

A cloud-based framework [29] employs application-level process migration for
live component migration. Cloud server creates fresh VM instance on demand, and
the delegated application resume processing on the newly created VM instance on
cloud server node. In [30], a middleware framework is proposed for sharing the appli-
cation processing dynamically between cloud server and mobile client. The framework
implements both static partitioning and dynamic partitioning strategies. MAUI [18]
and Think Air [24] exploit dynamic application profiling and partition approach for
partition offloading. The framework follows method state migration approach as an
alternative of method code migration. Elastic application model [26] is a middleware
framework for elastic mobile applications. The framework implements dynamic dis-
tributed processing platform at application layer. Recent frameworks for computing
offloading [18,20,24] employ method-level granularity for computational offloading.
Such frameworks require to explicitly annotate each method of the application either
locally or remotely. Locally annotated methods are executed on the mobile device
locally, whereas remotely tagged methods are considered for remote processing on
the cloud server node. The operating procedure for such frameworks involves applica-
tion profiling for determining the feasibility of computational task to the cloud server
nodes.

Computational offloading involves blocking and non-blocking scenarios of the
mobile application during cloud-based processing of intensive partitions of the appli-
cation. In the blocking scenario, the execution of mobile application is halted until
the successful execution of the offloaded task to cloud server node. Once the result
of remote execution is returned, the suspended application on local mobile device
is resumed and the running states of the mobile application are synchronized. For
instance, CloneCloud [26] follows blocking mechanism for implementing thread-level
granularity for computational offloading, MAUI [18] and Think Air [24] implements
method-level granularity by using blocking mechanism. Similarly, Odessa [31] also
implements blocking mechanism for cloud-based processing of intensive tasks of the
mobile application. In the non-blocking scenarios, the application on mobile device
remains in the running state and the offloaded tasks of the application are executed in
parallel. For instance, Orleans [32] and RESTful frameworks employ non-blocking
scenario for computational offloading to cloud server node. Therefore, a rigorous
synchronization mechanism is required for maintaining the consistency of mobile
application in cloud-based application processing [33].

The drawbacks of current computational offloading frameworks [18–20,24,31,32]
include refined granularity level for application partitioning, dynamic runtime appli-

123

982 M. Shiraz, A. Gani

cation profiling and partitioning, developers support for annotating the components
of mobile application as local and remote [23]. Refined granularity-level applica-
tion partitioning and computational offloading involves the overhead of maintaining
consistency of data states between mobile application running on mobile device and
remote server node. The low-level granularity includes object [34], class [35–37],
thread [26], method [18] and task [38]. The application profiling mechanism uses the
probability measures and predicative techniques for resource allocation to the com-
ponents of mobile application which involves the factor of inaccuracy [18,24]. The
manual annotation of the components of mobile application as local and remote is time
consuming. Further, the mechanism of runtime application profiling and partitioning
is time consuming, resource intensive and energy starving [21].

3 Proposed framework

We propose a lightweight ASM framework for offloading running instances of the
intensive components of mobile application to cloud server node. Refined granularity-
level application partitioning and computational offloading [18–20,24,26,34–38]
involves the overhead of profiling at finer level granularity, resource-intensive moni-
toring mechanism for the management of distributed application execution platform
and energy starving synchronization mechanism for sustaining consistency of the dis-
tributed application execution platform. As a result, the energy consumption cost and
turnaround time of the application is increased. Furthermore, partitioning and offload-
ing decision is made on the basis of the resource utilization history of the remotely
annotated component of the mobile application [18] and prediction of future demands
for computational resources on mobile device [24]. ASM framework reduces the addi-
tional cost of runtime computational offloading by employing coarse-level granularity
which reduces the overhead of dynamic application profiling and partitioning. Coarse-
level granularity is achieved by employing service-level granularity for offloading the
component of mobile application. The running service component of the mobile appli-
cation is offloaded which involves minimum resource utilization in the establishment
and management of distributed application processing platform. ASM framework fol-
lows two distinct operating procedures for the execution of mobile application. In the
primary operating procedure, mobile application is capable of executing on mobile
device; whereas, in the secondary operating procedure, mobile application is enabled
to switch to the online mode, wherein the intensive service components of the mobile
application are offloaded to the cloud server node. Mobile application is enabled to
dynamically switch between online and offline mode of the application all through
the execution period of the mobile application. Figure 1 shows the architecture of the
ASM framework.

ASM framework is composed of configuration manager, preferences manager and
synchronizer components. The following section discusses the components of ASM
framework.

Configuration manager Configuration manager is responsible for the configuration
and operation of the mobile application in two distinct operating modes: offline mode
and online mode. In the offline mode, the components of the mobile application are

123

A lightweight active service migration framework 983

Fig. 1 Architecture of active service migration framework

executed on SMD. The options of offloading application services are enabled in the
online mode, wherein the components of mobile application can be offloaded to the
remote server node. The configuration manager activates the preferences manager
component to save the data states of the running mobile application. Configuration
manager on the cloud server node configures the delegated service application on the
remote server node. It resumes the running state of the delegated service component of
the application by accessing the preferences files from the persistent storage. The con-
figuration manager arbitrates with the remote server node for offloading the selected
running service of the mobile application.

Preferences manager Mobile applications are associated with preferences manager
which provides access to the data files of the application (preferences file). Mobile
application uses the preferences file to write and read the data states during the acti-
vation and de-activation of mobile application. In active service offloading process,
the preferences manager component is activated to save the data states of the running
service. Preferences manager saves the data states to the persistent medium. The role
of preferences manager is to provide access to the preferences of the mobile applica-
tion. The preferences manager components copies the preferences file to the external
storage device which is directly accessible for the synchronizer component. The pref-
erences manager component of the server node is responsible for providing access to
the data files which are downloaded with the delegated service application. Similarly,
whenever the service application completes execution on the remote server node, pref-
erences manager associated the virtual device instance on the cloud server node saves
the final results to the preferences file. Synchronization manager component accesses
the preferences for the exchange of data files between SMD and remote server node.

Synchronizer The synchronizer component of the framework is responsible for the
synchronization of transmission between SMD and remote server node. Whenever
the states of the application are saved on the persisted medium, the synchronizer
component is activated to offload the service application to remote server node. The
configuration manager component searches for the configuration file of the service
application on mobile device. Whenever, the configuration of the service application
is validated, the synchronizer component is activated to outsource the configuration

123

984 M. Shiraz, A. Gani

files to remote server node. Synchronizer component of the remote server node is
activated to receive the delegated service application. Whenever, the configuration file
of the delegated service application is received successfully on the remote server node,
the configuration manager component of the server node is activated to configure the
delegated service application and resume the running states from the preferences file.

The synchronizer component arbitrates with the cloud datacenter for the selection of
remote server node. A fresh virtual device instance is created on the server node for the
execution of delegated service application. At that instance, the configuration manager
on the mobile device saves the running states of the service application by activating
the preferences manager and terminates the selected service to release the systems
resource occupied by the selected intensive service. The synchronizer component
offloads the service application to remote service node. The synchronizer component
is also responsible for the uploading and downloading of preferences files between
SMD and remote server node. The communication between application running on the
SMD and remote server takes place in the form of XML file. The preferences manager
component of the framework is responsible for the migration of XML file. We develop
our own protocol for the migration of preferences file. However, preferences manger
component of ASM conceals such details and provides a transparent environment for
the distributed processing of mobile application in MCC.

The configuration manager component on the cloud server node configures the
delegated service application and resumes the running states of the service application
in the guest virtual device instance created on the server node. The synchronizer
components on both the SMD and cloud server node communicate for the exchange
of configuration and data files. On successful execution of the service application
components of the mobile application on SMD, results of the mobile application are
saved in the preferences file and returned to the SMD. Figure 2 shows the flowchart
of the operation modes of ASM.

A challenging aspect of MCC is the diversity in operating system platforms
and application frameworks [39]. For instance, Android, iOS, Windows Mobile
and Symbian. Therefore, homogenous solution for the heterogeneous operating
system platforms is a challenging perspective for the application in MCC [40].
Android operating system uses services oriented architecture (SOA) for appli-
cations. Therefore, ASM framework employs SOA of the mobile application
and is compatible with all mobile operating system platforms which use SOA
for mobile applications. Each Android application is associated with five types
of files on SMD: application package, configuration files, database files, cache
buffers and preferences file. The application package file is installed in \data\app
folder with the name applicationpackagename.apk, whereas the data preferences
files are created in \data\data\packagename\sharedpreferences folder with the
default name SharedPreferencesfile.xml. In the same way, cache files are stored in
\data\data\packagename\cache folder. It is possible that a mobile application does
not require the configuration or data file. For example, Youtube application does not
require configuration and data files, Gmail application requires only the application
package file to be installed on the SMD, Android MMS application requires applica-
tion package and configuration files, Contact Provider application requires application
package and database files only [32]. Application preferences file is not included in

123

A lightweight active service migration framework 985

StartStart

Mobile Application on SMDMobile Application on SMD

Online ModeOnline Mode

Start Service on
SMD

Start Service on
SMD igrate Service

Component
Migrate Service

Component

Confiff gure delegated
component on Cloud

Server Node

Configure delegated
component on Cloud

Server Node

StopStop

Stop Service Execution
on SMD

Stop Service Execution
on SMD

Save Prefeff rences on SMDSave Preferences on SMD

Execute Offff lff oaded
Component on Remote
Virtual Device Instance

Execute Offloaded
Component on Remote
Virtual Device Instance

Save Results in
Prefeff rences File
Save Results in
Preferences File

No

Yes

Execute Service
Locally

Execute Service
Locally

Activity ComponentActivity ComponentClose ApplicationClose Application

Save Prefeff rencesSave Preferences

Fig. 2 Flow chart for the operation modes of ASM operation

the package file (.apk). Therefore, a newly installed application always lacks in prefer-
ences file. The preferences manager component of ASM is responsible for uploading
and downloading preferences files by activating the synchronizer component (on both
SMD and the remote guest environment). The important aspect of ASM is that the ser-
vice application package (.apk file) is transferred only once to the remote server node.
However, configuration and data files require repeated transmission for each instance
of remote execution of the service application. It means that at the first instance the
entire service application package file and the other related files are transferred to
cloud server node. However, if the same service is required to be executed again on
the cloud server node, it does not require the application package to be migrated
repeatedly. Instead, later instances of remote service execution require to upload the
configuration and data files in order to synchronize the execution of service application
on the remote server node.

The explicit configuration of services on the cloud server node and invoking such
services by passing parameters is a simple approach; however, relying on the precon-
figured services of the cloud server nodes lead to the problem of dependency on the

123

986 M. Shiraz, A. Gani

centralized services and reduces offline usability and adversely affects rich user expe-
riences [41,42]. Similarly, it leads to the employment of thin client applications like
traditional web and email applications, wherein the processing logic of the application
is hosted on the remote server nodes and client applications provide user interface.
Furthermore, such approach is not compatible with the design of existing mobile appli-
cations. The architecture of existing applications needs to be changed in order to adopt
the client/server architecture. ASM framework employs offloading the selected inten-
sive component at runtime and proposes two distinct operating modes (offline mode
and online mode) for the execution of mobile application. Therefore, the mechanism
of runtime component offloading requires outsourcing the binary code of the compo-
nent being offloaded which is configured on the remote server node. ASM employs
simple developmental procedure. Unlike the traditional elastic application offload-
ing models [18–20,24], ASM does not restrict application developers to classify and
annotate the application components as local or remote at finer granularity level. ASM
involves entire service-level granularity for the application offloading, which reduces
the overhead associated with finer level granularity nature of traditional application
offloading frameworks. It eradicates the overhead of runtime application profiling and
solving [21]. The framework focuses on the user preferences for offloading the inten-
sive components of the mobile application at runtime. Mobile users are provided full
control over the execution mode of the mobile application. In the offline mode all
the components of mobile application are executed locally on SMD, whereas in the
online mode the intensive components of mobile application are offloaded dynami-
cally at runtime. The dual operation modes of ASM provide robustness to the mobile
applications. The applications are capable of operating with full functionalities in the
situations of unavailability of remote services. ASM masks the complexities of com-
putational offloading from mobile users by providing the notion as entire components
of the mobile application are executed locally on SMD.

4 Methodology

We evaluate the proposed framework by benchmarking prototype application for
Android devices in the real mobile cloud computing environment. The experimen-
tal setup is composed of server node which runs instances of the Android virtual
device (AVD), Wi-Fi wireless network and Samsung Galaxy SII mobile device. The
Android AVD is employed on the server machine for the execution of offloaded ser-
vice component of the application at runtime. Mobile devices access the wireless
network via Wi-Fi wireless network connection of radio type 802.11g, with the avail-
able physical layer data rates of 54 Mbps. Java-based Android software development
toolkit (Android SDK) is deployed for the development of the prototype application.
Monitoring tools such as Android debug bridge and Dalvik debug monitor system are
used for the measurement of resource utilization (CPU and RAM), whereas Power
Tutor tool [43] is used for the measurement of battery power consumption on SMD
in distributed application processing.

The prototype application is composed of three computational-intensive service
components and a single activity component. The service components implement

123

A lightweight active service migration framework 987

the computational logic of the application, whereas the activity component provides
graphical user interface (GUI) for interacting with the mobile application. The com-
putational logic of the application includes three service components. Each service
component of the application is evaluated with 30 different computational intensities.
(a) The sorting service component implements the logic of bubble sort for sorting
liner list of integer type values. The sorting logic of the application is evaluated for
varying computational intensities (11,000–40,000) of the sorting operation. (b) The
matrix multiplication service of the application implements the logic of computing
the product of 2-D array of integer type values. Matrix multiplication logic of the
application is evaluated with varying the length of the 2-D array between 160 × 160
and 450 × 450. (c) The power compute service of the application implements the
logic of computing bˆe, whereas b is the base and e is the exponent. The power com-
pute logic of the application is evaluated for varying power computing intensities
2ˆ1,000,000–2ˆ200,000,000.

Measurement parameters for the evaluation of ASM framework include turnaround
time (TT) in milliseconds (ms) and ECC in Joules (J) of the mobile application, RAM
(MB) allocation and % CPU utilization. Data are collected by evaluating the prototype
application in different scenarios. The significance of ASM framework is determined
by evaluating application execution on local mobile device and cloud server node. The
measurement parameters in this scenario include CPU utilization and RAM alloca-
tion on SMD. The lightweight nature of ASM framework is validated by employing
computational offloading in two different scenarios. In the first scenario, ASM frame-
work is implemented by offloading running instances of the service components of the
application. In the second scenario, the intensive components of the mobile application
are offloaded to the cloud server node by implementing the traditional computational
offloading technique which uses runtime application profiling [18–20,24]. Experimen-
tation is repeated 30 times for either computational intensity to signify the interval
estimate of each experiment with 99 % confidence interval.

5 Results and discussion

The turnaround time of the application is an important parameter in remote process-
ing of intensive mobile applications. It shows the total execution time of the mobile
application in the distributed MCC environment. Distributed processing of mobile
application involves delays at different stages of computational offloading. The turn-
around time of the application includes: (1) the time taken in saving the data states
of the running instance of the component of the mobile application which is being
offloaded; (2) time taken in transferring application binary code to the remote server;
(3) time taken in downloading the delegated application binary code to the remote
virtual machine on the cloud server node; (4) time taken in uploading the preferences
(data states file) of the mobile application to remote server node; (5) time required
for resuming the running state of the mobile application on the remote server node;
(6) time taken in processing the application on remote machine; and (7) time taken in
returning result file to the mobile device. It is observed that the TT of the components
offloaded at runtime varies on the basis of two factors. (1) The processing time of the

123

988 M. Shiraz, A. Gani

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

T
im

e
(m

s)

Sort List Size

Turnaround Time of Sorting Service in ASM Based
Computational Offloading

Turnaround Time of Sorting Service in Traditional
Computational Offlaoding

Fig. 3 Comparison of turnaround time of sorting service execution in ASM and traditional computational
offloading

offloaded component that depends on the computational length of the offloaded com-
ponent. (2) The data transmission time between the local and remote machine, which
depends on the size of data transmission between local mobile device and remote
machine. Hence, the TT value is the total time taken in offloaded processing of the
component of mobile application, which is the sum of the application processing time
on the remote virtual device and timing cost of runtime component offloading.

The TT in offloaded processing of the sorting service, matrix multiplication service
and power compute service component of the mobile application is evaluated with 30
different computational intensities. The TT of the offloaded component increases with
the increases in the computational intensity of the offloaded component. For instance,
in ASM-based computational offloading the TT of sorting service component is found
24,331 ms for list size 11,000 values and 166,457 ms for list size 40,000 values. It
shows that the TT is 85.4 % higher for sorting list of 40,000 values as compared to
sorting list of 11,000 values. Whereas, in traditional computational offloading which
uses profiling mechanism, the TT of the sorting service is examined 40,211 ms for
list size 11,000 values and 410,398 ms for list size 40,000 values which shows 90 %
increase in TT for list of 40,000 values as compared to the sorting list of 11,000 values.
Figure 3 shows the comparison of TT of the sorting service in two different scenarios.
The comparison of TT for sorting operation in ASM-based computational offloading
and traditional computational offloading technique shows reduction in TT of sorting
service in ASM-based offloading. For instance the TT for sorting operation reduces
39 % for list size 11,000, 59 % for list size 20,000, 58 % for list size 30,000 and 60 %
for list size 40,000. The overall reduction in TT of sorting service execution is 55.3 %
in employing ASM framework-based computational offloading.

In ASM-based computational offloading the TT of matrix multiplication service
component is found 16,431 ms for matrices size 160 × 160 and 262,697 ms for
matrix size 40,000 values. It shows that the TT is 93.4 % higher for multiplying matri-
ces of 450 × 450 values as compared to matrices of 160 × 160 values. Whereas,
in traditional computational offloading which uses profiling mechanism, the TT of

123

A lightweight active service migration framework 989

0

50000

100000

150000

200000

250000

300000

350000

400000

T
im

e
(m

s)

Matrix Size

Turnaround Time of Matrix Multiplication Service in
ASM Based Computational Offloading
Turnaround Time of Matrix Multiplication Service in
Traditional Computational Offlaoding

Fig. 4 Comparison of turnaround time of matrix multiplication service execution in ASM and traditional
computational offloading

matrix multiplication service is examined 20,326 ms for matrices size 160 × 160 and
367,077 ms for matrices size 450 × 450 which shows 90 % increase in multiplying
matrices of 450 × 450 size as compared to multiplying matrices 160 × 160 size. Fig-
ure 4 shows the comparison of TT of the matrix multiplication service in traditional
and ASM-based computational offloading. It is examined that TT for matrix multipli-
cation operation in ASM-based computational offloading decreases as compared to
traditional computational offloading technique. For instance, the TT of matrix multi-
plication operation decreases 19 % for matrix size 160 × 160, 24 % for matrix size
260 × 260, 27 % for 360 × 360 matrix size and 28 % for matrix size 450 × 450.
The overall reduction in TT of matrix multiplication service execution is 24.7 % in
employing ASM framework-based computational offloading.

In ASM-based computational offloading the TT of power compute service com-
ponent is found 7,175 ms for computing 2ˆ1,000,000 and 265,724 ms for com-
puting 2ˆ2,000,000,000. It shows that the TT is 93.4 % higher for computing
2ˆ2,000,000,000 as compared to computing 2ˆ1,000,000. Whereas, in traditional
computational offloading the TT of matrix multiplication service is examined 7,284 ms
for computing 2ˆ1,000,000 and 622,062 ms for computing 2ˆ2,000,000,000 which
shows 98.8 % increase in TT for computing 2ˆ2,000,000,000 as compared to
2ˆ1,000,000. Figure 5 shows the comparison of TT of the power compute service in
traditional and ASM-based computational offloading. It is examined that TT for power
computing operation in ASM-based computational offloading decreases as compared
to traditional computational offloading technique. For instance, the TT of power com-
pute operation decreases 15 % for computing 2ˆ1,000,000 and 91 % for computing
2ˆ9,000,000.

The energy consumption cost (ECC) includes energy consumed in runtime compo-
nent migration, energy consumed in saving the data states of running instance of the
mobile application, energy consumed in uploading the data file to remote server node
and energy consumed in returning the resultant data files to local mobile device. ECC
is evaluated with 30 different computational intensities in offloaded processing of the
sorting service, matrix multiplication service and power compute service component

123

990 M. Shiraz, A. Gani

0

100000

200000

300000

400000

500000

600000

700000
T

im
e

(m
s)

Compute Length

Turnaround Time of Power Compute Service in ASM Based
Computational Offloading
Turnaround Time of Power Compute Servicein Traditional
Computational Offlaoding

Fig. 5 Comparison of turnaround time of power compute service execution in ASM and traditional com-
putational offloading

of the mobile application. The ECC of the offloaded component increases with the
increases in the computational intensity of the offloaded component. In ASM-based
computational offloading the ECC of sorting service component is found 49.8 J for
list size 11,000 values and 201.4 J for list size 40,000 values. It shows that the ECC is
75.3 % higher for sorting list of 40,000 values as compared to sorting list of 11,000
values.

In traditional computational offloading, the ECC of the sorting service is examined
50.3 J for list size 11,000 values and 386.4 J for list size 40,000 values, which shows
87 % increase in the ECC for list of 40,000 values as compared to the sorting list of
11,000 values. Figure 6 shows the comparison of ECC of the sorting service ASM-
based and traditional computational offloading which shows reduction in the ECC of
sorting service in ASM-based offloading. For instance, the ECC for sorting operating
reduces 1 % for list size 11,000, 34.4 % for list size 20,000, 44.8 % for list size 30,000
and 47.9 % for list size 40,000. The overall reduction in ECC of sorting service
execution is 36 % in employing ASM framework-based computational offloading.

The ECC of matrix multiplication service component by employing ASM-based
computational offloading is found 40 J for matrices size 160 × 160 and 131.7 J for
matrix size 40,000 values. It shows that the ECC is 69.6 % higher for multiplying
matrices of 450 × 450 size as compared to matrices of 160 × 160 size. Whereas,
in traditional computational offloading, the ECC of matrix multiplication service is
examined 43.1 J for matrices of 160 × 160 size and 152 J for matrices 450 × 450 size,
which shows 71.6 % increase in the ECC for higher computational intensity (450 × 450
size) as compared to lower computational intensity (160 × 160) of matrix multipli-
cation operation. Figure 7 shows the comparison of ECC of the matrix multiplication
service in traditional and ASM-based computational offloading. It shows that the ECC
for matrix multiplication operation in ASM-based computational offloading decreases
as compared to traditional computational offloading technique. For example, the ECC
of matrix multiplication operation decreases 7.2 % for matrix size 160 × 160, 12.2 %

123

A lightweight active service migration framework 991

0

50

100

150

200

250

300

350

400

450

E
ne

rg
y

C
on

su
m

pt
io

n
C

os
t

(J
)

Length of Sort List

ECC in ASM Based Computational Offloading for Sorting
Service
ECC in Traditional Computational Offloading for Sorting
Service

Fig. 6 Comparison of energy consumption cost of sorting service execution in ASM and traditional com-
putational offloading

0

20

40

60

80

100

120

140

160

16
0*

16
0

17
0*

17
0

18
0*

18
0

19
0*

19
0

20
0*

20
0

21
0*

21
0

22
0*

22
0

23
0*

23
0

24
0*

24
0

25
0*

25
0

26
0*

26
0

27
0*

27
0

28
0*

28
0

29
0*

29
0

30
0*

30
0

31
0*

31
0

32
0*

32
0

33
0*

33
0

34
0*

34
0

35
0*

35
0

36
0*

36
0

37
0*

37
0

38
0*

38
0

39
0*

39
0

40
0*

40
0

41
0*

41
0

42
0*

42
0

43
0*

43
0

44
0*

44
0

45
0*

45
0

E
ne

rg
y

C
on

su
m

pt
io

n
C

os
t

(J
)

Matrix Length

ECC in ASM Based Computational Offloading
for Sorting Service
ECC in Traditional Computational Offloading
for Sorting Service

Fig. 7 Comparison of energy consumption cost of matrix multiplication service execution in ASM and
traditional computational offloading

for matrix size 260 × 260, 11.4 % for 360 × 360 matrix size and 13.4 % for matrix size
450 × 450. The overall reduction in ECC of matrix multiplication service execution
is 10.9 % in employing ASM framework-based computational offloading.

The ECC of power compute service in ASM-based computational offloading is
found 5.4 J for computing 2ˆ1,000,000 and 351 J for computing 2ˆ2,000,000,000. It
shows that the ECC is 98.5 % higher for computing 2ˆ2,000,000,000 as compared to
computing 2ˆ1,000,000. Whereas, in traditional computational offloading the ECC of
matrix multiplication service is examined 5.4 J for computing 2ˆ1,000,000 and 460.7 J
for computing 2ˆ2,000,000,000 which shows 98.8 % increase in ECC for comput-
ing 2ˆ2,000,000,000 as compared to 2ˆ1,000,000. Figure 8 shows the comparison
of ECC of the power compute service in traditional and ASM-based computational

123

992 M. Shiraz, A. Gani

0
50

100
150
200
250
300
350
400
450
500

2^
10

00
00

0
2^

20
00

00
0

2^
30

00
00

0
2^

40
00

00
0

2^
50

00
00

0
2^

60
00

00
0

2^
70

00
00

0
2^

80
00

00
0

2^
90

00
00

0
2^

10
00

00
00

2^
20

00
00

00
2^

30
00

00
00

2^
40

00
00

00
2^

50
00

00
00

2^
60

00
00

00
2^

70
00

00
00

2^
80

00
00

00
2^

90
00

00
00

2^
10

00
00

00
0

2^
20

00
00

00
0

2^
30

00
00

00
0

2^
40

00
00

00
0

2^
50

00
00

00
0

2^
60

00
00

00
0

2^
70

00
00

00
0

2^
80

00
00

00
0

2^
90

00
00

00
0

2^
10

00
00

00
0

2^
19

00
00

00
00

2^
20

00
00

00
00E

ne
rg

y
C

on
su

m
pt

io
n

C
os

t
(J

)

Compute Length

ECC in ASM Based Application Offloading

ECC in Traditional Computational Offloading

Fig. 8 Comparison of energy consumption cost of power compute service execution in ASM and traditional
computational offloading

offloading. It is examined that ECC for power computing operation in ASM-based
computational offloading decreases as compared to traditional computational offload-
ing technique. For instance, the ECC of power compute operation decreases 4 % for
computing 2ˆ2,000,000, 12 % for computing 2ˆ9,000,000 and 24 % for computing
2ˆ2,000,000,000.

The significance of ASM framework is determined by evaluating application exe-
cution on local mobile device and cloud server node. The measurement parameter in
this scenario includes CPU utilization and RAM allocation on SMD. RAM allocation
on the mobile device increases by increasing the computational length of linear list for
sorting operation and 2-D array for matrix multiplication operation. It is found that
10.148 MB memory is allocated for sorting list of 11,000 values, whereas 10.265 MB
memory is allocated for sorting list of 40,000 values, which shows that RAM allo-
cation increases 1.4 % for sorting list of 40,000 values as compared to sorting list of
110,000 values. Similarly, 2.78 MB memory is allocated for multiplying matrices of
size 160 × 160 size and 22.8 MB memory is allocated for matrices of size 450 × 450,
which shows 87.8 % increase for multiplying larger size matrices (450 × 450) as
compared to multiplying small size matrices (160 × 160). The allocation of memory
for power compute operation on the mobile device is found 10.11 MB for varying
computational intensities (2ˆ100,000–2ˆ2, 000,000,000).

In the ASM framework-based computational offloading the entire logic of the inten-
sive components of the application is executed on the remote server node. It is found
that by offloading the component of mobile application to the cloud server node, RAM
allocation on the local mobile device is reduced 74.5 % in offloading sorting service,
42.2 % in accessing matrix multiplication service and 98 % for power compute service
component of the mobile application. Therefore, RAM allocation is saved up to 100 %
by computational offloading to cloud server node. The comparison of RAM allocation
in local and ASM-based application execution signifies the usefulness of offloading
computational load to the cloud server node.

123

A lightweight active service migration framework 993

The execution of application on local mobile devices results in high CPU utilization
for a longer period of time as compared to accessing the application processing services
of cloud server node. It is examined that the average CPU utilization for executing
sorting service on local mobile device is 48.67 % of the total CPU utilization on local
mobile device for 17,427 ms duration. The average CPU utilization for executing
matrix multiplication service on local mobile device is 45.46 % of the total CPU
utilization on local mobile device for 31,190 ms duration. The average CPU utilization
for executing power compute service on local mobile device is 48 % of the total
CPU utilization on local mobile device. Since, in computational offloading application
processing load is outsourced to remote server nodes, energy consumption cost of
application processing on the local device is reduced up to 95 %. It is examined that
the allocation of RAM on mobile device reduces up to 72 % and the duration of
CPU utilization reduces up to 99 % by computational offloading to cloud server node.
Hence, computational offloading reduces application processing load on local device
which results in minimizing resource utilization on SMD (RAM, CPU) and decreases
energy consumption on SMD. However, it is found that the execution cost of runtime
computational offloading remains high for offloading smaller computational load to
the cloud server node. It is for the reason of additional delays incurred during the
configuration of distributed application processing platform at runtime. Furthermore,
it is examined that for all instances of active services offloading by using ASM, the
CPU utilization for operating system increases up to 3 % on the Android virtual device
which shows additional load on the mobile device in component offloading. However,
for the physical mobile device the increase in CPU utilization is found 0 % during
service migration at runtime.

6 Conclusion and future work

ASM is a lightweight framework for offloading the intensive components of mobile
application to computational clouds. The proposed framework employs simple devel-
opmental and deployment procedures for the cloud-based application processing.
Analysis shows the usefulness of employing ASM framework for computational
offloading in mobile cloud computing. It is found that the allocation of RAM on
mobile device reduces up to 72 % and the duration of CPU utilization reduces up
to 99 % by computational offloading to cloud server node. Similarly, the turnaround
time of the application reduces 45 % and energy consumption cost of the application
reduces up to 33 % in ASM-based computational offloading as compared to tradi-
tional offloading technique. The significance of active services migration to cloud
server nodes is twofold. First, service offloading reduces the computational load on
mobile device which results in saving computing resources (RAM, CPU) and energy
consumption on SMD. Second, it makes the computing resources available for slightly
intensive components of the application which run locally. As a result, the TT of the
components of the application executed on the SMD is locally decreased.

However, migration of the active services at runtime involves the additional com-
plications in the establishment and management of distributed platform at runtime.
Analysis indicates the additional overhead of application offloading at runtime. Simi-

123

994 M. Shiraz, A. Gani

larly, outsourcing active states of the service application is subjected to network secu-
rity threats. Therefore, it is necessary to adopt alternative procedures with minimum
complexities and reduced security threats. The merger of distributed application archi-
tecture with the runtime outsourcing seems to be an appropriate alternative approach
for the computational-intensive mobile applications. Our future work focuses on this
specific aspect of distributed processing of intensive mobile applications in MCC.

Acknowledgments This work is part of the Mobile Cloud Computing research project at the Mobile
Cloud Computing Research Laboratory at the Department of Computer Systems and Technology, Faculty
of Computer Science and Information Technology, University of Malaya, Malaysia. The project is funded
by the Malaysian Ministry of Higher Education under the University of Malaya High Impact Research
Grant with reference UM.C/HIR/MOHE/FCSIT/03.

References

1. Shiraz M, Whaiduzzaman M, Gani A (2013) A study on anatomy of smartphone. J Comput Commun
Collab 1(1):24–31

2. ABI Research (2012) http://www.abiresearch.com/. Accessed 21 August 2012
3. Flinn J, Park S, Satyanarayanan M (2002) Balancing performance energy, and quality in pervasive

computing. In: 22nd international conference on distributed computing systems (ICDCS02), Austria,
Vienna, pp 217–226

4. Kristensen DM (2007) Enabling cyber foraging for mobile devices. In: 5th MiNEMA workshop,
Magdeburg, Germany, pp 32–36

5. Su YY, Flinn J (2005) Slingshot: deploying state-full services in wireless hotspots. In: 3rd international
conference on mobile systems, applications, and services, New York, pp 79–92

6. Kristensen DM, Bouvin ON (2008) Developing cyber foraging applications for portable devices.
In: 2nd IEEE international interdisciplinary conference on portable information devices, Garmisch-
Partenkirchen, Germany, pp 1–6

7. Porras J, Riva O, Kristensen DM (2009) Dynamic resource management and cyber foraging, vol 16.
Springer, Berlin

8. Chun B, Maniatis P (2009) Augmented smartphone applications through clone cloud execution. In:
12th workshop on hot topics in operating systems (HotOS), Monte Verita, Switzerland

9. Satyanarayanan M, Bahl P, Ceres R, Davies N (2009) The case for VM-based cloudlets in mobile
computing. IEEE Pervasive Comput 8(4):14–23

10. Mohsen S, Somayeh K, Omid KA (2012) Survey and taxonomy of cyber foraging of mobile devices.
IEEE Commun Surv Tutor 14(4):1232–1243

11. Abolfazli S, Sanaei Z, Ahmed E, Gani A, Buyya R (2013) Cloud-based augmentation for mobile
devices: motivation, taxonomies, and open issues. IEEE Commun Surv Tutor. doi:10.1109/SURV.
2013.070813.00285

12. Amazon S3 (2012) http://status.aws.amazon.com/s3-20080720.html. Accessed 20 July 2012
13. Google Docs (2012) http://docs.google.com. Accessed 15 July 2012
14. MobileMe (2012) http://en.wikipedia.org/wiki/MobileMe. Accessed 15 June 2012
15. Dropbox (2012) http://www.dropbox.com. Accessed 15 July 2012
16. Apple-iCloud (2013) http://www.apple.com/icloud/. Accessed 1 January 2013
17. Introducing Amazon Silk (2013) http://amazonsilk.wordpress.com/2011/09/28/introducing-amazon-

silk/. Accessed 1 January 2013
18. Cuervo E, Balasubramanian A et al (2010) MAUI: making smartphones last longer with code offload.

In: MobiSys’10, San Francisco, pp 15–18
19. Chun GB, Ihm S, Maniatis P, Naik M, Patti A (2011) CloneCloud: elastic execution between mobile

device and cloud. In: EuroSys’11, Salzburg, Austria, pp 10–13
20. Zhang X, Kunjithapatham A, Jeong S, Gibbs S (2011) Towards an elastic application model for

augmenting the computing capabilities of mobile devices with cloud computing. Mobile Netw Appl
16(3):270–285

123

http://www.abiresearch.com/
http://dx.doi.org/10.1109/SURV.2013.070813.00285
http://dx.doi.org/10.1109/SURV.2013.070813.00285
http://status.aws.amazon.com/s3-20080720.html
http://docs.google.com
http://en.wikipedia.org/wiki/MobileMe
http://www.dropbox.com
http://www.apple.com/icloud/
http://amazonsilk.wordpress.com/2011/09/28/introducing-amazon-silk/
http://amazonsilk.wordpress.com/2011/09/28/introducing-amazon-silk/

A lightweight active service migration framework 995

21. Shiraz M, Ahmed E, Gani A, Han Q (2013) Investigation on runtime partitioning of elastic mobile
applications for mobile cloud computing. J Supercomput. doi:10.1007/s11227-013-0988-6

22. Shiraz M, Abolfazli S, Sanaei Z, Gani A (2012) A study on virtual machine deployment for application
outsourcing in mobile cloud computing. J Supercomput 63(3):946–964

23. Shiraz M, Gani A, Khokhar HR, Buyya R (2013) A review on distributed application processing
frameworks in smart mobile devices for mobile cloud computing. Commun Surv Tutor 15(3):1294–
1313

24. Kosta S, Aucinas A, Hui P, Mortier R, Zhang X (2012) Thinkair: dynamic resource allocation and
parallel execution in the cloud for mobile code offloading. In: Proceedings of the IEEE INFOCOM,
pp 945–953

25. Shiraz M, Gani A, Rashid KH (2012) Towards lightweight distributed applications in mobile cloud
computing. In: Proceedings of the IEEE international conference on computer science and automation
engineering (CSAE 2012), China

26. Chun GB, Maniatis P (2009) Augmented smartphone applications through CloneCloud execution.
Intel Research, Berkeley

27. Satyanarayanan M, Bahl P, Caceres R (2009) The case for VM-based cloudlets in mobile computing.
IEEE Pervasive Comput 8(4):12–23

28. Zao B, Xu Z, Chi C, Zhu S, Cao G (2011) Mirroring smartphones for good: a feasibility study. ZTE
Commun 9:13–18

29. Hung HS, Shih SC, Shieh PJ, Lee PC, Huang HY (2012) Executing mobile applications on the cloud:
framework and issues. Comput Math Appl 63(2):573–587

30. Giurgiu I, Riva O, Juric D, Krivulev I, Alonso G (2009) Calling the cloud: enabling mobile phones
as interfaces to cloud applications. In: Proceedings of the ACM/IFIP/USENIX 10th international
conference on Middleware Urbana Champaign (Middleware’09), Illinois, USA

31. Ra RM, Sheth A, Mummert L, Pillai P, Wetherall D, Govindan R (2001) Odessa: enabling interactive
perception applications on mobile devices. In: MobiSys ’11, pp 43–56

32. Bykov S, Geller A, Kliot G, Larus RJ, Pandya R, Thelin J (2011) Orleans: cloud computing for
everyone. In: Proceedings of the 2nd ACM symposium on cloud computing, SOCC ’11, pp 1–16

33. Bahl P, Han YR, Li EL, Satyanarayanan M (2012) Advancing the state of mobile cloud computing.
In: MCS ’12, Lake District, UK

34. Tilevich E, Smaragdakis Y (2006) J-orchestra: automatic java application partitioning. In: ECOOP
2002—object-oriented programming, pp 178–204

35. Pedrosa DL, Kothari N, Govindan R, Vaughan J, Millstein T (2012) The case for complexity prediction
in automatic partitioning of cloud-enabled mobile applications. In: Computer Science Technical Report,
University of Southern California, Los Angeles

36. Gu X, Nahrstedt K, Messer A, Greenberg I, Milojicic D (2003) Adaptive offloading inference for deliv-
ering applications in pervasive computing environments. In: Proceedings of the 1st IEEE international
conference on pervasive computing and communications (PerCom 2003), pp 107–114

37. Ou S, Yang K, Liotta A (2006) An adaptive multi-constraint partitioning algorithm for offloading in
pervasive systems. In: 4th annual IEEE international conference on pervasive computing and commu-
nications (PerCom 2006), pp 116–125

38. Goraczko M, Liu J, Lymberopoulos D, Matic S, Priyantha B, Zhao F (2008) Energy-optimal software
partitioning in heterogeneous multiprocessor embedded systems. In: Proceedings of the 45th annual
design automation conference, pp 191–196

39. Shiraz M, Gani A, Khokhar HR, Ahmed E (2012) An extendable simulation framework for modeling
application processing potentials of smart mobile devices for mobile cloud computing. In: Proceedings
of frontiers of information technology, Pakistan, pp 19–21

40. Sanaei Z, Abolfazli S, Gani A, Buyya R (2013) Heterogeneity in mobile cloud computing: taxonomy
and open challenges. IEEE Commun Surv Tutor. doi:10.1109/SURV.2013.050113.00090 (in press)

41. Abolfazli S, Sanaei Z, Gani A, Xia F, Yang TL (2013) Rich mobile applications: genesis, taxonomy,
and open issues. J Netw Comput Appl. doi:10.1016/j.jnca.2013.09.009 (in press)

42. Whaiduzzaman M, Sookhak M, Gani A, Buyya R (2013) A survey on vehicular cloud computing.
J Netw Comput Appl. doi:10.1016/j.jnca.2013.08.004 (in press)

43. PowerTutor (2012) http://ziyang.eecs.umich.edu/projects/powertutor/. Accessed 20 August 2012

123

http://dx.doi.org/10.1007/s11227-013-0988-6
http://dx.doi.org/10.1109/SURV.2013.050113.00090
http://dx.doi.org/10.1016/j.jnca.2013.09.009
http://dx.doi.org/10.1016/j.jnca.2013.08.004
http://ziyang.eecs.umich.edu/projects/powertutor/

	A lightweight active service migration framework for computational offloading in mobile cloud computing
	Abstract
	1 Introduction
	2 Related work
	3 Proposed framework
	4 Methodology
	5 Results and discussion
	6 Conclusion and future work
	Acknowledgments
	References

