
J Supercomput (2014) 69:1103–1122
DOI 10.1007/s11227-013-1045-1

On improvement of cloud virtual machine availability
with virtualization fault tolerance mechanism

Chao-Tung Yang · Jung-Chun Liu ·
Ching-Hsien Hsu · Wei-Li Chou

Published online: 10 December 2013
© Springer Science+Business Media New York 2013

Abstract Virtualization, particularly in the field of cloud computing, is a com-
mon strategy to improve existing computing resources. Hadoop, one of the Apache
projects, is designed to scale up from single servers to thousands of machines, each
offering local computation and storage capabilities. However, how to guarantee both
stability and reliability of virtualization have become important topics. In this article,
to reach this goal we used current open-source software and platforms, for instance,
the Xen-Hypervisor virtualization technology, and the OpenNebula virtual machines
management tool. After extending components capabilities, we developed a mecha-
nism to support our ideas and reached high availability with Hadoop that is also called
as virtualization fault tolerance (VFT). We considered a practical problem, i.e., the
single-point-of-failure issue that occurs frequently in virtualization systems, and the
experimental results confirm that the downtime interval can be greatly shortened even
if failure occurred. As a result, VFT is useful not only for Hadoop applications, but
also for more areas in cluster-based systems.

Keywords High availability · Cloud computing · IaaS · Virtualization ·
Virtualization fault tolerance

C.-T. Yang (B) · J.-C. Liu · W.-L. Chou
Department of Computer Science, Tunghai University, Taichung, 40704 Taiwan
e-mail: ctyang@thu.edu.tw

J.-C. Liu
e-mail: jcliu@thu.edu.tw

W.-L. Chou
e-mail: nagage@gmail.com

C.-H. Hsu
Department of Computer Science and Information Engineering, Chung Hua University, Hsinchu,
30010 Taiwan
e-mail: chh@chu.edu.tw

mailto:ctyang@thu.edu.tw
mailto:jcliu@thu.edu.tw
mailto:nagage@gmail.com
mailto:chh@chu.edu.tw


1104 C.-T. Yang et al.

1 Introduction

Virtual machines (VMs) have been popular in the recent two decades; the annual
growth rate of VM applications has significantly increased [1–5]. In addition to
many VM related products offered by various vendors, emerging VM applications
are found in different fields, such as green energy saving, cluster management, and
behavior detection. The virtualization technology provides not just secondary, but key
applications in many fields. Along with the expending of the virtualization technol-
ogy, the VM guest operating system (Guest OS) continues to improve efficiency in
operation.

Hadoop [6–13] was inspired by Google’s MapReduce and Google File System
(GFS) [14, 15]. The Hadoop cluster includes multiple worker nodes and a single
master that consists of a JobTracker, TaskTracker, NameNode, and DataNode. The
Hadoop Distributed File System (HDFS) uses information of rack names when repli-
cating data and tries to keep different copies of data on different racks. The goal is
to reduce the impact of a rack’s power outage or switch off failure; thus, even when
these events occur, data may still be readable. However, it takes a long time to restart
the system from failure.

For most people, it is a big challenge to embrace a new technology; the learning
curve is daunting, and issues of reliability and stability are even worse. Hadoop, like
the other distribution systems, allows users to operate complex computing with back-
end resources and be in charge of metadata links or resource allocation work in the
front-end. Developers could use these features to achieve service aims. In this pa-
per, we conducted Hadoop NameNode running on virtual machines and developed a
high availability mechanism for NameNode. The HDFS instance requires one unique
server, i.e., the name node; thus, there is a single point of failure for an HDFS instal-
lation. If the name node goes down, the file system will be offline. When it comes
back, the name node must replay all outstanding operations, which could overtake a
big cluster for half an hour. The file system includes a secondary NameNode, which
regularly connects with the primary NameNode and takes snapshots of the primary
NameNode’s directory information, which is later saved to local/remote directories.
These checkpoint images can be used to restart a failed primary NameNode with-
out replaying the entire repertoire of the file system action. The edit log creates an
up-to-date directory structure as well.

Various challenges are faced while developing a distributed application [3, 16–
21]. The first problem is hardware failure. If more pieces of hardware are used, the
chance to fail becomes even higher. The second problem is that most analysis tasks
need to combine data in some way, i.e., data read from one disk may need to be
combined with data read from other disks. HDFS replicates redundant copies of data
kept by the system, so that in the event of failure, another copy of data is available.
This is mostly like the way RAID works. MapReduce offers a programming model
that abstracts problems from disk reads and writes as computations over sets of keys
and values.

However, currently Hadoop does not support automatic recovery for NameNode
failure, a well-known and recognized single point of failure in Hadoop. As men-
tioned in the Hadoop official site [6] that if the NameNode machine fails, manual



On improvement of cloud virtual machine availability 1105

intervention is necessary. Currently, automatic restart and failover of the NameNode
software to another machine is not supported. Hadoop infrastructure has become a
critical part of day-to-day business operations. As such, it is important for us to find
a way to resolve the single-point-of-failure issue that surrounds the master node pro-
cesses, namely the NameNode and JobTracker. Moreover, it is easy for us to follow
the best practice of offloading the secondary NameNode data to an NFS mount to
protect metadata, ensuring that processes are constantly available for job execution
and data retrieval. We have leveraged some existing well tested components that are
available and commonly used in Linux systems today. Our solution, called as Virtual-
ization Fault Tolerance (VFT), primarily makes use of Distributed Replicated Block
Device (DRBD) [1] from LINBIT, and Heartbeat from the Linux-High Availabil-
ity (HA) project. The combination of these projects provides us with a reliable and
highly available solution to address current limitations.

Virtualization is used as a solution not only to improve service flexibility, but also
to consolidate workloads and enhance utilization of the server. A virtualized system
can be dynamically adapted to clients’ demands by deploying new virtual nodes when
demands increase, and powering off and consolidating virtual nodes during periods
of low demand. In this paper, we employed the virtual machine management tool,
OpenNebula [22–24], to manage virtual machines, and combined it with other open
source resources to achieve the goal of high availability for Hadoop NameNode.

This paper is organized as follows. First, we start with background reviews and
related works in Sect. 2. Section 3 describes the system implementation, shows how
to design the VFT mechanism, and presents the interface of our virtual machine man-
agement tool. In Sect. 4, we design some scenarios to prove our system and mecha-
nism. Finally, Sect. 5 outlines main conclusions and the future work.

2 Background review and related work

2.1 Apache project: HADOOP

Hadoop was created by Doug Cutting, the creator of Apache Lucene that is widely
used as text search library. Hadoop has its origin in Apache Nutch, an open source
web search engine as a part of the Lucene project. Hadoop is best known for MapRe-
duce and its distributed file system (HDFS, renamed from NDFS); the term is also
used for a family of related projects under the infrastructure for distributed computing
and large-scale data processing.

2.2 High availability

High availability [25] means “A system design approach and associated service im-
plementation that ensures a prearranged level of operational performance will be met
during a contractual measurement period.” We will focus on cloud configurations that
remove as many single points of failure as possible and that are inherently designed
with a specific effort on operational continuity, redundancy, and fail-over capability.

Floyd Piedad et al. [26] presented availability levels and measurement in the HA
field. They indicated that IT must understand the levels of availability required by



1106 C.-T. Yang et al.

Fig. 1 DRBD architecture

users, and users must understand the costs to these targets. Of all availability levels,
continuous availability is the most challenging and expensive to provide; in our work,
we take this topic forward and try to make HA feasible.

2.3 Fault tolerance technology

In this paper, we consider DRBD with Heartbeat to be a good fault tolerance solution
technology. DRBD is a software-based, shared-nothing, replicated storage solution
mirroring the content of block devices (hard disks, partitions, logical volumes, etc.)
between servers. DRBD is designed as a device building block to form a HA cluster.
This is done by mirroring a whole block device via a specified network. The DRBD
technology can be understood as a network RAID-1. Figure 1 displays the entire
DRBD architecture. The service, including its IP address, can be migrated to other
nodes at any time, either due to a failure of the active node or as an administrative
action. In HA speaking, the migration of a service is called failover; the reverse pro-
cess is called failback; and when the migration is triggered by an administrator, it is
called switchover [27].

DRBD’s core functionality is implemented by a Linux kernel module. In addi-
tional, DRBD constitutes a driver for a virtual block device, so DRBD is situated
“right near the bottom” of a system’s I/O stack. Because DRBD is extremely flexible
and versatile, a replication solution is suitable for adding high availability to any other
applications. Heartbeat [28] is daemon software that provides cluster infrastructure
(communication and membership) services to its clients. It allows clients to be aware
of presence of peer processes on other machines and to effortlessly exchange mes-
sages with them [30]. As shown in Fig. 2, DRBD with Heartbeat, which plays a very
important role in our system, is a fault tolerance solution in Linux based OS.



On improvement of cloud virtual machine availability 1107

Fig. 2 DRBD with heartbeat

2.4 Virtualization technologies

Virtualization technology [1, 5, 18, 29–32] is an interesting solution to implement
cluster-based servers to overcome cluster related problems. Cluster nodes can be vir-
tualized through some virtualization platforms (Xen, KVM, VMWare, etc.) and man-
aged by an efficient virtual machine manager. A provisioning model is incorporated
for dynamically deploying new virtual cluster nodes when the user demand increases,
and consolidating virtual nodes when it decreases. Virtualization runs multiple vir-
tual machines on a single physical machine, with each virtual machine sharing the
resources of that physical computer across multiple environments.

Virtualization is simply the logical separation to request services from the physical
resources that actually provide them. In practical terms, virtualization offers the abil-
ity to run applications, operating systems, or system services in a logically distinct
system environment that is independent of any specific physical computer system.
Obviously, all of these have to run on a certain computer system at any given time,
but virtualization provides a level of logical abstraction that liberates applications,
system services, and even the operating system that supports them from being tied
to a specific piece of hardware. Virtualization, focusing on logical operating envi-
ronments rather than physical ones, makes applications, services, and instances of an
operating system portable across different physical computer systems. Through vir-
tualization, one can execute applications under many operating systems, manage IT
more efficiently, and share a lot of computing resources with other computers.

2.5 Virtual machine management

A key component in the scenario of virtualization is the virtual machine manage-
ment system. The VM manager provides a centralized platform for efficient and au-
tomatic deployment, control, and monitoring of VMs in a distributed pool of phys-
ical resources. Usually, the VM manager also offers high availability capabilities



1108 C.-T. Yang et al.

Fig. 3 Dynamic resource
allocation

and scheduling policies [33]. Eucalyptus, OpenNebula, and Nimbus [22–24, 34] are
three major open-source cloud-computing software platforms. The overall function
of these systems is to manage the provision of virtual machines for cloud providing
infrastructure-as-a-service. These various open-source projects provide important al-
ternatives for those who do not wish to use a commercially provided cloud. In this
paper, we employed OpenNebula to implement the research platform.

OpenNebula is a virtual infrastructure engine that enables the dynamic deployment
and reallocation of virtual machines in a pool of physical resources. The OpenNebula
system extends the benefits of virtualization platforms from a single physical resource
to a pool of resources, decoupling the server from the physical infrastructure as well
as the physical location. OpenNebula contains one front-end and multiple back-ends.
The front-end provides users with access interfaces and management functions. The
back-ends are installed on Xen servers, where Xen hypervisors are started and vir-
tual machines could be backed up. Communications between front-end and back-end
employ Secure Shell (SSH). OpenNebula gives users a single access point to deploy
virtual machines on a locally distributed infrastructure.

2.6 Dynamic resource allocation

In our previous paper, we proposed a Dynamic Resource Allocation algorithm (DRA)
[25], which is one of the key components in this paper. In this work, we focus on en-
hancing Hadoop HA architecture problem; therefore, DRA is not described in detail
here. However, the purpose of DRA is to achieve the best balance of resource allo-
cation among physical machines. As shown in Fig. 3, to achieve the maximum effi-
ciency the resource must be evenly distributed. In order to avoid computing resources
centralizing on some specific physical machines, how to balance the resources be-
comes the most important issue.

2.7 Related works

Another choice to achieve fault tolerance is to use OpenVZ [35], which is container-
based virtualization for Linux. OpenVZ creates multiple secure and isolated contain-
ers on a single physical server, enabling better server utilization and preventing appli-
cations from conflicting. J. Walters et al. [18], proposed to use both check-pointing



On improvement of cloud virtual machine availability 1109

and replication in order to ensure the lowest possible check-pointing overhead. How-
ever, there are still some open issues about how to integrate check-pointing and fault-
tolerance systems into common cluster batch schedulers. But they still provide us a
nice practice to handle fault tolerance for virtualization on a single site.

G. Vallee et al. [20] proposed a framework to solve the fault tolerance issue. Such
a framework enables the implementation of various fault tolerance policies, including
policies presented in the literature that are not validated by experimentation; there-
fore, they presented a framework coupled with their fault tolerance simulator, and a
complete solution for the study of proactive fault tolerance policies. Their framework
prototype provides a single policy based on the Xen VM migration, but new policies
are still under development. This is the reason why framework needs to be managed
via VM management tools, such as OpenNebula [36]. As shown in this study, the
Xen VM migration issue has been solved under our framework.

Regarding to the Fault Tolerance mechanism on Hadoop, a good solution was pre-
sented by Cloudera [11]. Cloudera focused on providing various Hadoop solutions. In
2009, Christophe Bisciglia presented an article, “Hadoop HA Configuration,” which
implemented Headbeat and DRBD to enhance Hadoop HA, and showed how to ex-
tend it for visualization.

H. Zhong et al. [37] proposed an optimized scheduling algorithm to achieve the
optimization or suboptimization for cloud scheduling problems. In the same research,
the authors investigated the possibility to allocate VMs in a flexible way to allow the
maximum usage of physical resources. They used an Improved Genetic Algorithm
(IGA) for the automated scheduling policy. IGA uses the shortest genes and intro-
duces the idea of dividend policy in economics to select an optimal or suboptimal
allocation for the VMs requests. This paper has inspired us to find an optimized al-
gorithm to reach our goal.

Q. Chen et al. [38] proposed a Self-Adaptive MapReduce scheduling algorithm
(SAMR) that dynamically computes progress of tasks and automatically adapts to
continuously changing environments. SAMR tunes time weight of each stage of map
and reduces tasks based on historical information to trace the progress of tasks and
identify tasks that are in need of backup tasks.

3 System implementation

In this section, we introduce the system architecture and its components. OpenNeb-
ula plays a key role in the entire system; its most advantage is the Live Migration
function that is lacked in other virtualization management tools. In addition to the
Live Migration function from OpenNebula, we combined DRBD with Heart Beat to
enhance high availability of the system.

3.1 System overview

The system was mainly constructed based on the official OpenNebula manual. The
OpenNebula core orchestrates three different management areas: image and storage
technologies (i.e., virtual appliance tools or distributed file systems) to prepare disk



1110 C.-T. Yang et al.

Fig. 4 System overview

images for VMs, the network fabric (such as Dynamic Host Configuration Proto-
col servers, firewalls, or switches) to provide VMs with a virtual network environ-
ment, and the underlying hypervisors to create and control VMs. The core performs
specific storage, networking, or virtualization operations through pluggable drivers.
Thus, OpenNebula is not tied to any specific environment but provides a uniform
management layer regardless of the underlying infrastructure.

Figure 4 depicts an overview of our system architecture. As described, we built a
cluster system with OpenNebula and provided users a web interface to manage virtual
and physical machines. Our cluster system consists of four computers with same
specifications; hardware of these computers is equipped with Intel i7 CPU 2.8 GHz,
four gigabytes memory, 500 gigabytes disk, Debian operating system, and a gigabit
switch to connect to the network.

As depicted in the figure, from the bottom to the top of the infrastructure: hosts
are physical machines Debian 1 ∼ 3; Xen Hypervisors are suitable for Linux series
OS; the following up are two VMs: VM 2 is the primary node, and VM 1 is the
secondary node. But if we assume Hadoop NameNode is built on VM 1 as the pri-
mary node, VM 2 becomes the slave node of VM 1. Under the Heartbeat + DRBD
mechanism, we used 5 IPs to deploy the system; two for Cross Over, two for iden-
tifying the primary and secondary, and one for service. Finally, on the top layer, as
the key role of the entire design, OpenNebula provides a centralized platform as an
efficient and automatic deployment to control and monitor VMs on a distributed pool
of physical hosts. We also composed a web interface management tool via DRA and
OpenNebula’s components to manage VMs.

Due to limitation of the physical IP address, we built a private network envi-
ronment in our laboratory. To enable the HA mechanism, some preliminary works
needed to be done. First, we set the IPs on both virtual machines. IP 192.168.123.210



On improvement of cloud virtual machine availability 1111

Table 1 VM2—primary node network setting

IP setting Description

eth0 192.168.123.212 For identification of this machine

eth0:0 192.168.123.210 Service IP, controlled By Heartbeat to provide services for outside users

eth1 10.1.1.211 For data transfer controlled by DRBD

Table 2 VM1—secondary node network setting

IP setting Description

eth0 192.168.123.212 For identification of this machine

eth0:0 192.168.123.210 Service IP, controlled by Heartbeat, and
disabled when this machine is the secondary
node

eth1 10.1.1.212 For data transfer controlled by DRBD

Fig. 5 Networking configuration of primary and secondary nodes

is the Service IP controlled by Heartbeat, and is used to provide services for users. In
the configuration, VM 2 is the primary node (refer to Table 1 for its setting) and VM
1 is the secondary (refer to Table 2 for its setting), as shown in Fig. 5.

After downloading the DRBD package [30] and completely installing it, then we
could start to set DRBD config file in both two nodes with the setting as shown in



1112 C.-T. Yang et al.

Fig. 6 Part of drbd.conf content

Fig. 6. We show part of drbd.conf content in /etc/drbd.conf file. For the reminder,
consistent setting is needed in both the primary and secondary nodes.

Use below commands to check the DRBD state: #cat /proc/drbd or
#drbdadm state r0
There are many options available for the Heartbeat configuration. In the following,

we will show our methods. There are three main files that we edited to configure the
Heartbeat package:

• /etc/ha.d/authkeys
• /etc/ha.d/ha.cf /
• /etc/ha.d/haresources

First, authkeys should be same on both servers. Remember to change the permis-
sion as following instruction.
#chmod 0600 /etc/ha.d/authkeys



On improvement of cloud virtual machine availability 1113

Fig. 7 Part of ha.cf content

Fig. 8 Part of drbd.conf content

Second, the ha.cf file is used to define the general settings of the cluster. Our
example is shown in Fig. 7.

Finally, as shown in Fig. 8, the last file, ha resource, defines all cluster resources
that will fail over from one node to the next. The resources include the Service IP ad-
dresses of the cluster, the DRBD resource “r0” (from /etc/drbd.conf), the file system
mount, and the three Hadoop master node initiation scripts that are invoked with the
“start” parameter upon failover.



1114 C.-T. Yang et al.

3.2 Virtualization fault tolerant methodology

Our approach to managing VMs is based on an efficient mechanism to reach high
availability under limited resources. Apart from this, how to study fault-tolerance on
VMs and increase reliability are the other topics we want to address in this paper. In
order to provide continuous availability for applications in case of server failure, a
detection method is needed.

The virtualization fault tolerance (VFT) has three main phases: virtual machine
migration policy, information gathering, and keeping services always available.

Virtual Machine Migration Policy: it enables DRA to make sure best performance
in the distribution of the virtualization cluster.

Information Gathering: a detection mechanism is applied to retrieve all Hosts and
check whether Hosts are alive or not. We detect states of the hosts with a ping com-
mand every five minutes by running a Linux schedule via “crontab.”

Keeping Service Always Available: We assume that VM m is under the Heartbeat+
DRBD mechanism, and Host n is going to become an unavailable physical machine.
Once the Host n is shut down, if VM m is the secondary node, then it will be moved to
an on-line Host and booted automatically. If VM m is the primary node, then the sec-
ondary node will replace VM m as the primary node immediately. Next pre-primary
node will be booted on available host/hots and becomes secondary. In OpenNebula,
command onevm is used to submit, control, and monitor VMs. It helps us control
dead VMs and deploy them on other available physical hosts.

The workflow is shown in Fig. 9. However, there is a constraint that the number of
physical hosts must be no less than three. It is the basic requirement to achieve VFT
methodology and will be explained later.

This flow is implemented as one of the scheduled programs and deployed on the
front-end. It is reasonable to enhance this function on the front-end of OpenNebula,
because OpenNebula controls all VMs operations. Figure 10 depicts an example that
explains how our VFT approach is triggered under single-failure events.

First, if Host A is shut down by unexpected events, in few minutes later, the front-
end detects it and then triggers VFT. Next, the secondary node VM 2 becomes pri-
mary and handovers all services from preprimary, which is called as FAILOVER.
Finally, VM 1 is booted on Host C automatically and becomes the secondary node,
which is called as FAILBACK.

4 Experimental environment and results

4.1 Experimental environment

In our experimental environment, each server has same specifications. Table 3 lists
CPU, memory, and storages capabilities of the servers. We measured the basic ca-
pability of their performance with known benchmarks. Next, we completed our ex-
periment’s data via Apache JMeter. We designed experiments for measuring server
performance and throughputs as well. The well-known web application measurement
performance tool, “Apache JMeter” [39], one of Apache projects, is open-sourced



On improvement of cloud virtual machine availability 1115

Fig. 9 The flow of virtualization fault tolerance

Table 3 Hardware specification of lab servers

No Hardware lists

Model Cores CPU MHz Disk (Giga) Memory (Giga) Comments

1 Intel(R) Core(TM) i7
CPU 860@2.80 GHz

4 2800 500 4 Front-End

2 Intel(R) Core(TM) i7
CPU 860@2.80 GHz

4 2800 500 4 Back-End

3 Intel(R) Core(TM) i7
CPU 860@2.80 GHz

4 2800 500 4 Back-End

4 Intel(R) Core(TM) i7
CPU 860@2.80 GHz

4 2800 500 4 Back-End

software and a 100 % pure Java desktop application designed to test functional be-
havior and measure performance. It was originally designed to test Web Applications
but now has been expanded with other test functions.

4.2 Networking capability

In this section, we evaluate proposed architecture by studying the effect of virtual-
ization of the worker nodes and physical hosts. In order to quantify different network



1116 C.-T. Yang et al.

Fig. 10 The concept for how to trigger VFT

Table 4 Comparison of physical host and virtual machine networking performance

Networking transfer (KB/sec)

20 Threads 50 Threads 100 Threads

Debain 10 MB 70035.83 32750.53 36844.41

Xen 68865.80 29646.50 35545.68

Debain 50 MB 48174.20 38210.20 25922.33

Xen 46802.77 36307.15 24924.86

throughputs in local and remote nodes, we compare transfer times, using the HTTP
protocol, and of different file sizes between the physical host and virtual machine.
Under the same condition, Table 5 compares throughputs via the HTTP protocol with
various file sizes and threads. A significant result is confirmed in Tables 4 and 5: the
virtual machine performance is a little less than physical machine, but matches our
expectation. Figures 11 and 12 show the network performance and throughputs for
comparison of the physical host and virtual machine, respectively.

4.3 Life migration of virtual machine

We performed migration tests in an identical pair of server machines, each with eight
i7-Core 2.8 GHz CPUs and 4 GB memory. The machines were connected via a



On improvement of cloud virtual machine availability 1117

Fig. 11 Networking
performance of physical host
and virtual machine

Fig. 12 Throughputs between
physical host and virtual
machine

Table 5 Throughputs between physical host and virtual machine

Throughputs

20 Threads 50 Threads 100 Threads

Debain 10 MB 6.80 3.20 3.60

Xen 6.73 2.90 3.47

Debain 50 MB 0.94 0.75 0.49

Xen 0.91 0.71 0.49

switched Gigabit Ethernet. Before migration, daemon required 1 G space on each
host, thus, the maximum available memory space was 3 G for each host. There was
only one VM on Host-A, and no VM on Host-B; the VM on Host-A used 1 G mem-
ory space. We migrated the VM from Host-A to Host-B. Figure 13 shows variations
of memory usages of Host A, and Fig. 14 shows variations of memory usages of Host
B, respectively.

4.4 Hadoop NameNode failover

In this experiment, we used settings listed in Tables 6 and 7, then built HDFS on
a VM with one live node and 28.61 GB spaces. In this scenario, we monitored the
HDFS failover while downloading. Another tool for this test is FUSE [40] that is
chosen because it allows users to operate HDFS as a local disk.

When HDFS began downloading, the primary node (debian-ha1) was terminated
as expected. The downloading action was disconnected after about 10–20 seconds;
NameNode was then resumed on debian-ha2 automatically. This result only shows



1118 C.-T. Yang et al.

Fig. 13 Migration memory
state of Host-A

Fig. 14 Migration memory
state of Host-B

our design is working on Active/Standby states. However, due to the metadata con-
trolled by DRBD, the entire HDFS would not crash under unexpected system out-
ages. It is a real enhancement for Hadoop NameNode because there are lots of issues
related to NameNode failure problems after the unexpected system shutdown.

4.5 VFT experiment

In this scenario, we designed the experiment to validate if VMs automatically migrate
when the host is off-line, as shown in Fig. 15. The Service IP is used for providing
a service channel to external users. Users can access services through this IP, which
also named VIP in DRBD speaking. Node 2 is the primary node, and Node 1 is
the secondary. The difference between the primary and secondary node is that only
the secondary node is allowed to take over the service if the primary node is down.
Debian 1, Debian 2, and Debian 3 are the physical hosts. Node 2 lives on Debian 1;
and the secondary node, Node 1, on Debian 2.

Figure 16 shows that after Debian 1 is disconnected, the Service IP does not ter-
minate. Besides, only one packet is lost during the time when the failover behavior is
enabled. The reason is that the entire system is under the VFT mechanism in which
the secondary node can immediately replace the primary node if it is down. Finally,



On improvement of cloud virtual machine availability 1119

Fig. 15 VFT experiment environments

Table 6 Planned hosts

NO Hostname IP Address

1 debian-ha1 192.168.123.211

2 debian-ha2 192.168.123.212

Virtual hadoop.namenode 192.168.123.210

Table 7 Part of properties of hdfs-site.xml

Property Value Comments

dfs.data.dir /drbd/hadoop/hdfs/data On DRBD replicated volume

dfs.name.dir /drbd/hadoop/hdfs/namenode On DRBD replicated volume

fs.default.name hdfs:// hadoop.namenode:8020 Shared virtual name

mapred.job.tracker hadoop.namenode:8021 Shared virtual name

Node 2 is rebooted automatically in about 5 to 7 minutes and becomes secondary.
The benefit of VFT mechanism is to obtain a shortest downtime interval. Although
we cannot guarantee the integrity of data during the downtime period, we still can
reduce the downtime interval to provide a low-cost solution for enterprises.



1120 C.-T. Yang et al.

Fig. 16 Measurements of ping
loss

5 Conclusions

High-availability is achieved in Hadoop NameNode Active-Standby architecture. Un-
der this architecture, the service can be failed over when the primary node is failed.
The most valuable improvement in this paper is that by keeping at least three phys-
ical hosts available, then primary and secondary nodes will always exist. Therefore,
there are four main key features in this work: the first is Xen Hypervisor; the sec-
ond, OpenNebula; the third, DRBD with Heartbeat component; and the last, the VFT
mechanism. Each component is important and indispensable in our architecture. Sys-
tems with continuous availability mean comparatively higher priced, and most have
carefully implemented with special designs that eliminate any single point of failure
and allow online hardware, network, operating system, middleware, and application
upgrades, patches, and replacements. However, the future goal of this paper is to
extend our fault-tolerance work beyond failure management in order to enhance re-
sources utilization efficiency of virtualization clusters.

Acknowledgements This work is sponsored by Tunghai University, The U-Care ICT Integration Plat-
form for the Elderly, No. 102GREEnS004-2, Aug. 2013. This work was also supported in part by the
National Science Council, Taiwan ROC, under grant numbers NSC102-2218- E-029-002 and NSC101-
2218-E-029-004.



On improvement of cloud virtual machine availability 1121

References

1. Chaudhary V, Minsuk C, Walters JP, Guercio S, Gallo S (2008) A comparison of virtualization tech-
nologies for HPC. In: 22nd international conference on advanced information networking and appli-
cations, AINA 2008, pp 861–868

2. Rafael M-V, Ruben SM, Ignacio ML (2009) Elastic management of cluster-based services in the
cloud. In: Proceedings of the 1st workshop on automated control for datacenters and clouds,
Barcelona, Spain. ACM, New York, pp 19–24

3. Engelmann C, Scott SL, Leangsuksun C, He X (2008) 8th IEEE international symposium on symmet-
ric active/active high availability for high-performance computing system services: accomplishments
and limitations. In: Cluster computing and the grid, CCGRID ‘08, pp 813–818

4. Turner D, Xuehua C (2002) Protocol-dependent message-passing performance on Linux clusters. In:
IEEE international conference on cluster computing, proceedings, pp 187–194

5. Xen (2013) Available: http://www.xen.org/. Accessed 3 June 2013
6. Hadoop (2013) Available: http://hadoop.apache.org. Accessed 3 June 2013
7. Ning C, Zhong-hai W, Hong-zhi L, Qi-xun Z (2010) Improving downloading performance in hadoop

distributed file system. J Comput Appl. doi:10.1016/j.future.2008.07.009
8. Grossman RL, Gu Y, Sabala M, Zhang W (2009) Compute and storage clouds using wide area high

performance networks. Future Gener Comput Syst 25:179–183
9. Shafer J, Rixner S, Cox AL (2010) The hadoop distributed filesystem: balancing portability and per-

formance. In: IEEE international symposium on performance analysis of systems & software (IS-
PASS), White Plains, NY, pp 122–133

10. Mackey G, Sehrish S, Jun W (2009) Improving metadata management for small files in HDFS. In:
IEEE international conference on cluster computing and workshops, CLUSTER’09, pp 1–4

11. Cloudera. Available: http://www.cloudera.com
12. Xuhui L, Jizhong H, Yunqin Z, Chengde H, Xubin H (2009) Implementing WebGIS on hadoop: a case

study of improving small file I/O performance on HDFS. In: IEEE international conference on cluster
computing and workshops, CLUSTER’09, pp 1–8

13. White T (2012) Hadoop: The definitive guide. Storage and analysis at Internet scale, 3rd edn. O’Reilly
Media/Yahoo Press, Sebastopol

14. Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE
(2008) Bigtable: a distributed storage system for structured data. ACM Trans Comput Syst 26:1–26

15. Ghemawat S, Gobioff H, Leung S-T (2003) The Google file system. Oper Syst Rev 37:29–43
16. Engelmann C, Scott SL, Leangsuksun C, He X (2006) Active/active replication for highly available

HPC system services. In: The first international conference on availability, reliability and security,
ARES 2006, p 7

17. Fei-fei L, Xiang-zhan Y, Gang W (2009) Design and implementation of high availability distributed
system based on multi-level heartbeat protocol. In: IITA international conference on control, automa-
tion and systems engineering, CASE 2009, pp 83–87

18. Walters J, Chaudhary V (2009) A fault-tolerant strategy for virtualized HPC clusters. J Supercomput
50:209–239

19. Vargas E (2000) High availability fundamentals. Sun Microsystems, Santa Clara
20. Vallee G, Engelmann C, Tikotekar A, Naughton T, Charoenpornwattana K, Leangsuksun C, Scott SL

(2008) A framework for proactive fault tolerance. In: Third international conference on availability,
reliability and security, ARES 08, pp 659–664

21. Ang C-W, Tham C-K (2007) Analysis and optimization of service availability in a HA cluster with
load-dependent machine availability. IEEE Trans Parallel Distrib Syst 18:1307–1319

22. Dejan M, Liorente LM, Montero RS (2011) OpenNebula: a cloud management tool. IEEE Internet
Comput 15:11–14

23. Nurmi D, Wolski R, Grzegorczyk C, Obertelli G, Soman S, Youseff L, Zagorodnov D (2009) The
Eucalyptus open-source cloud-computing system. Presented at the proceedings of the 2009 9th
IEEE/ACM international symposium on cluster computing and the grid

24. Sempolinski P, Thain D (2010) A comparison and critique of eucalyptus, OpenNebula and Nimbus.
In: IEEE second international conference on cloud computing technology and science (CloudCom),
pp 417–426

25. Yang C-T, Cheng H-Y, Chou W-L, Kuo C-T (2011) A dynamic resource allocation model for virtual
machine management on cloud. In: Symposium on cloud and service computing

26. Piedad F, Hawkins M (2001) High availability, design, techniques and processes. Prentice-Hall, New
York

http://www.xen.org/
http://hadoop.apache.org
http://dx.doi.org/10.1016/j.future.2008.07.009
http://www.cloudera.com


1122 C.-T. Yang et al.

27. DRBD Official Site (2013) Available: http://www.drbd.org. Accessed 3 June 2013
28. Heartbeat—Linux High Availability (2013) Available: http://linux-ha.org/wiki/Heartbeat. Accessed

3 June 2013
29. Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, Neugebauer R, Pratt I, Warfield A (2003)

Xen and the art of virtualization. Oper Syst Rev 37:164–177
30. Hagen Wv (2008) Professional Xen virtualization, 1st edn. Wiley, New York
31. Yang C-T, Tseng C-H, Chou K-Y, Tsaur S-C (2009) A virtualized HPC cluster comput-

ing environment on Xen with web-based user interface. In: Second international conference,
HPCA 2009, Shanghai, China, 10–12 August 2009, pp 503–508. Revised Selected papers.
doi:10.1007/978-3-642-11842-5_70

32. Nagarajan AB, Mueller F, Engelmann C, Scott SL (2007) Proactive fault tolerance for HPC with Xen
virtualization. In: Proceedings of the 21st annual international conference on supercomputing, Seattle,
Washington. doi:10.1145/1274971.1274978

33. Montero RS, Moreno-Vozmediano R, Llorente IM (2011) An elasticity model for high throughput
computing clusters. J Parallel Distrib Comput 71:750–757

34. Sotomayor B, Montero RS, Llorente IM, Foster I (2009) Virtual infrastructure management in private
and hybrid clouds. IEEE Internet Comput 13(5):14–22

35. OpenVZ. Available: http://wiki.openvz.org/Main_Page
36. OpenNebula. Available: http://www.opennebula.org
37. Hai Z, Kun T, Xuejie Z (2010) An approach to optimized resource scheduling algorithm for open-

source cloud systems. In: Fifth annual ChinaGrid conference (ChinaGrid), pp 124–129
38. Chen Q, Zhang D, Guo M, Deng Q, Guo S (2010) SAMR: a self-adaptive MapReduce scheduling

algorithm in heterogeneous environment. In: 10th IEEE international conference on computer and
information technology, pp 2736–2743

39. Apache JMeter. Available: http://jakarta.apache.org. Accessed 3 June 2013
40. MountableHDFS. Available: http://wiki.apache.org/hadoop/MountableHDFS. Accessed 3 June 2013

http://www.drbd.org
http://linux-ha.org/wiki/Heartbeat
http://dx.doi.org/10.1007/978-3-642-11842-5_70
http://dx.doi.org/10.1145/1274971.1274978
http://wiki.openvz.org/Main_Page
http://www.opennebula.org
http://jakarta.apache.org
http://wiki.apache.org/hadoop/MountableHDFS

	On improvement of cloud virtual machine availability with virtualization fault tolerance mechanism
	Abstract
	Introduction
	Background review and related work
	Apache project: HADOOP
	High availability
	Fault tolerance technology
	Virtualization technologies
	Virtual machine management
	Dynamic resource allocation
	Related works

	System implementation
	System overview
	Virtualization fault tolerant methodology

	Experimental environment and results
	Experimental environment
	Networking capability
	Life migration of virtual machine
	Hadoop NameNode failover
	VFT experiment

	Conclusions
	Acknowledgements
	References


