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Abstract With the rapid development of networking technology, grid computing has
emerged as a source for satisfying the increasing demand of the computing power of
scientific computing community. Mostly, the user applications in scientific and enter-
prise domains are constructed in the form of workflows in which precedence con-
straints between tasks are defined. Scheduling of workflow applications belongs to
the class of NP-hard problems, so meta-heuristic approaches are preferred options.
In this paper, ε-fuzzy dominance sort based discrete particle swarm optimization
(ε-FDPSO) approach is used to solve the workflow scheduling problem in the grid. The
ε-FDPSO approach has never been used earlier in grid scheduling. The metric, fuzzy
dominance which quantifies the relative fitness of solutions in multi-objective domain
is used to generate the Pareto optimal solutions. In addition, the scheme also incorpo-
rates a fuzzy based mechanism to determine the best compromised solution. For the
workflow applications two scheduling problems are solved. In one of the scheduling
problems, we addressed two major conflicting objectives, i.e. makespan (execution
time) and cost, under constraints (deadline and budget). While, in other, we optimized
makespan, cost and reliability objectives simultaneously in order to incorporate the
dynamic characteristics of grid resources. The performance of the approach has been
compared with other acknowledged meta-heuristics like non-dominated sort genetic
algorithm and multi-objective particle swarm optimization. The simulation analysis
substantiates that the solutions obtained with ε-FDPSO deliver better convergence and
uniform spacing among the solutions keeping the computation overhead limited.
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1 Introduction

Grid computing infrastructure has emerged as a next generation of high performance
computing by providing availability of vast heterogenous resources. To achieve the
promising potential of distributed resources, effective and efficient scheduling algo-
rithms are required. The grid scheduling problem is to coordinate and allocate the
resources to grid applications. Many important grid applications in e-science and e-
business fall in the category of workflow applications modeled by directed acyclic
graphs (DAG). Workflow scheduling is one of the key challenges, which deals with
assigning different grid services to the workflow tasks while maintaining the task
precedence constraints. Depending upon the user demands and objective functions of
resource providers, several issues arise such as minimization of makespan, total cost
and maximization of system reliability, etc. Many list heuristics have been devoted to
this problem, typically restricted to optimizing single objective, namely minimizing
execution time (makespan) [1–3], total cost [4,5] or reliability [6]. Some isolated
approaches try to optimize across two criteria. A linear programming based technique
is proposed in [7] which considers one objective at a time. It provides a single solution
to the user but fails to produce the trade-off front.

In recent years, to achieve better solution quality, most research focus on devel-
oping nature inspired meta-heuristic algorithms to solve the scheduling problem, like
simulated annealing (SA) [8], genetic algorithm (GA) [9,10], ant colony optimization
(ACO) [11], tabu search [12] and particle swarm optimization (PSO) [13]. Mostly,
the research on multi-objective grid scheduling problem as in References [14–16],
linearly combine the different objectives into a scalar cost function using the weight
factors, which convert the problem into a single objective problem prior to optimiza-
tion. The weight selection method being abstract and empirical, in general, it is very
difficult to accurately select these weights, as small perturbations in weights lead to
different solutions. Hence, in this study, we proposed the use of multi-objective opti-
mization approach to generate Pareto optimal solutions for grid workflow (dependent
tasks) scheduling. Pareto optimal solutions are preferred over single solution in real
life applications.To generate the Pareto optimal solutions through the aforementioned
approaches, multiple runs of the algorithm is needed to be executed after varying the
weights, which requires considerably large time.

In this paper, we developed the multi-objective discrete particle swarm optimiza-
tion algorithm using ε-fuzzy dominance [17,18] based sorting procedure (ε-FDPSO)
to solve the grid scheduling problem for workflow tasks. We considered the three
conflicting objectives of makespan, total cost and reliability under deadline and bud-
get constraints. The metric fuzzy dominance is used to measure the relative fitness
of solutions in multi-objective domain. The approach has proven to be highly effec-
tive, and providing faster convergence for most difficult multi-objective problems
especially when number of objectives are large. In this study, we also select the best
compromised solution from the obtained Pareto front based on fuzzy approach. The
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Multi-objective workflow grid scheduling 711

efficacy and applicability of the approach used for grid workflow scheduling is demon-
strated through varying sized application task graphs and comparing it with well
known meta-heuristics NSGA-II [19], and multi-objective particle swarm optimiza-
tion (MOPSO) [20].

In the remainder of the paper, we briefly mention the related work in Sect. 2. Section
3, specifies the problem formulation. Thereafter, in Sect. 4, we briefly introduced the
approach of multi-objective optimization. In Sect. 5, we explain the ε-fuzzy domi-
nance based discrete particle swarm optimization algorithm. Section 6, describes the
multi-objective workflow grid scheduling algorithm proposed. Sections 7 and 8 dis-
cusses the simulation strategy and result analysis respectively. Finally Sect. 9, gives
the conclusion.

2 Related work

The problem of Grid scheduling, for DAG-based task graph, has already been
addressed in the literature. Most of the related work attempt to achieve execution time
(makespan) or total cost as two independent scheduling criteria. To schedule scientific
workflow applications in grid, Wieczorek et al. [5] uses Heterogeneous Earliest Finish
Time (HEFT) and GAs with extension by the ASKALON project. The heuristic in [4],
addressed a similar problem of bi-criteria budget-constrained workflow scheduling, by
applying a two-phase optimization. The first phase optimizes the schedule for a single
criterion only; the second phase produces the final solution for both criteria, keep-
ing the budget within the defined constraint. A guided local optimization approach is
applied to transform the intermediate solution to the final solution. Depending on the
criterion used to optimize in the first phase (either execution time or economic cost),
one of two proposed versions of the scheduling algorithm is used (called LOSS and
GAIN respectively). Work in [7], proposes a new bi criterion workflow scheduling
algorithm that performs optimization based on a flexible sliding constraint, and they
apply a dynamic programming method to the entire workflow to enable an extensive
exploration of the search space within the optimization process.

The paper [16] proposed a multi-objective optimization approach called Multi-
objective Resource Scheduling Approach (MORSA) to optimize the flow time and the
total execution cost simultaneously. In paper [21], the author proposed a workflow
execution planning approach using Multi-objective Differential Evolution (MODE) to
generate a set of trade-off schedules within the user specified constraints (deadline and
budget), which will offer more choices to user when estimating QOS requirements. The
work presented by [6], addresses tradeoff between execution time and reliability. The
authors propose two workflow scheduling algorithms; one of which is called BDLS
and the second one called BGA which is a GA. A sophisticated reliability model
concerning both computation and communication is proposed. For independent task
scheduling in grid, Abraham et al. [22] used the fuzzy particle swarm optimization and
Izakian et al. [15], used the discrete PSO using the weighted sum method. However,
tradeoff between makespan, cost and reliability is difficult to obtain through the above
mentioned approaches. In our previous work [23], we addressed the problem of
workflow scheduling with the aim to provide the preference set of solutions to the
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decision maker near his/her specified regions of interest using evolutionary algorithms
(R-NSGA-II, R-ε-MOEA). There we applied the non-domination sorting to rank the
solutions.

In the present work, we proposed the use of discrete particle swarm optimization
using ε-fuzzy dominance based sorting to obtain the entire Pareto optimal set.

3 Problem formulation

Workflow application is represented as DAG, G = (V, E) where V is the set of vertices
representing n different tasks ti ∈ V, (1 ≤ i ≤ n) that can be executed on any available
processor. E is the set of edges ei j = (ti , t j ) ∈ E, (1 ≤ i ≤ n, 1 ≤ j ≤ n, i �= j)
representing dependencies among the tasks ti and t j with ti as parent task and t j as
child task. A task without any predecessor is called an entry task and a task without
any successor is called an exit task. The weight w(ti ) is assigned to task ti represents
the number of instructions to be executed for the task and weight w(ei j ) assigned to
edge ei j represents the amount of data required to send from task ti to t j if they are
not executed on the same resource.

We consider the grid computing system represented as set R = {r1, r2, . . . , rm},
consisting of m number of computing resources interconnected by fully connected
communication links where communication is assumed to be performed without con-
tention. The resources may have different memory sizes, processing capabilities deliv-
ered at different prices and failure rates. Similarly communication links may have
different bandwidth. Task executions once started on the processor is considered to
be non-preemptive. Further, to consider bandwidth linkage between two resources, a
m ×m Data Transfer Time matrix between two resources are stored, where each entry
Bs,t is used to store the time required to transfer a unit data from processor rs to rt . Fur-
thermore, each resource r j is associated with values: (i) γ j represents the computing
speed illustrated by the unitary instruction execution time, (ii) c j , its economic cost
which specifies cost of using the resource r j per unit of time, (iii) λ j , its failure rate.
The failure of resource is assumed to follow the Poisson process. The failure rate can
be derived from the past performance (system log) or statistical prediction technique.

We define the workflow grid scheduling as the problem of assigning various prece-
dence constrained tasks in the workflow to different available grid resources. In this
work, each schedule (solution) is represented as the task assignment string corre-
sponding to the scheduling order string. Task assignment string is the allocation of
each task to the available time slot of the resource capable of executing the task, and
the scheduling order string encodes the order to schedule tasks. The ordering of tasks
in the scheduling order string must satisfy the task dependencies. To describe sched-
ule S : V → R which maps every task ti onto a suitable resource r j we define some
attributes EST(ti ), as earliest execution start time and EFT(ti ) as earliest finish time
of a task ti on some resource r j respectively. These are formally defined as follows:

EST(ti ) = max
tp∈pred(ti ){EFT(tp) + DCTp,i } (1)

EFT(ti ) = EST(ti ) + w(ti ) · γ j (2)
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where pred(ti ) is the set of immediate predecessor tasks of task ti and DCTp,i is the
total communication time required to transfer data units from task tp (scheduled on
resource rs) to task ti (scheduled on resource r j ), which is calculated as follows:

DCTp,i = w(epi ) · Bs, j (3)

For the entry task tentry, the EST is defined by:

EST(tentry) = 0 (4)

For the other tasks in the task graph, the starting time and finish time are computed
recursively, starting from the entry task, as shown in Eqs. (1) and (2), respectively.

Let k number of tasks has been executed on a resource r j , then let FT j represents
the finish time of last completed task on resource r j and is defined as

FT j = max
1,2,...,k{EFT(tk)} (5)

For the economic cost, we used the “pay per use” paradigm [24] , where users have
to pay fixed price per time unit of the resource usage. Let Ci, j is the cost of executing
a task ti on resource r j and is calculated as follows:

Ci, j = c j · w(ti ) · γ j (6)

Bi-objective workflow scheduling problem: In order to solve the bi-objective grid
workflow scheduling problem, we consider two conflicting objectives of minimiza-
tion of execution time and total cost. Therefore grid workflow scheduling problem is
formulated as:

Minimize Time(S) = EFT(texit) (7)

Minimize Cost(S) =
∑

Ci, j (8)

Subject to Cost (S)< B and Time(S) < D
where B is the cost constraint (Budget) and D is the time constraint (Deadline) required
by users for workflow execution.
Tri-objective workflow scheduling problem: In dynamic environment of grid where
resources can fail inevitably, a scheduling decision is still challenging area and it
should consider reliability of resources while generating schedule (S) in addition to
makespan and cost objectives. Failure of resources can have adverse effects on the
performance of workflow application, so we have optimized another objective called
reliability along with two already discussed objectives of makespan and cost.

Reliability of a workflow application is the probability that all the tasks over the
assigned processors complete successfully. Thus, it is given by the probability that
each processor is working untill all the tasks assigned to them are completed. As λ j

repersents the failure rate of resource r j , thus the probability that resource r j can

complete all its assigned tasks in schedule S successfully is R j
S = exp−λ j ·FT j . Thus
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the reliability RS of an application in schedule S is given by the product of probabilities
of successful completion of tasks to all the resources.

RS = �m
j=1 R j

S = exp−∑m
j=1λ j ·FT j (9)

To maximize the reliability, we need to minimize the Reliability Index (RI) for
schedule S which is given by

RI =
m∑

j=1

λ j · FT j (10)

Therefore, we formulated maximization of reliability in terms of minimization of
Reliability Index, represented as below

Minimize Reliability Index (S) = RI (11)

4 Multi-objective optimization: a brief overview

Conventionally, multi-objective optimization problem (MOP) [25], can be defined
as the simultaneous optimization of multiple conflicting objectives. The aim is to
determine the trade-off surface, which is a set of non-dominated solutions known
as Pareto optimal solutions. Every individual in this set is an acceptable solution.
Mathematically a minimization problem can be formulated as follows:

Minimize f i (s) i = 1, 2, . . . , M (12)

where fi is the i th objective function, s is a decision vector that represents a solution;
M is the number of objectives. There are two relations in MOP called usual Pareto
Dominance and ε-Pareto Dominance, which are stated as:

Usual Pareto Dominance: Let f (s) = ( f1(s), f2(s), . . . , fM (s)) consists of M
objectives. Consider two solution vectors s1 and s2. Then solution s1 is said to dominate
s2 (also written as s1 ≺ s2) iff following two conditions hold:

1. ∀i ∈ {1, 2, . . . , M} : fi (s1) ≤ fi (s2)

2. ∃ j ∈ {1, 2, . . . , M} : f j (s1) < f j (s2)

ε-Pareto Dominance: Solution s1 is said to ε-Dominate s2 iff following two con-
ditions hold:

1. ∀i ∈ {1, 2, . . . , M} : 	 fi (s1)\εi
 ≤ 	 fi (s2)\εi

2. ∃ j ∈ {1, 2, . . . , M} : 	 f j (s1)\ε j
 < 	 f j (s2)\ε j


The solutions which are non-dominated by other solution from a given set are known
as non-dominated solutions regarding that set. The front obtained by mapping these
non-dominated solutions into objective space is called Pareto optimal front (POF).
Due to the high computational complexity and memory constraints, finding the com-
plete POF is infeasible, so diverse set of solutions are desired covering the maximum
possible region of POF.
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5 ε-Fuzzy dominance sort based discrete particle swarm optimization algorithm

Particle Swarm Optimization is a technique [26] influenced by the study of social
behavior of insects and animals. It consists of swarm of particles, initialized with
a population of random candidate solutions. Each particle is represented by a posi-
tion vector and a velocity vector. The movement of each particle at any instance
of time is guided by its own experience (local best) and the experience of its most
successful particle (global best) in the swarm. The performance of a particle is mea-
sured by the fitness value, which is problem specific. Due to the success of PSO in
single objective optimization, in recent years, more and more attempts have been
made to extend PSO to the domain of multi-objective problems, see e.g. [20,27,28].
The main challenge in MOPSO is to select the global and local attractors such
that the swarm is guided towards the Pareto optimal front and maintains sufficient
diversity.

In this paper, to solve grid scheduling problem, we have used the ε-fuzzy dominance
based sorting procedure to select the global attractor. During the velocity update, par-
ticles move towards the particle (global attractor) with lower rank based on ε-fuzzy
dominance. In this way, new positions for the population are generated and previ-
ous positions are stored in memory (Archive). The proposed ε-fuzzy dominance sort
based discrete particle swarm optimization (ε-FDPSO) is explained in the following
section.

5.1 Discrete PSO

PSO has been proved to be an excellent method for continuous numeric optimization
problems. But it is obvious that standard PSO can’t be used to solve discrete problems
directly. So, much effort has been devoted to solve discrete optimization problems by
using discrete PSO. A variant of discrete PSO (DPSO) [15] was proposed for grid
scheduling.

Problem encoding: For optimization of grid workflow scheduling problem, we
have generated task assignment string S, which maps every task ti onto a suitable
resource r j . Figure 1a, shows an example of workflow application as (DAG), where
the weight on the edges represents the inter-task communication cost among six
tasks. Further, a feasible task assignment string corresponding to given DAG is also
shown.

Task assignment string, is then mapped to the m × n matrix, called position matrix
where m is the number of available resources and n is the number of tasks. Let Xk()

is the position matrix of kth swarm particle where Xk() = [Xk
(i, j)] then

Xk
(i, j)() ∈ {0, 1}(∀i, j), i ∈ {1, 2, . . . , m}, j ∈ {1, 2, . . . , n} (13)

where Xk
(i, j) = 1 means that j th task is performed by i th resource. Hence, in each

column of the matrix only single element is 1 and others are 0. Figure 1b shows a
mapping of task assignment string to the particle position matrix in PSO domain.

Velocity matrix of of kth particle is V k() = [V k
(i, j)], so
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(b) Particle Position Matrix

T1 T2 T3 T4 T5 T6

R1 0 1 0 0 1 0

R2 0 0 0 1 0 0

R3 1 0 1 0 0 1

(a) Task Assignment String
{[T1 : R3], [T2 : R1], [T3 : R3], [T4 : R2], [T5 : R1], [T6 : R3]}

Fig. 1 a Workflow application and its task assignment string and b mapping of task assignment string to
particle position matrix

V k
(i, j)() ∈ [−Vmax, Vmax], (∀i, j), i ∈ {1, 2, . . . , m}, j ∈ {1, 2, . . . , n} (14)

The best position that kth particle has visited since the initial time step is denoted
as Pbestk(i, j)() and Gbestk(i, j)() represents the best position that kth particle and its

neighbors have visited since the algorithm was initiated. To update Pbestk and Gbestk

in each time stamp we are using the ε-fuzzy dominance sorting approach as mentioned
in Sect. 6.3.

Velocity update: For particle updating, we are first updating velocity matrix accord-
ing to (15) and then finally position matrix is updated using (16).

V k
(i, j)(t + 1)=ω · V k

i, j (t)+c1r1(Pbestk
i, j (t) − Xk

i, j (t))+c2r2(Gbestk
i, j (t) − Xk

i, j (t))

(15)

Xk
i, j (t + 1) =

{
1 if V k

i, j (t + 1) = max{V k
i, j (t + 1)}, ∀i ∈ {1, 2, . . . , m}

0 otherwise
(16)

where c1 and c2 are the cognitive and interaction coefficients. The higher value of c1
ensures large deviation of particle in search space while higher value of c2 specifies
the convergence towards its global best. To have the compromise between exploration
and exploitation time varying coefficients have been introduced [29]. It is proposed
that c1 decreases linearly over time, while c2 increases linearly. The values of c1 and
c2 at iteration t is evaluated as

c1 = (c1f − c1i)
t

max _t
+ c1i (17)

c2 = (c2f − c2i)
t

max _t
+ c2i (18)

where c1f , c2f are final values and c1i ,c2i are initial values of coefficients respectively.
The random numbers r1 and r2 are generated independently in range [0, 1]. The
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parameter ω (inertia weight) controls the momentum of particles by weighing the
contribution of previous velocity. The value of ω is important to ensure convergent
behavior, and to optimize the tradeoff between exploration and exploitation. The higher
value of ω helps in global exploration, so it is desired at the initial stages while lower
values help in local search and is needed in the later stages. So the inertial weighing
function is utilized as

ω = (ωmax − ωmin)
max_t − t

max_t
+ ωmin (19)

Using Eq. (16), in each column of position matrix, the value 1 is assigned to the
element whose corresponding element in velocity matrix has maximum value in its
corresponding column. If in a column of velocity matrix there are more than one
element with max value, then one of these elements is selected randomly and 1 is
assigned to its corresponding element in the position matrix.

Fitness functions: In this paper, multiple objectives of makespan (execution time),
total cost and reliability are considered for the evaluation of workflow scheduling
algorithm. The fitness functionsFtime (S), Fcost (S) and Frel_index (S) are formed
in order to evaluate individuals and are calculated from Eqs. (7), (8) and (11)
respectively by adding the penalty value. On the violation of deadline and bud-
get constraints, penalty is added to the respective objective function, otherwise
not.

5.2 ε-Fuzzy dominance

In multi-objective problems, it is impossible to find a solution that is best with respect
to all the objectives. Also, it makes the problem of requirements specification a real
challenge. Under these circumstances, the concept of Pareto optimality is used. Since
all the solutions in the Pareto set are non-dominated, they must be treated as all equally
good. The ranking based on non-dominance sorting algorithm has the drawback of
not providing a complete framework for easy implementation of new methods, as it
does not measure the extents by which one solution dominates another. This yields the
new measure called fuzzy dominance [17] which correlates with the crisp definition
of dominance.

Let us assume the MOP with the aim to minimize M number of objectives functions
fi (s), i = 1, . . . , M . The solution set (containing set of all possible solution vectors)
is denoted as � ⊂ Rn where n is the dimensionality.

Fuzzy i-dominance by a solution: Given a monotonically non-decreasing function
μdom

i (.), whose range is in [0, 1], i ∈ {1, 2, . . . , M}, a solution u ∈ � is said to
i dominate solution v ∈ �, if and only if fi (u) < fi (v). This relationship will be
denoted as u�F

i v. If u�F
i v, the degree of fuzzy i dominance is equal to μdom

i ( fi (v)−
fi (u)) ≡ μdom

i

(
u�F

i v
)
. Fuzzy dominance can be regarded as fuzzy relationship

u�F
i v between u and v.
Fuzzy dominance by a solution: Solution u ∈ � is said to fuzzy dominate solution

v ∈ � if and only if ∀i ∈ {1, 2, . . . , M}, u�F
i v holds. This relationship can be denoted
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as u�Fv. The degree of fuzzy dominance can be defined by invoking the concept of
fuzzy intersection and using t-norm, and is computed as

μdom
(

u�Fv
)

=
M⋂

i=1

μdom
i

(
u�F

i v
)

(20)

In the previous implementation of fuzzy dominance [17], the membership functions
μdom

i (.) used to compute the fuzzy i dominance were defined to be zero for negative
arguments. So if fi (u) > fi (v), the degree of fuzzy dominance u�F

i v was necessarily
zero. Here we allow non-zero values. With the use of ε, non-dominated solutions
may not necessarily be assigned zero values. The membership functions used are
trapezoidal, yielding non-zero values whenever their arguments are to the right of
threshold ε. Mathematically the membership function μdom

i

(
u�F

i v
)

are defined as:

μdom
i (� fi ) =

⎧
⎪⎨

⎪⎩

0, � fi ≤ −ε

� fi
�i

, −ε < � fi < �i − ε

1, � fi ≥ �i − ε

(21)

where � fi = fi (v) − fi (u).
Fuzzy dominance in a population: Given a population of solutions S ∈ �, a solution

v ∈ S is said to be fuzzy dominated in S iff it is fuzzy dominated by any other solution
u ∈ S. In this case the degree of fuzzy dominance can be computed by performing a
union operation over every possible μdom

(
u�Fv

)
, carried out using t-co norms as:

μdom(S�Fv) =
⋃

u∈S

μdom
(

u�Fv
)

(22)

In this manner, each solution is assigned a single measure to reflect the amount it
dominates the others in a population. Better solutions within the set are assigned
lower fuzzy dominance values. This sorting procedure is used to select the best global
particle available after each iterative step.

In order to find the fuzzy dominance by a solution we need to compare it with other
solution M times corresponding to M number of objectives. Then to obtain fuzzy
dominance in a population, the solution is compared to every other solution of the
population. It requires MN number of comparisons, where N is the size of the pop-
ulation. Finally to assign fuzzy dominance for solutions corresponding to population
of size N, the total complexity is O(M N 2).

6 Proposed multi-objective workflow scheduling algorithm (ε-FDPSO)

In order to solve the multi-objective workflow scheduling problem, the ε-FDPSO
algorithm is used as follows:

1. Initialize population of Size N. Set iteration counter t = 0.
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– Randomly initialize the m × n dimensional swarm particles. Xk
(i, j)(0)∀k ∈

{1, 2, . . . , N }.
– Initialize all particle velocities V k

(i, j)(0) to zeros and personal best position

Pbestki, j (0) is set to Xk
(i, j)(0).

2. Evaluate the particles of the swarm according to the values of its objective (fitness)
functions. Sort the particle of the swarm on the basis of ε-fuzzy dominance and
perimeter. Then initialize the archive Ak

(i, j)(0) with it.
3. t = t + 1.
4. Repeat the loop (step through the PSO operators)

– Initialize the global best position for kth particle Gbestk(i, j)(0) from the archive
with binary tournament selection.

– Update the velocity of kth particle V k
(i, j)(t) according to Eq. (15).

– Update particle position Xk
(i, j)(t) according to Eq. (16).

– Mutate the particle position with adaptive mutation.
– Repeat the loop for all the particles.

5. Evaluate each particle Xk
(i, j)(t) in the population.

6. Make the union of current particle positions and archive particles positions from
previous iteration to have total of 2N particle positions. Select the best N solutions
on the basis of ε-fuzzy dominance sort and perimeter and finally update the archive
as mentioned in Sect. 6.1.

7. Update each particles Pbestk(i, j)(t) and Gbestk(i, j)(t) as mentioned in Sect. 6.3.
8. Increment the loop counter. If it is less than max _t of iteration then go to step 3,

otherwise output the ε-fuzzy dominant solutions from the archive.

The main operators used in this algorithm are explained below.

6.1 Updating external archive

In multi-objective algorithms use of elite archive is common [20] that is used to store
the non-dominated particles found along the search process. After the evaluation of
objective functions, each particle is checked for its ε-fuzzy dominance with other
members of the population. The archive stores the best N (size of archive) ε-fuzzy
dominated solutions found so far by the ε-FDPSO. This is obtained by making the
union of solutions from the current generation and the solutions from the archive of
previous generations. Then these 2N solutions are sorted in ascending order of ε-fuzzy
dominance. If multiple solutions are having the same value of ε-fuzzy dominance, then
perimeter (I(.)) is assigned to each such solution and the solution having higher value
of I(.) is preferred. From these 2N solutions sorted on the basis of ε-fuzzy dominance
and perimeter, the best N solutions are selected to update the archive.

6.2 Perimeter assignment

When multiple solutions are having the same ε-fuzzy dominance value, then we use
the diversity fitness function equal to the perimeter of the largest M dimensional
hypercube in the objective space [30]. The value of perimeter I (v) for any solution v
is given by:
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I (v) =
M∑

i=1

( fi (u) − fi (w))/(max( fi ) − min( fi )) (23)

where u and w are solutions adjacent to v, when merged population is sorted in ascend-
ing order according to i th objective. Boundary solutions are assigned infinite value.
Solution with higher value of I (v) is preferred because it indicates the region of sparse-
ness along solution v, which ultimately maintains the diversity of the solutions. Here
we have to sort at most N solutions corresponding to M objective functions. Therefore,
perimeter assignment has O(M N log N) complexity.

6.3 Updating particles memory (Pbest and Gbest)

The Gbest solution is selected by binary tournament selection from individuals of the
current archive which are sorted on the basis of ε-fuzzy dominance and perimeter. For
the Pbest, we compare particle current position with the best position of particle from
the previous generation. The non-dominating solution is assigned as the current Pbest.
If the solutions are mutually non-dominating to each other, then the current position
of particle is selected as current Pbest.

6.4 Adaptive mutation

The use of mutation operator is needed in multi-objective PSO [31] to avoid getting
stuck into local minima and to efficiently explore the search space. Here, we reduce
the percentage of mutation as it progress to make a balance between exploration and
exploitation.

P(Mutation) = 1 − t/max_t (24)

where t represents the current iteration and max_t representing the maximum number
of iterations taken. For every particle a random number (m_rand) in range [0, 1] is
taken. If m_rand < P(Mutation), then randomly a task is selected from the particle
for mutation. Here, we are using the replacing mutation operator.

The complexity of one iteration of the proposed algorithm is dominated by the basic
operations of : (1) fuzzy dominance assignment O(M N 2), 2) perimeter assignment
(O(M N logN )) and sorting on 2N solutions (O(2N log(2N )) as mentioned in step
6 of the algorithm. Therefore, the overall complexity of the proposed algorithm is
O(M N 2) due to the fuzzy dominance assignment.

7 Simulation strategy

We used GridSim [32] toolkit in our experiment to simulate the scheduling of work-
flow tasks. GridSim is a java based toolkit for modeling and simulation of resource and
application scheduling in large-scale parallel and distributed computing environment
such as Grid. It is flexible to support simulation of grid entities like resources, users,
application tasks, resource brokers or schedulers and their behavior using discrete
events.
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7.1 Simulation model

To simulate precedence constraint tasks in workflows, we used the different workflow
models represented by randomly generated task graphs and task graph corresponding
to real world problems such as Gaussian elimination and Fast Fourier Transforms as
in [21]. We also varied the size of the task graph by taking the different number of
tasks as taken in [33].

The resources were eight virtual nodes, where each virtual nodes consists of hetero-
geneous distributed computer systems with eight number of processors. Links between
resources are established through a router so that direct communication can take place
between resources. Computational rating (million instructions per second) of process-
ing elements varies from pentium II to pentium IV and computational cost (in dollars)
of each resource is generated randomly where cost is inversely proportional to com-
putational rating. The failure rate of the resources has been considered between 10−5

and 10−7 failures/s.
In order to generate a valid schedule which can meet both deadline and budget

constraints specified by the user, two algorithms HEFT [34] and Greedy Cost were
used to make deadline and budget effectively. HEFT is a time optimization schedul-
ing algorithm in which workflow tasks are scheduled on minimum execution time
heterogeneous resources irrespective of utility cost of resources. So HEFT gives min-
imum makespan (Timemin) and maximum total cost (Costmax) of the workflow sched-
ule. Greedy Cost is a cost optimized scheduling algorithm in which workflow tasks
are scheduled on cheapest heterogeneous resources irrespective of the task execution
time. Thus Greedy Cost gives maximum makespan (Timemax) and minimum total cost
(Costmin) of the workflow schedule Thus Deadline (D) and Budget (B) are specified
as:

D = Timemax − 0.1(Timemax − Timemin) (25)

B = Costmax − 0.1(Costmax − Costmin) (26)

We considered the small value of budget and deadline (tight constraints) [23], as it is
challenging to get schedule under tight constraints.

At present, the most popular techniques to solve MOP are the probabilistic GA
based non-dominated sort genetic algorithm (NSGA-II) [19], MOPSO [20]. Thus,
to measure the effectiveness and validity of ε-FDPSO algorithm for multi-objective
workflow scheduling problem in grid, we have implemented the highly competitive
techniques: NSGA-II, MOPSO (with time variant inertia and acceleration coefficients
[29]). To implement the NSGA-II we have taken binary tournament selection, two
point crossover and replacing mutation.

The parameter values used for ε-FDPSO, MOPSO and GA are optimally tuned by
trial and error experiments to let the competing algorithms perform at their best level.
To be specific, the parameter setting used by ε-FDPSO and MOPSO is (population
size = thrice the number of tasks, c1 = 2.5 → 0.5 and c2 = 0.5 → 2.5, inertia
weight (ω = 0.9 → 0.1) and GA (population size = thrice the number of tasks,
crossover rate = 0.8, mutation rate = 0.5). Furthermore, in ε- FDPSO, the ε-values of
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makespan, cost and reliability objective were varied from 0.010 to 0.015, 0.010– 0.015
and 0.0003–0.0009 in order to control the diversity and extent of obtained solutions
respectively.

The performance of scheduling algorithm was evaluated considering different test
suits representing workflow applications in bi-objective and tri-objective workflow
scheduling.

(i) Test suit of randomly generated task graph.
(ii) Test suit of task graph corresponding to real world problems such as Gaussian

elimination, Fast Fourier Transform.

7.2 Comparative performance

To evaluate the performance of the proposed approach for multi-objective workflow
scheduling, various issues are taken into consideration: (1) we need to minimize the
distance of the Pareto front produced to the global Pareto front (reference front). (2)
The spread of the solutions should be smooth and uniform i.e. all the members of the
Pareto front should be equally spaced. (3) Computational time should be minimum.
Based on these issues, we used three metrics Generational Distance (GD), Spacing [35]
and Computational Time. GD is the well known convergence metric to evaluate the
quality of an algorithm against the reference front P*. The reference front P* was
obtained by merging solutions of algorithms over 10 runs. On the other side, Spacing
metric was used to evaluate diversity among the solutions. Mathematically GD and
Spacing metric are expressed as:

GD = (
∑|Q|

i=1 d2
i )1/2

|Q| (27)

Spacing =
√

1

|Q|
∑|Q|

i=1
(di − d)2 (28)

In Eq. (27), di is the Euclidean distance between the solution of Q and the nearest
solution of P*. Q is the front obtained using an algorithm for which we calculate GD
metric. In Eq. (28), di is the distance between the solution and its nearest solution
of Q and it is different from Euclidean distance. And, di is the mean value of the
distance measures di . The small value of both GD and Spacing metric is desirable for
an evolutionary algorithm. Further, we normalized Euclidean distance and distance
value before using them in Eqs. (27) and (28) because all objectives in our problem
are on different scale. We also present the computational time needed to run each
algorithm.

7.3 Best compromise solution

The Pareto optimal set obtained by applying ε-FDPSO comprises of solutions that
satisfy different goals to some extent. A Fuzzy-based approach [36] is then applied to
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select the best compromised solution from the obtained Pareto set which can be offered
to the decision maker. In this, a simple linear membership function was considered
for each of the objective functions as follows:

μk =

⎧
⎪⎪⎨

⎪⎪⎩

1, fk ≤ fmin

f max
k − fk

f max
k − f min

k
f min
k < fk < f max

k

0, fk > f max
k

(29)

where f max
k and f min

k are the maximum and minimum values of the kth objective
function, among all Pareto optimal solutions respectively. The normalized membership
function μi corresponding to i th non-dominated solution is defines as

μi = 	M
k=1μ

i
k

	N
i=1	

M
k=1μ

i
k

(30)

where M is the number of objectives functions and N is the number of non-dominated
solutions in the Pareto front. The solution having the maximum membership value μi

in the fuzzy set is considered as the best compromised solution.

8 Simulation results

8.1 Test suit 1

In this test suit, we used the workflow model represented by randomly generated
task graph (Random). The size of random task graph was varied by considering the
different number of nodes as 20, 50 and 100 to represent the small, medium and
large size parallel application. The cost of each edge was selected randomly from
the uniform distribution across the mean equal to the product of average computation
cost and the communication to computation ratio (CCR). Here CCR is taken as 0.5 to
represent the computation intensive application. The computation cost of each task ti
on resource r j is selected randomly by the uniform distribution with the mean equal
to the twice of specified average computation cost.

In bi-objective workflow scheduling, the makespan and cost of the schedules
are considered. The Pareto optimal solutions obtained with ε-FDPSO, MOPSO and
NSGA-II for bi-objective problem, obtained after 200 iterations are shown in Figs. 2,
3 and 4 for the first test suit chosen. From the typical run shown in Figs. 2, 3 and 4, we
can see that most of the solutions obtained with ε-FDPSO are lying on the better front
while preserving almost uniform spacing among solutions. This may be attributed
as the fuzzy dominance sorting allows the selection of solutions which are closer to
non-dominated front with less ε-fuzzy domination and ε-domination maintains the
ε-value gap between solutions.

Table 1 shows the comparison result among the three algorithms on the basis of
metrics described previously. The results are obtained by taking the average over the
10 runs. The value of convergence metric GD corresponding to ε-FDPSO is less as
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Fig. 2 Performance of the algorithms in bi-objective workflow scheduling for the test suit 1 (number of
task = 20)
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Fig. 3 Performance of the algorithms in bi-objective workflow scheduling for the test suit 1 (number of
task = 50)

compared to other algorithms considered for all the three cases. It clearly specifies that
performance of the proposed algorithm is better and reaches a solution set very close
to true Pareto front. Further, with the increase in the number of tasks performance of
the algorithm increases due to occurrence of large number of non-dominated solutions
(from large sample space). With the help of fuzzy dominance sorting, solutions which
are closer to non-dominated front are selected and thus provides better convergence.
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Fig. 4 Performance of the algorithms in bi-objective workflow scheduling for the test suit 1 (number of
task = 100)

Table 1 GD, spacing and computational time metric results of the algorithms in bi-objective workflow
scheduling for the test suit 1

Tasks ε-FDPSO MOPSO NSGA-II

Average Standard
deviation

Average Standard
deviation

Average Standard
deviation

20 GD 0.0094 0.0002 0.0121 0.0043 0.0123 0.0012

Spacing 0.0387 0.0043 0.0459 0.0067 0.0452 0.0062

Time (s) 0.1843 0.02 0.1896 0.03 0.2152 0.03

50 GD 0.0087 0.0002 0.0142 0.0003 0.0132 0.0003

Spacing 0.0267 0.0034 0.0457 0.0068 0.0386 0.0054

Time (s) 0.3865 0.04 0.3978 0.05 0.4586 0.04

100 GD 0.0057 0.0001 0.0167 0.0002 0.0159 0.0003

Spacing 0.0254 0.0029 0.0389 0.0052 0.0323 0.0049

Time (s) 0.7332 0.03 0.7379 0.04 0.8323 0.04

Regarding spread of solutions, measured by spacing metric shows that ε-FDPSO
performs better (showed by lower values for the spacing metric) because of perimeter
assignment operator and ε-domination. Finally, it is interesting to note that, proposed
algorithm provides better convergence and uniform spacing in relatively small com-
putational time.

In tri-objective workflow scheduling problem, we considered the three conflicting
objectives of makespan, cost and reliability. In order to obtain Pareto optimal set of
solutions, we have run ε-FDPSO, MOPSO and NSGA-II algorithms over 400 iter-
ations. The Pareto solutions of each algorithm at different number of tasks graphs
considered in this test suit are shown in Figs. 5, 6 and 7. The results clearly specify

123



726 R. Garg, A. K. Singh

150
200

250
300

350

20

40

60

80

100
0

0.5

1

1.5

2

2.5

3
x 10−3

Makespan/ Deadline (sec)Total Cost/Budget ($)

R
el

ia
bi

lit
y 

In
de

x 
(f

ai
lu

re
s)

NSGA−II
e−FDPSO
MOPSO
Compromized Solution

e−FDPSO Compromized Solution

Fig. 5 Performance of the algorithms in tri-objective workflow scheduling for the test suit 1 (number of
task = 20)
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Fig. 6 Performance of the algorithms in tri-objective workflow scheduling for the test suit 1 (number of
task = 50)

that most of the solutions corresponding to ε-FDPSO are falling in the better mini-
mization region as compared to MOPSO and NSGA-II with more uniform spacing.
Table 2 shows the comparison of results among three algorithms corresponding to
metrics considered previously. It can be seen that ε-FDPSO converges with small
computational time and provides uniform spacing.

The best compromised solutions obtained by the proposed algorithm for test suit 1
in bi-objective and tri-objective workflow scheduling problems are shown in Table 3
respectively.

8.2 Test suit 2

In this test suit, we generated the task graphs corresponding to real life problems such
as Gaussian Elimination (GE) and Fast Fourier Transform (FFT). The structure of
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Fig. 7 Performance of the algorithms in tri-objective workflow scheduling for the test suit 1 (number of
task = 100)

Table 2 GD, spacing and computational time metric results of the algorithms in tri-objective workflow
scheduling for the test suit 1

Tasks ε-FDPSO MOPSO NSGA-II

Average Standard
deviation

Average Standard
deviation

Average Standard
deviation

20 GD 0.0069 0.0001 0.0356 0.0032 0.0289 0.0025

Spacing 0.0743 0.0036 0.0786 0.0039 0.0882 0.0037

Time (s) 0.3389 0.04 0.3467 0.05 0.4034 0.04

50 GD 0.0048 0.0001 0.0141 0.0001 0.0112 0.0001

Spacing 0.0331 0.0054 0.0824 0.0067 0.0536 0.0062

Time (s) 0.7452 0.03 0.7613 0.04 0.8767 0.04

100 GD 0.0029 0.0001 0.0065 0.0018 0.0060 0.0013

Spacing 0.0357 0.0032 0.0524 0.0034 0.0404 0.0043

Time (s) 1.1374 0.04 1.1392 0.05 1.3245 0.04

Table 3 Compromised
solutions obtained by ε-FDPSO
for the test suit 1 in bi-objective
and tri-objective workflow
scheduling

Objective Random (20) Random (50) Random (100)

Bi-objective workflow scheduling

Makespan 224.5 377.5 513.0

Total cost 49.7 135.8 405.3

Tri-objective workflow scheduling

Makespan 162 320.0 518.0

Total cost 69.3 179.299 292.79

Reliability 0.000141 0.002151 0.003574

these task graphs is fixed. The numbers of nodes chosen are 27 and 39 (medium size
task graph) respectively. The cost of each edge was selected randomly from the uni-
form distribution with mean equal to the product of average computation cost and the
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Fig. 8 Performance of the algorithms in bi-objective workflow scheduling for the test suit 2 (GE)
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Fig. 9 Performance of the algorithms in bi-objective workflow scheduling for the test suit 2 (FFT)

communication to computation ratio (CCR). Here CCR is taken as 0.5 to represent the
computation intensive application. The computation cost of each task ti on resource
r j is selected randomly by the uniform distribution with the mean equal to the twice of
specified average computation cost. In multi-objective workflow scheduling, Figs. 8, 9
(corresponding to Bi-objective problem) and Figs. 10, 11 (corresponding to Tri-
objective problem) shows the Pareto optimal solutions produced by the algorithms
considered for the chosen second test suit. The graphs clearly specifies that solutions
obtained with ε-FDPSO are lying on the better front compared to other algorithms,
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Fig. 10 Performance of the algorithms in tri-objective workflow scheduling for the test suit 2 (GE)
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Fig. 11 Performance of the algorithms in tri-objective workflow scheduling for the test suit 2 (FFT)

while preserving uniform diversity between solutions. The results obtained with GD
and Spacing metric along with computation time by the three algorithms for second
test suit in Bi-objective and Tri-objective workflow grid scheduling problem are shown
by Tables 4 and 5 respectively. The trends are similar to test suit 1. It can be seen that
the performance of ε-FDPSO is best with respect to convergence and spacing with
small computation time.

The convergence of ε-FDPSO is relatively high in case of tri objective workflow
scheduling for both test cases considered, because as the number of objectives are
increasing, density of non-dominated solutions close to the Pareto set increases. In
algorithms NSGA-II and MOPSO they treat all the non-dominated set of solutions
as equally good solutions, as they do not quantify the extent by which one solution
dominates other or how close it is to the Pareto set. So there are chances of selecting the
solutions in the next iteration which are non-dominated to each other but level of their
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Table 4 GD, spacing and computational time metric results of the algorithms in bi-objective workflow
scheduling for the test suit 2

Tasks ε-FDPSO MOPSO NSGA-II

Average Standard
deviation

Average Standard
deviation

Average Standard
deviation

GE GD 0.0067 0.0001 0.0084 0.0002 0.0074 0.0002

Spacing 0.0432 0.0020 0.0632 0.0022 0.0572 0.0024

Time (s) 0.2543 0.04 0.2697 0.05 0.3945 0.04

FFT GD 0.0063 0.0001 0.0076 0.0002 0.0071 0.0024

Spacing 0.0434 0.0023 0.0676 0.0028 0.0536 0.0030

Time (s) 0.3523 0.03 0.3568 0.04 0.4378 0.03

Table 5 GD, spacing and computational time metric results of the algorithms in tri-objective workflow
scheduling for the test suit 2

Tasks ε-FDPSO MOPSO NSGA-II

Average Standard
deviation

Average Standard
deviation

Average Standard
deviation

GE GD 0.0057 0.0002 0.0198 0.0035 0.0125 0.0025

Spacing 0.0532 0.0031 0.0725 0.0025 0.0652 0.0046

Time (s) 0.4812 0.03 0.4967 0.04 0.5768 0.04

FFT GD 0.0052 0.0001 0.0181 0.0002 0.0140 0.0024

Spacing 0.0463 0.0024 0.0616 0.0030 0.0536 0.0054

Time (s) 0.6545 0.02 0.6748 0.04 0.7658 0.03

non-dominance may not be very high. On the other hand in our proposed algorithm, we
are able to discriminate solutions which are closer to the non-dominated set (Pareto set)
from those further behind with the help of ε-fuzzy dominance so better solutions will
definitely be picked up for the next iteration. Thus with the help of ε-fuzzy dominance
sort based selection, the speed of convergence increases. This specifies that ε-FDPSO
is the better choice for multi-objective workflow grid scheduling problem especially
when number of objectives are large.

Table 6 shows the best compromised solutions obtained by the proposed algorithm
for the current test cases in bi-objective and tri-objective workflow scheduling prob-
lems, respectively.

9 Conclusion and future work

Over the years, researchers have focused their attention on grid scheduling problem
with a single objective. However, the goal of decision maker is multi-fold and prefers
the set of Pareto optimal solutions when considering real life applications. The current
work emphasizes on the planning and optimizing the workflow scheduling in the
grid with conflicting objectives of minimization of execution time (makespan), cost
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Table 6 Compromised
solutions obtained by ε-FDPSO
for the test suit 2 in bi-objective
and tri-objective workflow
scheduling

Objective GE FFT

Bi-objective workflow scheduling

Makespan 351.0 378.0

Total cost 195.2 169.7

Tri-objective workflow scheduling

Makespan 365.0 342.0

Total cost 170.3 210.7

Reliability 0.002925 0.003574

and maximization of reliability. Here, we have used DPSO using ε-fuzzy dominance
based sorting (ε-FDPSO) approach to solve the problem. Although, the approach was
introduced earlier, it has never been applied to the problem studied in this paper.
The simulation experiments, using randomly generated task graphs and task graphs
corresponding to real world problems, exhibit that ε-FDPSO performs better for grid
workflow task scheduling in terms of the convergence towards the true Pareto optimal
front and uniformly distributed solutions with small computation overhead. In case of
tri-objective workflow scheduling, relative performance of the candidate algorithm is
high, due to use of fuzzy dominance rather than simple non-dominance for selection
of solutions in the Pareto set. A good course of future research may be to develop the
hybrid multi-objective optimization techniques to solve the workflow grid scheduling
problem and compare their performance with ε-FDPSO.
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