
J Supercomput (2014) 68:339–364
DOI 10.1007/s11227-013-1042-4

Medical image segmentation with deformable models
on graphics processing units

Rigo Alvarado · Juan J. Tapia · Julio C. Rolón

Published online: 17 December 2013
© Springer Science+Business Media New York 2013

Abstract In this work, the parallel implementation of a segmentation algorithm based
on the gradient vector flow (GVF) deformable model in a graphics processing unit
(GPU) is presented. The proposed implementation focuses on the parallelization of
the computation of the GVF field. In order to make a performance comparison of
the proposed GPU algorithm, an OpenMP-based implementation is presented too.
We also present an analysis of the textures and global memory performance in the
computing of the GVF field. To improve the efficiency and the performance of the
active contour segmentation, a novel snaxel reallocation method is proposed. The main
advantage of the reallocation process is the small linear system needed to perform the
segmentation and its low computational load. To assure the convergence of the active
contour deformation, we propose a stopping criterion based on the root mean square
error for the iterative solution of the evolution equations.

Keywords GPU · CUDA · Deformable models · Segmentation · Snaxel reallocation ·
Medical image · OpenMP

1 Introduction

The segmentation of images is one of the most important stages in the digital image
analysis. Segmentation is a process in which the image is divided into regions that

R. Alvarado · J. J. Tapia (B) · J. C. Rolón
Instituto Politécnico Nacional, CITEDI Research Center, Avenida del Parque 1310,
Mesa de Otay, 22510 Tijuana, BC, México
e-mail: jtapiaa@ipn.mx; jjtapia@citedi.mx; juan.tapia@gmail.com

R. Alvarado
e-mail: ralvarado@citedi.mx

J. C. Rolón
e-mail: jcrolon@ipn.mx

123



340 R. Alvarado et al.

in general have irregular shape and that are separated by the contours that bound
those regions. Conceptually, the objective of the segmentation process is to separate
the different shapes, structures or objects that are located inside the image [1]. Some
applications of segmentation are face recognition, traffic control systems, fingerprint
recognition and medical image analysis.

The applications of medical image segmentation include the detection of tumors,
the measurement of tumor volume and its response to therapy over time and surgery
simulations, to name a few. In some cases, segmentation dictates the outcome of
the entire analysis, since measurements and other processing steps are based on the
segmented regions. Most of the segmentation methods are based on the intensity
of image pixels, though neural networks and model-based algorithms are used as
segmentation tools too [1,2].

Deformable models, also known as active contours, are the most commonly model-
based technique [3–5] used in medical image processing. Their spread use stems
from their ability to incorporate a priori information about the regions of interest
within the image. Furthermore, deformable models support interaction mechanisms
that enable medical personnel to modify their behavior when necessary [6]. These
characteristics allow the use of deformable models for different image processing
tasks such as segmentation, tracking and matching [7,8]. Deformable models can be
applied to different medical images sources, e.g. magnetic resonance (MRI), computed
tomography (CT) or radiography.

Although the computational load of their algorithm is commonly considered as
a drawback to the use of deformable models in some applications, with the advent
and widespread use of high-performance computing (HPC) platforms like graphics
processing units (GPUs), parallel real-time applications for deformable models are
nowadays attainable.

There are many works that involve the implementation of deformable models on
GPU cards. In [9], one of the first OpenGL attempts to parallelize on a GPU the
gradient vector flow (GVF) field computing is presented. Zheng and Zhang [10] made
a GVF deformable model implementation on a GPU that uses texture arrays for the
computation of the GVF field and for the iterative solution of the evolution equations.
Perrot et al. [11] presented a large image segmentation algorithm based on a statistical
deformable model implemented on a GPU. In Li et al. [12], implemented a variation
of the Geodesic deformable model on a GPU. Smistad et al. [13] made a performance
analysis for the GPU memory spaces applied to the GVF field computation. The
segmentation on large images using a tile approach with the GVF active contour
is presented in [14]. Other GPU-based image processing works are Češnovar et al.
[15] where the authors used semantic classification on large datasets of aerial-images
and Valero et al. [16] where the authors presented a Markov Random Fields (MRF)
classification of MRI images. Despite its wide use, some research groups and vendors
have made attempts to define APIs and languages that simplify the GPU programming
in an effort to make it accessible to a large audience, as can be seen in [17]. Besides
these GPU-based implementations, some other HPC architectures had been used in
the implementation of deformable models, e.g. Lenkiewicz et al. [18] presented a
deformable model segmentation algorithm designed for computer clusters or multi-
core architectures.

123



Medical image segmentation on GPU 341

In general, an author presents tables with execution times as proof of the success
in the GPU implementations. Nevertheless, although the timing values are the most
important issue to consider in parallel implementation, a set of other computational
metrics will provide a better evaluation of a given implementation. In [19] the authors
defined four important criteria for the evaluation of GPU implementations: perfor-
mance, programming comfort, accessibility, and cost-effectiveness. Pallipuram et al.
[20] made a comparative study of GPU architectures and programming models to
determine which platform is the most suitable for a given application. In order to
improve the efficiency of GPU applications that involve a large quantity of data trans-
fers between the CPU and GPU, in [21] a convolution for audio applications with the
overlapping of data transfer and computational work is presented.

However, some of the cited papers only focus on the GVF field computing and not
in a segmentation process. Other works use image processing techniques outside the
deformable models theory and other researches only focus on the GPU implementation
evaluation. Although a segmentation technique comparison is beyond the scope of
this paper, in this investigation we focus on the efficient computation of the GVF
field and also in the segmentation results applying deformable models. To address
the performance analysis we make a comparison between the parallelization of the
GVF field computing with OpenMP and CUDA; to improve the efficiency of the
segmentation process of the GVF active contour we proposed a snaxel reallocation
approach based on a dynamic mesh adaptation.

Therefore, the main contributions of this work are (1) the objective analysis of the
GVF field computing on CPU and GPU and (2) the improvement of the segmentation
process with the proposed dynamic snaxel reallocation. Besides the OpenMP and
CUDA comparison, we also present an analysis of the GVF field computing using
textures and global memory. It is important to clarify that though the GVF snake
could be formulated as an interactive segmentation tool, we did not consider it that
way because we focus on the acceleration of the algorithm, so we designed it as an
autonomous segmentation tool.

In Sect. 2 an introduction to the theory of deformable models is presented. The
original active contour of Kass et al. [24] as well as the GVF active contour [22]
is described. The proposed snaxel reallocation approach is described in this section
too. Section 3 presents a brief introduction to the CUDA programming model and
the GPU general architecture. Section 4 details the parallel implementations that we
proposed and the implementation of our snaxel reallocation method. Section 5 presents
the experimental results of the proposed reallocation technique, the medical images
segmentation and the metrics that we defined to evaluate our implementations; finally,
these results are discussed in Sect. 6.

2 Deformable models

Deformable models are differential equations that determine the shape and movement
of curves (in the case of 2-dimensional signals) or surfaces (in the case of 3-dimensional
signals) built of an abstract elastic material. The physical interpretation of a deformable
model is that of an elastic body that responds to the forces applied on it [6,23].

123



342 R. Alvarado et al.

In a segmentation process, the interpretation of a deformable model is that of an
elastic curve that is introduced into an image plane. The curve deforms from its initial
configuration due to external and internal forces applied to it, until its shape resembles
the boundary of a region of interest within the image. In [24], due to its behavior, the
most common deformable model is called snake.

2.1 Traditional active contour

The traditional active contour or snake is defined in [6] as a contour that is embedded
in the image plane IM (x, y) ∈ R2. The position of the active contour is v(s) =
(x(s), y(s))T, where x and y are coordinate functions and s ∈ [0, 1] is the parametric
domain. Snakes can be formulated as open or closed contours. The shape of the active
contour within the image IM (x, y) is determined by the energy functional [6,24]

ε(v) = S(v) + P(v), (1)

where S(v) is the internal deformation energy and P(v(s)) represents the external
deformation energy. The internal deformation energy of the active contour is defined
in [6] as

S(v) =
1∫

0

(α(s)|vs|2 + β(s)|vss|2) ds. (2)

The term vs denotes the first derivative of v with respect to s and represents the elasticity
of the active contour. The term vss represents its rigidity and denotes the second
derivative of v with respect to s. Two non-negative functions define the behavior of
the physical energies that are simulated on the active contour: α(s) controls the elastic
tension of the contour and β(s) controls its rigidity [6]. The tension energy models
the behavior of a rubber band and the rigidity energy models the behavior of a flexible
bar.

Minimizing α(s)|vs|2 causes the contraction of the active contour down to a point;
the minimization of β(s)|vss|2 causes the active contour to take a circular shape in the
case of a closed contour or a straight line in the case of an open contour [25]. This
implies that, given an initial size of the active contour and assuming that the external
force is null, the snake will never grow; it will only tend to form a circle, in the case
of a closed contour, while shrink towards its center.

The second term of Eq. (1) is the external deformation energy of the active contour
that couples the snake to the image. It is defined as

P(v) =
1∫

0

P(v(s)) ds, (3)

where P(x, y) is a scalar function defined on the image plane [6]. P(x, y) is called
external energy because is obtained from sources outside the contour and is commonly
calculated as

123



Medical image segmentation on GPU 343

P(x, y) = −|∇[Gσ (x, y) ∗ IM (x, y)]|, (4)

where IM (x, y) is the image and Gσ (x, y) is the Gaussian filter

Gσ (x, y) = 1

2πσ 2 exp

(
−|x |2 + |y|2

2σ 2

)
. (5)

The active contour v(s) that minimizes the energy functional of Eq. (1) satisfies the
Euler–Lagrange equation

− αvss(s) + βvssss(s) + ∇ P(v(s, t)) = 0. (6)

Equation (6) expresses the balance of the internal and external forces of the snake
in equilibrium state, i.e. when the active contour is steady. Each term of Eq. (6)
corresponds to a force produced by the respective energy. The first two terms represent
the internal stretching and bending forces respectively, while the third term represent
the external force that couples the snake to the image [6]. To completely specify the
mathematical model of Eq. (6), it is assumed that the boundary conditions are known
(see e.g. the conditions in [3,26,27])

v(0), v(1), v′(0), v′(1). (7)

In the discrete domain, the contour v is represented by a set of points called snax-
els. The discretization of Eq. (6) produces the iterative equations that calculate the
Cartesian coordinates of the snaxels. These discrete iterative equations are

xt+1 =
(

I

�t
+ A

)−1 (
κ fxt + xt

�t

)
, (8)

yt+1 =
(

I

�t
+ A

)−1 (
κ fyt + yt

�t

)
, (9)

where I is the identity matrix, A is the sparse differentiation matrix that represents
vss(s) and vssss(s),�t is the time step of the iterations and κ is a constant used to
control the external force influence [22]. The addition of the matrix I

�t to the matrix
A makes it non-singular so it can be inverted. The matrices I and A are of size N 2

with N the number of points of the initial active contour. The terms fx = − ∂ EI
∂xi

and

fy = − ∂ EI
∂yi

of Eqs. (8) and (9) respectively depend on the calculation of the external
energy of Eq. (4) [6].

The use of a gradient-based external energy function like Eq. (4) produces large
energy values over and in the close neighbourhood of the contours of the image. This
characteristic, together with the behavior of the internal forces, gives the traditional
snake two main drawbacks: (1) the need for an initialization process that places the
snake close to the region of interest, and in the case of a closed contour outside the
region of interest so that eventually the snake will find it and (2) the incapacity of the
snake to progress into boundary concavities [5]. The reason behind these limitations

123



344 R. Alvarado et al.

is the small capture range produced by Eq. (4). The capture range is defined as the
area of influence of the contour in which the snake is able to find a local minimum; its
extension is closely related to the external energy.

To address the problems of small capture range and convergence in boundary con-
cavities, the GVF snake proposed in [22] is one of the most used methods [5–7]. This is
due to its effective improvement in capture range extension and its ability to converge
inside boundary concavities. In fact, some investigations about deformable models are
related to modifications and improvements to the original GVF snake proposal [6,28].

2.2 Gradient vector flow active contour

The GVF active contour represents an improvement to the snake defined by Eq. (6).
The improvement is a vector field w(x, y) = [u(x, y), v(x, y)] that represents the
external force. Therefore, the equation that models the GVF active contour is [22]

− αvss(s) + βvssss(s) + w = 0. (10)

Equation (10) is solved numerically in the same way as Eq. (6). In the case of the
GVF model, w is a vector field, moreover, it is the gradient vector flow field; this is
the main difference with respect to the traditional active contour model of Eq. (6). The
GVF field solves the problems of small capture range and convergence in boundary
concavities associated to the active contour of Kass. It is a dense vector field derived
from an image by the minimization of an energy functional. The vector nature of w is
the improvement of the GVF model over the original active contour model that makes
the former more efficient [22].

Unlike the traditional snake, a GVF snake could be initialized inside, across or
outside the region of interest. This is because the GVF field produces a wide capture
range which is the product of an isotropic diffusion process that does not blur the
edges within the image, as a Gaussian filter would do [5,22].

The external force used in the formulation of the traditional snake is an irrotational
field and that is why the snake is unable to converge inside boundary concavities.
The GVF field incorporates an irrotational component and also a curl component so
it outperforms the traditional snake [22].

The GVF field formulation focuses on keeping the gradient properties nearby the
edges within the image and on extending the scope of the normal vectors of the edges
beyond their nearby regions through a diffusion process. This process produces an
external force with a significative magnitude over the whole image plane, not only
in the edges neighborhood [3]. Due to the competition among the vectors of edges
that involves a diffusion process on an image, some of the vectors of the GVF field,
according to the geometry, point inward the concavities. This particular feature solves
the problems of the capture range and the lack of convergence inside the concavities
of the snake of Kass [22].

The first step to calculate the vector field w is to obtain the contour map f (x, y)

derived from the image IM (x, y). The contour map is a potential function defined over

123



Medical image segmentation on GPU 345

the image whose value is larger near the image edges. In this work, the Canny edge
detector [29] is used to generate the contour map.

The GVF field is defined as the vector field w(x, y) = [u(x, y), v(x, y)] that
minimizes the energy functional

ε =
∫ ∫

μ(u2
x + u2

y + v2
x + v2

y) + |∇ f |2|v − ∇ f |2 dxdy (11)

where f (x, y) is the contour map of the image; ∇ is the gradient operator; μ is a
positive parameter of regularization; u(x, y) and v(x, y) are functions that represent
the GVF field components; and ux , uy , vx and vy represent the partial derivatives of
u(x, y) and v(x, y) with respect to x and y, respectively [5,22]. The energy functional
of Eq. (11) keeps w ≈ ∇ f when ∇ f is large; otherwise, it produces a slowly varying
field in the homogeneous regions [22].

Applying the calculus of variations to Eq. (11), the equation that solves u(x, y)

(Eq. 12) and the equation that solves v(x, y) (Eq. 13) are obtained [1,22]

μ∇2u − (u − fx )( f 2
x + f y2) = 0, (12)

μ∇2v − (v − fy)( f 2
x + f 2

y ) = 0, (13)

where ∇2 is the Laplacian operator. The solution of Eqs. (12) and (13) generate the
vector field w. To implement the GVF snake model, the vector field w is computed
first. Next, Eqs. (8) and (9) are used to minimize Eq. (10).

From Eqs. (12) and (13), the components u(x, y) and v(x, y) of the GVF field are

ut (x, y, t) = μ∇2u(x, y, t) − [u(x, y, t) − fx (x, y)][ fx (x, y)2 + fy(x, y)2],
(14)

vt (x, y, t) = μ∇2v(x, y, t) − [v(x, y, t) − fy(x, y)][ fx (x, y)2 + fy(x, y)2],
(15)

where the Laplacian is approximated in the discrete domain using centered finite-
difference equations

∇2u = ui−1, j + ui+1, j + ui, j−1 + ui, j+1 − 4ui, j , (16)

∇2v = vi−1, j + vi+1, j + vi, j−1 + vi, j+1 − 4vi, j . (17)

The iterative condition of Eqs. (14) and (15) is denoted by t . The capture range of
the GVF field is determined by these iterations, i.e. the produced field is proportional
to the number of iterations. This way of controlling the capture range enables the
GVF method to eliminate the location dependency for the initial active contour. If a
certain shape of interest is not included or is partially included in the initial snake, the
GVF field will allow deformations of the initial active contour to include the shape. If
the shape of interest is located completely out of the initial active contour, it is even
possible that the complete snake moves towards the shape to capture it, provided there
are not additional shapes in the neighbourhood.

123



346 R. Alvarado et al.

Because the mathematical formulation of the GVF snake is similar to the formula-
tion of the traditional snake, the GVF snake inherits some limitations, e.g. the sensi-
tivity of the internal energy parameters [6,30]. However, the main drawback of GVF
snake is the large number of arithmetic operations involved, which directly affects its
computation time [28].

As the evolution of Eqs. (14) and (15) depends only on current information, the
numerical solution of these equations produce explicit discrete iterative equations. At
each iteration, there is no data dependency between the elements of the component
u(x, y); this is also true for the v(x, y) elements. For this reason, the GVF field can be
computed in parallel on a high-performance computing platform and this way reduce
the computation time of GVF snake algorithm.

2.3 Dynamic snaxel reallocation

One problem associated with the snake formulation is the inadequate grouping of
snaxels of a closed contour. At certain sections of a boundary, the snaxels tend to
group together into clusters whereas in some other regions they tend to separate from
each other. This inadequate distribution is illustrated in Fig. 1.

As shown in Fig. 1, the white snaxels are relatively apart from each other whereas the
black snaxels are clustered. This effect is not contemplated in the energy functional of
the snake although it can derive into unwanted behavior of the active contour, leading
to an incorrect final segmentation result. Even when the tension term α of Eq. (6) can
be viewed as the internal force that somehow controls the spacing between snaxels, the
overall effect of the total forces that affect each snaxel leads to the spacing problems
described.

Consider the contour of Fig. 1 and the case where the tension force is set to a
relatively higher value than the other forces. Under this condition, large spaces between
the snaxels are not expected but on the other hand, the snake will not be able to converge
inside the concave region. This is because the internal tensional force between the
snaxels is greater than the external force of the boundary of interest and therefore, the
snaxels placed over the contour in the proximity of the concave region will not allow
the snaxels placed near the concave region enter it. On the contrary, if α is set to a
relatively lower value than the other forces, the snake will be able to converge inside
concave regions, but the spacing problems shown in Fig. 1 will be present. In order to
solve this problem, a mesh adaptation approach for the snaxels is necessary.

In general, a mesh adaptation can be static or dynamic. In the static method, also
known as local mesh refinement, some nodes are added wherein the solution has high

Fig. 1 Typical distribution of
snaxels over a border

123



Medical image segmentation on GPU 347

Fig. 2 a Parametric closed contour and b normalized arc length of a contour

gradient values and are removed from regions where the solution is almost constant.
In the dynamic approach, the number of nodes is fixed and they are only re-allocated
based on the characteristics of the solution.

Consider the parametric contour v of Fig. 2a. As we are considering only closed
contours, v(s1) = v(s9). In Fig. 2a it is clear that the points over the plane are not
equally spaced and this condition is reflected over the s domain. It is also clear that
each point of v is defined as v(si ) = vi (xi , yi ) and thus, any movement of the si points
will be reflected in the configuration of the contour v. Considering these conditions,
a mesh adaptation technique can be applied over the s domain to equidistribute the
si points and hence, the points that form the contour v. However, the problem with
this approach is the transformation of the si values into the corresponding (xi , yi )

coordinates, i.e. a R → R
2 transformation.

To solve the mesh adaptation issue the normalized arc length value between the
points of v contour is used; the slope value between the ordered pairs (x, y) of con-
secutive v points is used to perform the R → R

2 mapping. According to the s domain
sequence, the arc length and the slopes values of the v points are computed in a
counterclockwise sense on the plane.

The arc length is calculated as li =
√

�x2
i + �y2

i where �xi = xi+1 − xi and

�yi = yi+1 − yi . The normalized arc length is defined as l ′i = li
LT

and is used to
determine the position of each si point over the s domain. LT is defined as the total
length of the contour. Figure 2b shows the normalized arc length for the contour v
illustrated in Fig. 2a.

To perform the mesh refinement over the s domain a nodal reallocation approach
is used. The arc length is utilized as the mesh adaptation function that drives the mesh
adaption process, with larger values denoting a region for refinement and smaller values
denoting a region for mesh coarsening. The arc length function is passed through the
equation

li = 1

4
(li−1 + 2li + li+1) (18)

to promote smoothness of the mesh adaptation. Once the adaptation function has been
smoothed, it is used to define a spring constant ki+ 1

2
= 0.5(li + li+1) that connects the

123



348 R. Alvarado et al.

Fig. 3 st
i and st+1

i after mesh
adaptation

si points. The relation of the k values that affects each si point is ki− 1
2
(si − si−1) =

ki+ 1
2
(si+1 + si ). Points with higher arc length values will have higher spring constants

and thus promote refinement in that region. The new positions are then solved for
according to

st+1
i =

ki− 1
2
st

i−1 + ki+ 1
2
st

i+1

ki− 1
2

+ ki+ 1
2

. (19)

It has to be noted that the proposed nodal reallocation allows using the same dif-
ferentiation matrix of the snake throughout the process of deformation because the
number of snaxels remains constant. Also, this dynamic mesh adaptation approach
makes relatively unnecessary the use of a large number of snaxels due to the better
distribution of them over the boundary of a region of interest. Therefore, it is not
necessary to use a large number of snaxels and as a consequence, the linear sys-
tems to be solved are relatively small and do not represent a high computational
load.

Once the mesh adaptation is completed, the R → R
2 mapping is computed. The

slope values between each point of the contour v and the recently adapted mesh are
used to perform this transformation. Refer to Fig. 3 where the mesh adaptation process
is illustrated. The superindices t and t + 1 are used to differentiate the old and new
positions of the si points. Note that the st

i points correspond to the contour v of Fig. 2a.
The first step is to determine the interval where each st+1

i point is located, i.e. to find
out between which st

i points is placed. After that, the corresponding (x, y) ordered
pairs of these adjacent st

i points are determined. The abscissa and ordinate values can
be represented as functions of si with their respective slope mi . These slopes are used
to compute the (x, y) values corresponding to the st+1

i points. Refer to Fig. 4 where
the approximate value of the ordered pair (x, y) for each of the st

i points of Fig. 2a is
presented as function of s. The slopes formed by the (x, y) values and the st+1

i points
are shown too.

The abscissa and ordinate values corresponding to each st+1
i point are found by

x − xi = mabs(s
t+1 − st

i ), y − yi = mord(s
t+1 − st

i ) (20)

where

mabs = x(st
i+1) − x(st

i )

st
i+1 − st

i
, mord = y(st

i+1) − y(st
i )

st
i+1 − st

i
(21)

123



Medical image segmentation on GPU 349

Fig. 4 Abscissa and ordinate
values as functions of s

Fig. 5 Result for snaxel reallocation

and the sub-indexes i and i + 1 correspond to the left and right adjacent st
i points

respectively.
The result of the R → R

2 mapping described is shown in Fig. 5. It can be seen that
the new positions of the snaxels are better distributed over the image than the originals
(Fig. 2a) and therefore, represent a better approximation of the border of the region of
interest within the image.

3 Graphic processing units

High-performance computing refers to the use of parallel processing platforms in the
solution of computational intensive problems efficiently, reliably and quickly. Parallel
platforms include clusters, multicore architecture and hybrid systems [31].

123



350 R. Alvarado et al.

Recently, semiconductor industry has settled on two main design lines for micro-
processors: the multicore processors and the manycore processors. By their definition,
a multicore processor can have up to tens of cores, whereas a manycore processor has
hundreds and even thousands of cores [32]. A CPU is an example of a multicore
processor; GPUs are an example of a manycore processor.

The ratio between GPUs and multicore processors for peak floating-point operations
(FLOPS) is about 10–1 [33]. The reason for this gap in their performance lies in their
architecture: a CPU is a processor designed for sequential code execution whereas the
GPU design is conceived to increase the execution throughput of parallel applications.
The higher memory bandwidth of the GPU is also an important feature that contributes
to the performance gap [32].

3.1 CUDA

CUDA is a parallel computing architecture for general purpose as well as a parallel
programming model that offers high-level access to the GPU. CUDA allows the use
of a GPU to solve computationally intensive problems in a more efficient way than
with a CPU [34].

The CUDA programming model allows the transparent scalability of applications
through GPUs with different number of cores. The base to get this transparent scalabil-
ity are three key abstractions: a hierarchy of threads groups, shared memory and barrier
synchronization. These abstractions allow the programmer to partition the problem
into thread blocks that can be solved independently. The thread blocks can be consid-
ered as sub-problems and are executed in the available GPU cores, in any order and
in parallel or sequential manner. This independence of the thread block execution is
the characteristic that allows the scalability of the CUDA applications [34,35].

The CUDA programming model enables the use of a GPU as a co-processor of the
CPU. In this context, the GPU is called device and the CPU is called host, as it is
shown in Fig. 6. A CUDA program is composed of sequential code sections for the

Fig. 6 CUDA heterogenous programming model

123



Medical image segmentation on GPU 351

host and parallel code sections for the device. In the parallel code sections, thousands
of threads are executed concurrently to reduce the computation time [32].

In a CUDA program the main thread is executed in the host, as it is shown in
Fig. 6. When a kernel is called, the execution is moved from the host to the device
where a massive number of threads are executed concurrently to perform the parallel
operations. A kernel is a subroutine that is executed K times by K threads within the
device [32]. The threads generated by a kernel are grouped in thread blocks, and the
total of thread blocks within a kernel is called a grid. The kernel calls are asynchronous,
which implies that after the invocation of a kernel, the host can execute the rest of the
sequential code or just wait for the termination of the kernel execution [32].

3.2 Optimization strategies

The optimization of a CUDA program is based on three main aspects: maximize
parallel execution, optimize memory usage to achieve maximum memory bandwidth,
and optimize instruction usage to achieve maximum instruction throughput [34,36].

The most important rule to optimize the memory space usage of the GPU is to
minimize the data transfer operations between the CPU and the GPU, because these
memory operations have a lower memory bandwidth than the internal transfers within
the GPU. It is also important to minimize the kernel access to the global memory
and maximize the use of the shared memory. For a detailed description of many other
optimization strategies see [36].

4 Parallel implementation of the GVF snake

The proposed scheme for the parallel implementation of the GVF snake is shown in
Fig. 7. We implemented this scheme twice with the parallel frameworks OpenMP and
CUDA to do a performance comparison between them. Our approach focuses on the

Fig. 7 General scheme of GVF parallel computation

123



352 R. Alvarado et al.

Algorithm 1 Pseudo-code for OpenMP implementation of GVF computation
#pragma omp parallel {
for 0 < I T E R do

#pragma omp master {
ut+1 = μ�t∇2ut − [ut − f x2][ f x2 + f y2]; No-flux boundary conditions
vt+1 = μ�t∇2vt − [vt − f y2][ f x2 + f y2];

}
#pragma omp for schedule(Dynamic, 16)
for m = 1 < N − 1 do

for n = 1 < N − 1 do
ut+1 = μ�t∇2ut − [ut − f x2][ f x2 + f y2];
vt+1 = μ�t∇2vt − [vt − f y2][ f x2 + f y2];

end for
end for
#pragma omp master {
memcpy(ut , ut+1);
memcpy(vt , vt+1);

}
end for
}

parallelization of the GVF field computation, which is denoted as the A-box of Fig. 7.
Due to the dynamic reallocation feature proposed, the solution of Eqs. (8) and (9) is
performed sequentially as only relatively small linear systems are used to compute
the snake deformation. The other less demanding operations, e.g. image reading and
writing, are executed sequentially too. The GVF field is computed via the Eqs. (14)
and (15). The OpenMP and CUDA codes for this parallel section are detailed below.

4.1 OpenMP computation of the GVF field

For the case of the OpenMP implementation, the A-box of Fig. 7 represents a parallel
for. Algorithm 1 contains the pseudo-code used.

We tested many configurations for the OpenMP implementation following the opti-
mizations recommended in [37] and the structure presented in Algorithm 1 produced
the best results in terms of overhead, CPU usage, thread concurrency and execution
time. Table 3 comprises the timing value results for each of the images used.

The omp parallel directive is placed outside the main loop to reduce the overhead
produced by the creation of parallel regions. The computation of the boundary values of
the u and v components and also the update process of these components is performed
sequentially by the master thread.

The omp for directive is used to make the computing of the u and v components
in parallel. Each thread computes chunks of 16 loop iterations and the scheduling of
these chunks is dynamic, i.e. the thread executes the chunk of iterations then requests
another chunk until there are no more chunks to work on [37].

An OpenMP implementation represents a coarse-grain parallel approach, in which
each thread computes the GVF field of hundreds of pixels sequentially, i.e. only few
pixels are computed concurrently.

123



Medical image segmentation on GPU 353

Algorithm 2 Pseudo-code for CUDA implementation of GVF computation using
textures

for 0 < I T E R do
GVF<<< blocksi ze, gridsi ze >>> (u, v, μ, �t, N );
cudaMemcpyT oArray(texu, u, cudaMemcpy DeviceT oDevice);
cudaMemcpyT oArray(texv, v, cudaMemcpy DeviceT oDevice);

end for
normalization<<< blocksi ze, gridsi ze >>> (u, v, N );
__global__ GVF (u, v, μ, �t, N ) {
id = block I dx .x ∗block Dim.x + thread I dx .x +block I dx .y ∗block Dim.y ∗ N + thread I dx .y ∗ N ;
x = thread I dx .x + block I dx .x ∗ block Dim.x;
y = thread I dx .y + block I dx .y ∗ block Dim.y;
u[id] = texux,y + μ ∗ �t ∗ (texux−1,y + texux+1,y − 4 ∗ texux,y + texux,y−1 + texux,y+1) −

((texux,y − tex f xx,y) ∗ tex f x f yx,y);
v[id] = texvx,y + mu ∗ �t ∗ (texvx−1,y + texvx+1,y − 4 ∗ texvx,y + texvx,y−1 + texvx,y+1) −

((texvx,y − tex f yx,y) ∗ tex f x f yx,y);
}
__global__ normalization (u, v, N ) {
id = block I dx .x ∗block Dim.x + thread I dx .x +block I dx .y ∗block Dim.y ∗ M + thread I dx .y ∗ N ;
nz = 0.0000000001 f ;
temp1 = u[id];
temp2 = v[id];
temp3 = sqrt (temp1 ∗ temp1 + temp2 ∗ temp2);
u[id] = temp1/(temp3 + nz);
v[id] = temp2/(temp3 + nz);

}

4.2 CUDA computation of the GVF field

For the CUDA implementation, the A-box in Fig. 7 represents a loop that contains
kernel calls. The loop is controlled by the host whereas the kernels called within it are
executed on the device. Algorithm 2 contains the pseudo-code used.

The computing of the GVF field with a GPU involves the solution of Eqs. (8) and
(9) on each pixel of the image matrix IM (x, y) using a scheme of one pixel per thread.
This approach of data mapping facilitates the pixel distribution into thread blocks,
which is the base of the CUDA programming model. This way, unlike the sequential
implementation of the GVF snake in which the execution thread must calculate the
GVF field of one pixel at a time or the OpenMP implementation described in Sect. 4.1,
the GPU implementation allows the parallel computation of the GVF field on thousands
of pixels concurrently. Figure 8 shows the model of one pixel per thread for an image
of 10 × 10 pixels. It is shown how the image is divided into blocks and the way each
block is assigned a set of threads.

Because the equations for the components u and v of the GVF field involve access
to data in a regular pattern (a central pixel and 4 of its neighbors), the necessary data are
copied to the GPU memory as textures. Textures facilitate access to two-dimensional
data, automatically handle the non-valid spatial locations and in some cases improve
the computing time as a result of their cache. The kernels that are called to compute
the GVF field (A-box of Fig. 7) are detailed in Algorithm 2. After the memory transfer
from the host to device, the host starts a loop and the kernel GVF<<< · · · >>> is
called once per iteration. This kernel computes the Eqs. (14) and (15). After completing

123



354 R. Alvarado et al.

Fig. 8 One pixel per thread scheme

the specified number of iterations, the kernel normalization<<< · · · >>> is called
to normalize the u and v components to the range [−1, 1].

The Algorithm 3 presents the pseudo-code for the global memory version. To
properly compute the Laplacian of the boundaries of the image, we used temporal
arrays utemp and vtemp with an increased size by two pixels on each axis, i.e. if the
original image is 256 × 256 pixels in size, we set the temporal images as 258 × 258
pixels in size. The extra columns and rows are filled with zeros. To identify each
thread correctly a padded thread ID is used. By utilizing this approach, the use of
if statements is not required to avoid non-valid spatial conditions and this prevents
thread divergence in the kernels. In Algorithm 3, the index id points to the original
image locations. The index ida points to the temporal arrays of increased size.

4.3 Computation of the snake deformation and dynamic snaxel reallocation

After computing the GVF field, the initial contour for v and the differentiation matrix
A are created.

The snake deformation is driven by the iterative solution of Eqs. (8) and (9) which
can be represented as the linear systems xt+1 = Bb and yt+1 = Bc respectively
where

B =
(

I

�t
+ A

)−1

, b =
(

κ fxt + xt

�t

)
, c =

(
κ fyt + yt

�t

)
, (22)

I is the identity matrix and �t is the time step.
The root mean square error (RMSE) is proposed as the stopping criterion for the

deformation of the snake. The equation used is

RMSE =
√∑k

i=1(v
t+1
i − vt

i )
2

k
(23)

where k is the number of snaxels.

123



Medical image segmentation on GPU 355

Algorithm 3 Pseudo-code for CUDA implementation of GVF computation using
global memory

for 0 < I T E R do
boundaries<<< blocksi ze, gridsi ze >>> (u, v, utemp, vtemp, N );
GVF<<< blocksi ze, gridsi ze >>> (u, v, utemp, vtemp, f x, f y, f x f y, μ,�t, N );

end for
normalization<<< blocksi ze, gridsi ze >>> (u, v, N );
__global__ boundaries (u, v, utemp, vtemp, N ) {
id = block I dx .x ∗block Dim.x + thread I dx .x +block I dx .y ∗block Dim.y ∗ N + thread I dx .y ∗ N ;
newsi ze = N + 2;
ida = newsi ze∗block Dim.y ∗block I dx .y +newsi ze∗ thread I dx .y +block Dim.x ∗block I dx .x +

(thread I dx .x + 1) + newsi ze;
utemp[ida] = u[id];
vtemp[ida] = v[id];

}
__global__ GVF (u, v, utemp, vtemp, f x, f y, f x f y, μ,�t, N ) {
id = block I dx .x ∗block Dim.x + thread I dx .x +block I dx .y ∗block Dim.y ∗ N + thread I dx .y ∗ N ;
newsi ze = N + 2;
ida = newsi ze∗block Dim.y ∗block I dx .y +newsi ze∗ thread I dx .y +block Dim.x ∗block I dx .x +

(thread I dx .x + 1) + newsi ze;
u[id] = utemp[id] + μ ∗ �t ∗ (utemp[ida − 1] + utemp[ida + 1] − 4 ∗ utemp[id] + utemp[ida −

newsi ze] + utemp[ida + newsi ze]) − ((u[id] − f x[id]) ∗ f x f y[id]);
v[id] = vtemp[id] + μ ∗ �t ∗ (vtemp[ida − 1] + vtemp[ida + 1] − 4 ∗ vtemp[id] + vtemp[ida −

newsi ze] + vtemp[ida + newsi ze]) − ((v[id] − f y[id]) ∗ f x f y[id]);
}
__global__ normalization (u, v, N ) {
id = block I dx .x ∗block Dim.x + thread I dx .x +block I dx .y ∗block Dim.y ∗ M + thread I dx .y ∗ N ;
nz = 0.0000000001 f ;
temp1 = u[id];
temp2 = v[id];
temp3 = sqrt (temp1 ∗ temp1 + temp2 ∗ temp2);
u[id] = temp1/(temp3 + nz);
v[id] = temp2/(temp3 + nz);

}

To ensure that the snake has found the minimum energy region, three results of
consecutive values of the RMSE are stored. The snake deformation loop is stopped
when

RMSEthresh > RMSE1 > RMSE2 > RMSE3, (24)

where RMSEthresh is a predetermined value. The RMSE is computed before the snaxels
reallocation process.

While the stopping criterion is not met, the snaxels reallocation process is per-
formed. After each solution of Eq. (22), (18) and (19) are used to perform the mesh
adaptation over the s domain and then, the reallocation of the snaxels is computed via
the Eqs. (20) and (21). The new vectors x and y are then used in Eq. (22) to compute
the next solution of the snake deformation. Although in all the experiments presented
in this work the mesh adaptation process is computed just once after each solution of
Eq. (22), it can be implemented iteratively to enhance the snaxel distribution.

123



356 R. Alvarado et al.

5 Results

In this section, we present the results of our investigation. First, we discuss the perfor-
mance of our snaxel reallocation approach by means of a synthetic test image. Then,
we present the results of our GVF snake parallel implementations.

5.1 Snaxel reallocation implementation

Figure 9a shows the binary synthetic image that we used to test our snaxels reallocation
method. The image presents a rounded star shape defined by the contrast difference.
The star features five concave regions and is symmetric about the y-axis. The star
image is 8 bits per pixel and 256 × 256 pixels in size.

In this part of the investigation we implemented the algorithm described in Fig. 7
sequentially because the computation performance is not the subject under analysis.
The initial contour is a circle with center at [128, 135] and radius r = 118. This initial
snake configuration is the same for the three implementations presented in this section.

Figure 9b shows the result of plain segmentation with the active contour. The snake
parameters used are α = 0.2, β = 0, κ = 1, 3,000 iterations for the GVF computation,

Fig. 9 a Initial contour, b plain segmentation, c segmentation with static refinement and d segmentation
with the proposed snaxel reallocation method

123



Medical image segmentation on GPU 357

μ = 0.15 and N (number of snaxels) = 1,300. The active contour was indeed able to
converge inside the concave regions after 2,000 iterations of the deformation Eq. (22)
but the snaxels distribution over the edge of interest presents spacing problems as there
are regions with clustering and some other regions where the snaxels are separated
from each other. This behavior is the reason why a large number of snaxels is needed in
order to let the snake converge in the concave regions. The large number of iterations
required for the GVF field is another important issue for this particular case.

The final active contour shape for the case of static refinement of snaxels is shown
in Fig. 9c. We used α = 0.01, β = 0 and κ = 0.6, 70 iterations for the GVF
computation, μ = 0.2, Nini = 50 and Nfin = 605. In fact, with this approach the
active contour deformation process starts with a given N value (Nini) but ends with a
different number of snaxels (Nfin). The deformation process took 2,000 iterations of
Eq. (22). The arc length between snaxels is the criterion for the refinement process,
i.e. if the snaxels tend to cluster some of them are removed, if the snaxels tend to
separate from each other a given number of snaxels is added. It can be seen that the
snake was able to converge inside the concave regions but with a high computational
cost, because the deformation matrix A needs to be calculated every time the number
of snaxels is changed. This is an important drawback of this refinement approach as
it directly affects the computational load of the algorithm.

Figure 9d shows the final snake configuration for our proposed snaxels reallocation
approach. The snaxels are placed almost symmetrically about the y-axis and the active
contour was able to effectively converge inside the concave regions. The settings used
are N = 70, α = 0.01, β = 0, κ = 0.6, 70 iterations for the GVF field and μ = 0.2.

Considering the segmentation results, the number of snaxels used and the iterations
for the GVF field, we can state that our reallocation approach is more efficient than
the other two methods. The advantage is clear not only in the segmentation results but
also in a performance computational point of view because with the proposed mesh
adaptation method we obtain better results with fewer snaxels or GVF iterations and
these conditions directly impact the execution time.

It has to be mentioned that, if needed, our approach can be parallelized as there are
no data dependencies in the computing of the mesh adaptation. Since only a relatively
small number of snaxels is utilized in the experiments presented in this work, we
estimate that the parallel implementation was not necessary.

5.2 GVF snake parallel implementation

We used MRIs, PET/MRIs and CTs medical images only for illustrative purposes to
show the performance of active contours. In order to analyze the efficiency of our
algorithms, we have used six different sizes of images within the range of 64 × 64 to
2,048 × 2,048 pixels in size. The implementation time for the sequential version of
each experiment is presented for reference. All the timing values presented are result
of optimized versions of our algorithms and an average of six runs.

The experiments have been conducted under Ubuntu 13.04 using C language on a
computer with an intel i7-930 processor at 2.8 GHz and 6 GBytes of RAM memory. We
disabled the Hyperthreading and Turboboost features to reduce variations between runs
of the programs. The CUDA implementation is made with a Kepler GeForce GTX 670

123



358 R. Alvarado et al.

GPU that has 2 GBytes of global memory. All the results presented are single-precision
floating point. The OpenCV library is used to perform the image reading, writing and
Canny edge detection operations. The same initial contour configuration is used for
the three implementations of each experiment. Depending on the region of interest, we
used ellipses or circumferences as the initial contour. All the medical images used in
the experiments are 8 bits per pixel. The contour map for all the experiments is created
with the Canny edge detector [29]. The final segmentation is equal for the sequential
and parallel implementations, so only one image is shown.

We used the Intel Inspector and Intel Vtune Amplifier software to evaluate our
OpenMP algorithms. Intel Inspector software can be used to locate and fix memory-
related problems, e.g. data races and deadlocks presented in shared memory platforms;
Intel Vtune Amplifier is used to determine the thread concurrency level, CPU usage,
FLOPS and many other parameters. Therefore, when used together, the Amplifier and
Inspector software provide a complete profile of an OpenMP application. To profile
and debug the CUDA algorithms the Nvidia Visual Profiler and nvprof are used.

To compute the GVF field on the GPU we used blocks of 16×16 or 32×32 threads
depending on the image size and these block sizes produce respectively 256 and 1,024
CUDA threads. For the OpenMP implementation we used four threads, i.e. one thread
per physical core.

Figure 10a, b shows Image1 which is a binary synthetic image that is 64×64 pixels
in size. Image2 is a 128 × 128 pixel-size positron emission tomography/magnetic
resonance image that is showed in Fig. 10c, d [38]. The image highlights a brain
lesion. Moving one step forward, Image3 is a magnetic resonance image which is
256 × 256 pixels in size and it is shown in Fig. 10e, f [39]. Image3 shows a section of
the axial plane of the brain. Our fourth experiment is conducted with Image4 which is
a 512×512 pixels in size computed tomography shown in Fig. 11a, b [39]. The image
presents a section of the sagittal plane of a knee. Figure 11c, d shows Image5 which is a
computed tomography that is 1,024×1,024 pixels in size [40]. This CT shows a section
of the axial plane of a colon. Figure 11e, f shows a computed tomography (Image6)
that we have used to perform our last experiment. The image is 2, 048 × 2, 048 pixels
in size and shows a section of the axial plane of the brain [40]. For each experiment,
the initial active contour and its final shape are shown. The GVF field parameter μ, the
settings for the initial contour and the parameters of the snake for all the experiments
presented are summarized in Table 1.

First, we present in Table 2 the comparison of timing values between the texture
and global memory implementations of our algorithm. From these results, it is clear
that the texture implementation is faster than the one with global memory, but the
speedup is not as high as it could be with older GPU architectures. This is due of the
L1 and L2 caches that feature the GPU but in addition, because the texture cache in the
Kepler architecture is now available for general load operations as a read-only memory
without using texture units. These results agree with the conclusions presented in [13].
Based on this timing results, we use the texture implementation in the performance
comparison against the openMP version of the GVF computing.

The number of iterations for the GVF field, the best computation times for the
sequential, OpenMP and CUDA implementations and the ratio between the OpenMP
and CUDA timing values of all the experiments are shown in Table 3.

123



Medical image segmentation on GPU 359

Fig. 10 a Initial and b final contour for synthetic image Image1; c initial and d final contour for PET/MRI
Image2; e initial and f final contour for MRI Image3

In order to make a more objective comparison and better evaluation between the
implementations, we have taken into account three key aspects: (1) execution time, (2)
occupancy and (3) FLOPS. Table 4 presents these results for the OpenMP and CUDA
implementations. We used the occupancy as a metric because the GVF computation is
memory-bound and for this type of algorithm, we required to increase the occupancy
to hide latencies. The FLOPS are used to roughly estimate the computational peak of
the algorithms.

123



360 R. Alvarado et al.

Fig. 11 a Initial and b final contour for CT Image4; c initial and d final contour for CT Image5; e initial
and f final contour for CT Image6

For the GPU, occupancy is defined as the ratio between active warps and the max-
imum number of warps. For the OpenMP implementation, we defined occupancy as
the ratio between the thread concurrency (number of active threads) and the number
of physical cores, which in our particular case is four.

Besides the metrics presented in Table 4, there are many other parameters that can
be considered in the evaluation of an application but not all of them represent a good
aspect to take into account because all the problems have specific issues. However,

123



Medical image segmentation on GPU 361

Table 1 GVF μ value, settings
for initial contours and snake
parameters

Image μ Snaxels Radius Center α β κ

Image1 0.2 50 20 [32, 32] 0.01 0 0.6

Image2 0.2 60 7 [60, 72] 0.01 0 0.6

Image3 0.2 60 10 [130, 128] 0.01 0 0.6

Image4 0.2 100 30 [270, 400] 0.21 0 0.6

Image5 0.2 200 70 [780, 580] 0.01 0 0.6

Image6 0.15 300 250 [1,024, 1,250] 0.01 0 0.6

Table 2 Timing values for
global memory and texture
computing of GVF field

Image Global memory (s) Texture (s)

Image1 0.00119 0.00125

Image2 0.00161 0.00166

Image3 0.00435 0.00392

Image4 0.04275 0.04009

Image5 0.22794 0.22602

Image6 5.25097 5.12791

Table 3 Execution time
comparison of GVF field
computing between the
sequential, OpenMP and CUDA
implementations

Image GVF Iter. CPU (s) OpenMP (s) CUDA (s) Ratio

Image1 50 0.00083 0.00203 0.00119 1.70

Image2 50 0.00368 0.00465 0.00161 2.88

Image3 80 0.0162 0.01155 0.00435 2.65

Image4 300 0.25015 0.12945 0.04275 3.02

Image5 500 2.57215 1.68421 0.22794 7.38

Image6 3,000 59.4689 43.75361 5.25097 8.33

Table 4 Metrics of GVF field
computing for the OpenMP and
CUDA implementations

Image Platform Time (s) Occupancy (%) GFLOPS

Image1 OpenMP 0.00203 76.25 0.166

CUDA 0.00119 47.10 14.960

Image2 OpenMP 0.00465 78.32 0.615

CUDA 0.00161 79.30 35.350

Image3 OpenMP 0.01155 78.32 2.741

CUDA 0.00435 82.10 71.900

Image4 OpenMP 0.12945 79.10 7.150

CUDA 0.04275 85.40 71.180

Image5 OpenMP 1.68421 95.40 7.540

CUDA 0.22794 85.70 88.650

Image6 OpenMP 43.75361 92.65 8.290

CUDA 5.25097 86.70 89.740

123



362 R. Alvarado et al.

the execution time is the most representative metric to evaluate a parallel application
and, in addition with other selected metrics, gives a complete performance profile of
an algorithm.

6 Conclusions

The proposed snaxel reallocation method improves the efficiency of the segmentation
process with the GVF snake. From a HPC point of view, it improves the performance
of the snake deformation computing by significantly reducing the number of snaxels
required to perform the segmentation of a given region of interest. This condition has
a direct impact on the computation time because the deformation of the snake can be
driven with the use of small linear systems. Furthermore, the proposed reallocation
technique in some cases reduces the necessity of a large number of iterations for the
GVF field, decreasing the overall computation time of the segmentation.

Our implementation provides better results if it is used on images that have been
processed with noise reduction and enhancement techniques, and present high contrast.
If it is used in images without these characteristics, there is a probability that the active
contour will not converge to the region of interest due to the many local energy minima.

We present an objective comparison between the parallel implementation of our
algorithm on a CPU and on a GPU. OpenMP is used to implement the CPU parallel
version. Although the elapsed time of an application is not the best way to evaluate
a CUDA algorithm, it is indeed the most important aspect. That is why it is the most
common metric for assessing a program. However, execution time alone is not the
best choice because is not objective, fair nor qualitative. Many factors are involved
in a speedup such as the capacity of the processors or available resources, among
others. That is why we think that an execution time comparison plus an objective
measurement of the GPU and CPU resources utilization is the best way to evaluate
a GPU application. For this reason, we used three metrics for the evaluation of our
CUDA application: execution time, occupancy and FLOPS.

The results encountered in this work show three important aspects. First, the
OpenMP version of the GVF field computing is in general just slightly faster than the
sequential version of the algorithm. This somehow unexpected result can be explained
by the auto-vectorization feature of the icpc compiler which reduces the computational
load of loops using SSE packed (vector) instructions rather than scalar instructions.
This process can be seen as a type of loop parallelization. Due the characteristics
of the GVF field computing loop, the auto-vectorization feature greatly reduces the
sequential computation time. Second, in our analysis of textures and global memory
performance for the Kepler architecture, we did find out that the GVF computing using
textures is faster than the global memory version. However, the difference is not as
significant as it could be in older GPU architectures. Kepler texture objects were not
used in this work because they are designed for applications where a large number
of textures is required and the binding/unbinding overhead of texture references rep-
resents a time execution problem. Third, the difference in the execution time of the
OpenMP and CUDA implementations coincides with the theoretical gap between the
computational capacity of a CPU and a GPU. This result indirectly indicates that our

123



Medical image segmentation on GPU 363

implementations are correct considering that speedups of orders of magnitude are not
consistent with the peak capacity of the processors.

Acknowledgments This work has been partially supported by COFAA-IPN, and by Grant IPN-SIP-
20120606.

References

1. Dhawan AP, Huang HK, Kim DS (2008) Principles and advanced methods in medical imaging and
image analysis. World Scientific Publishing Co. Pte, Ltd, Singapore

2. González RC, Woods RE (2002) Digital image processing, 2nd edn. Prentice Hall, Englewood Cliffs
3. He L, Peng Z, Everding B, Wang X, Han CY, Weiss KL, Wee WG (2008) A comparative study of

deformable contour methods on medical image segmentation. Image Vis Comput 26(2):141–163
4. Li B, Acton ST (2007) Active contour external force using vector field convolution for image segmen-

tation. IEEE Trans Image Process 16(8):2096–2106
5. Wang Y, Liu L, Zhang H, Cao Z, Lu S (2010) Image segmentation using active contours with normally

biased GVF external force. IEEE Signal Process Lett 17(10):875–878
6. Terzopoulos D, McInerney T (1996) Deformable models in medical image analysis: a survey. Med

Image Anal 1(2):91–108
7. Suri JS, Farag AA (eds) (2007) Deformable models II: theory and biomaterial applications. Springer,

Berlin
8. Mahmoud MKA, Al-Jumaily A (2011) Segmentation of skin cancer images based on gradient vector

flow (GVF) snake. In: IEEE international conference on mechatronics and automation. Beijing, China,
pp 216–220

9. He Z, Kuester F (2006) GPU-based active contour segmentation using gradient vector flow. In:
Advances in visual computing second international symposium, ISVC 2006. Lake Tahoe, NV, USA,
pp 191–201

10. Zheng Z, Zhang R (2011) A GPU-accelerated GVF snake algorithm. In: Proceedings of the 2011
workshop on digital media and digital content management, DMDCM ’11. Hangzhou, China,
pp 233–236

11. Perrot G, Domas S, Couturier R, Bertaux N (2011) GPU implementation of a region based algorithm
for large images segmentation. In: 11th IEEE international conference on computer and information
technology. Belfort, France, pp 291–298

12. Li T, Krupa A, Collewet C (2011) A robust parametric active contour based on Fourier descriptors. In:
18th IEEE international conference on image processing. Brussels, Belguim, pp 1037–1040

13. Smistad E, Elster AC, Lindseth F (2012) Real-time gradient vector flow on GPUs using OpenCL.
J Real Time Image Process. doi:10.1007/s11554-012-0257-6

14. Kienel E, Brunnett G (2009) GPU-accelerated contour extraction on large images using snakes. Tech-
nical Report. CSR-09-02, Chemnitz University of Technology, Germany

15. Češnovar R, Risojević V, Babić Z, Dobravec T, Bulić P (2013) A GPU implementation of a structural-
similarity-based aerial-image classification. J Supercomput 65:978–996

16. Valero P, Sánchez JL, Cazorla D, Arias E (2011) A GPU-based implementation of the MRF algorithm
in ITK package. J Supercomput 58:403–410

17. Reyes R, López I, Fumero JJ, de Sande F (2013) A preliminary evaluation of OpenACC implementa-
tions. J Supercomput 65:1063–1075

18. Lenkiewicz P, Pereira M, Freire MM, Fernandes J (2009) A new 3D image segmentation method for
parallel architectures. In: IEEE International conference on multimedia and expo, 2009. New York,
USA, pp 1813–1816

19. Schellmann M, Gorlatch S, Meiländer D, Kösters T, Schäfers K, Wübbeling F, Burger M (2011)
Parallel medical image reconstruction: from graphics processing units (GPU) to grids. J Supercomput
57:151–160

20. Pallipuram VK, Bhuiyan M, Smith MC (2012) A comparative study of GPU programming models and
architectures using neural networks. J Supercomput 61:673–718

21. Belloch JA, González A, Martínez-Saldívar F, Vidal AM (2011) Real-time massive convolution for
audio applications on GPU. J Supercomput 58:449–457

123

http://dx.doi.org/10.1007/s11554-012-0257-6


364 R. Alvarado et al.

22. Xu C, Prince JL (1998) Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 7(3):359–
369

23. Terzopoulos D (1986) On matching deformable models to images. Technical Repprt 60, Schlumberger
Palo Alto Research, USA

24. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–
331

25. Terzopoulos D, Platt J, Barr A, Fleischer K (1987) Elastically deformable models. SIGGRAPH
21(4):205–214

26. Davatzikosa C, Prince JL (1996) Convexity analysis of active contour problems. In: IEEE conference
on computer vision and pattern recognition, CVPR ’96. San Francisco, USA, pp 674–679

27. Mishra AK, Fieguth PW, Clausi DA (2011) Decoupled active contour (DAC) for boundary detection.
IEEE Trans Pattern Anal Mach Intell 33(2):310–324

28. Boukerroui D (2009) Efficient numerical schemes for gradient vector flow. In: 16th IEEE international
conference on image processing (ICIP). Cairo, Egypt, pp 4057–4060

29. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell
8(6):679–698

30. Huang S, Wang B, Huang X (2006) Using GVF snake to segment liver from CT images. In: 3rd
IEEE/EMBS International Summer School on Medical Devices and Biosensors, 2006. Cambridge,
USA, pp 145–148

31. Wagner S, Steinmetz M, Bode A, Muller M (2010) High performance computing in science and
engineering. Springer, Berlin

32. Kirk DB, Wen-mei WH (2010) In Praise of Programming massively parallel processors: a hands-on
approach. Elsevier, Amsterdam

33. Cook S (2013) CUDA programming: a developer’s guide to parallel computing with GPUs. Elsevier,
Amsterdam

34. nVIDIA (2013) NVIDIA CUDA C programming guide
35. Farber R (2011) CUDA application design and development. Elsevier Inc., Amsterdam
36. nVIDIA (2013) CUDA C best practices guide
37. Chapman B, Jost G, van der Pas R (2008) Using OpenMP: portable shared memory parallel program-

ming. The MIT press, Cambridge
38. The cancer imaging archive (2012) http://www.cancerimagingarchive.net/. Accessed 15 Jan 2012
39. Patient contributed image repository (2012) http://www.pcir.org/. Accessed 15 Jan 2012
40. Dicom sample image sets (2013) http://www.osirix-viewer.com/datasets/. Accessed 15 Jun 2013

123

http://www.cancerimagingarchive.net/
http://www.pcir.org/
http://www.osirix-viewer.com/datasets/

	Medical image segmentation with deformable models on graphics processing units
	Abstract
	1 Introduction
	2 Deformable models
	2.1 Traditional active contour
	2.2 Gradient vector flow active contour
	2.3 Dynamic snaxel reallocation

	3 Graphic processing units
	3.1 CUDA
	3.2 Optimization strategies

	4 Parallel implementation of the GVF snake
	4.1 OpenMP computation of the GVF field
	4.2 CUDA computation of the GVF field
	4.3 Computation of the snake deformation and dynamic snaxel reallocation

	5 Results
	5.1 Snaxel reallocation implementation
	5.2 GVF snake parallel implementation

	6 Conclusions
	Acknowledgments
	References


