
J Supercomput (2014) 67:496–527
DOI 10.1007/s11227-013-1014-8

A grid workflow Quality-of-Service estimation based
on resource availability prediction

Somayeh Kianpisheh ·
Nasrolah Moghadam Charkari

Published online: 25 October 2013
© Springer Science+Business Media New York 2013

Abstract Accurate estimation of workflow Quality of Service (QoS) enhances the
efficiency of scheduling algorithms. The availability and performance variations of
Grid computing resources have made this estimation a great challenge. Most work-
flow QoS estimation algorithms are based on static performance of resources. In this
paper, based on resources availability prediction, we propose an algorithm called
WQE for estimating the QoS of a Grid workflow. WQE consists of two phases: re-
source monitoring and analysis and workflow QoS computation. In the first phase,
two prediction algorithms are proposed to stochastically predict the availability state
of resources. In the second phase, the QoS of each activity is estimated based on the
host availability prediction result. The QoS of basic structures is computed by aggre-
gating the QoS of their operands. Using a tree structure corresponding to the work-
flow, the QoS of basic structures is used to compute the total QoS of the workflow.
The simulation results on Notre Dame University trace showed that the proposed
method has higher estimation accuracy in comparison with HEFT.

Keywords Workflow · Grid computing · Quality of Service · Prediction ·
Multi-state system

1 Introduction

Distributed high performance computing systems, like grid and cloud computing,
have provided infrastructure for resource sharing. Large scale grids like EGEE [1],
TeraGrid [2] and PlanetLab [3] bring together sites of resources to facilitate e-science

S. Kianpisheh · N. Moghadam Charkari (B)
Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
e-mail: moghadam@modares.ac.ir

S. Kianpisheh
e-mail: s_kianpisheh@modares.ac.ir

mailto:moghadam@modares.ac.ir
mailto:s_kianpisheh@modares.ac.ir

A grid workflow Quality-of-Service estimation based on resource 497

and e-business issues. Grid middleware like Globus [4] and Condor [5] use schedul-
ing algorithms to map jobs submitted by users to resources. Efficient job scheduling
mechanisms are required to perfectly utilize the resources. An accurate job Quality
of Service (QoS) prediction method enhances the efficiency of scheduling algo-
rithms [6].

Job QoS estimation is a challenging problem due to the availability and perfor-
mance variation of grid resources. For example, resources may be shut down or
restarted to save power for a software update or even due to a hardware problem.
During resource uptime, the performance may degrade because of a huge workload
on the resource obliged by the owner of the resource or job grids. All these phenom-
ena are obstacles to properly estimating the job QoS metrics.

Most of the current researches estimate the execution time of atomic jobs on re-
sources [6–12]. However, many scientific and business processes are modeled via
composite jobs or workflow. A workflow consists of several activities supposed to be
executed according to a predefined order. Estimation of QoS parameters in a work-
flow is much more challenging than for an independent job since its execution in-
volves multiple resources and activities. Two groups of researchers have considered
the workflow QoS estimation: those working in the area of web service composition
[13–16], and those in the area of workflow scheduling [17–20].

A composite web service invokes some web services to obtain the user require-
ments. The interactions among web services are modeled by a workflow. Studies have
been done in the area of QoS estimation of composite web services [13–16] which
cannot be applied for grid workflow for two reasons. First, in these works, the QoS
estimation has been done independently of the mapping of activities to web services.
In a grid, the resources are heterogeneous and different mappings of one workflow
will have different QoS values. Second, these works have assumed a deterministic or
semi-deterministic behavior for web services. For example, each web service has a
fixed predefined response time or at most a predefined probability distribution func-
tion for response time. In a grid, resources are so dynamic that it is impractical to
define a distribution or fixed quantity to model their response time, availability or
cost.

During grid workflow scheduling, an estimation of QoS parameters (mostly
makespan) is done to find a suitable mapping of activities to resources. Most of these
algorithms like in [17–20] use the static built-in speed of resources to estimate the
QoS parameters. The dynamicity in performance and availability of grid resources
makes these estimations error prone.

In this paper, based on resources availability prediction, we propose a Workflow
QoS Estimation algorithm called WQE. Figure 1 shows the input and output of the
system. The workflow, the mapping of activities to resources1 and the log of avail-
ability changes in resources are the input to the estimation system. The output is the
QoS metrics consisting of response time, reliability and cost of workflow execution.
Response time is the mean time in which the execution of the workflow completes.
Reliability is the probability of the workflow execution completed without failure,

1The order of activities executions is also required when some parallel activities map to the same resource.

498 S. Kianpisheh, N. Moghadam Charkari

Fig. 1 Input and output of a
workflow QoS estimation
system

and finally, cost is the budget user must pay for consuming resources. WQE consists
of two main steps: resource monitoring and analysis and workflow QoS computation.

A multi-state availability model has been used for resources. The states define
both the workload and availability of resources. In this paper, we use four availabil-
ity states: Available, User present, CPU threshold exceeded, and Unavailable as used
in the Grid failure trace archive [21]. A simple monitoring system monitors each re-
source and records the changes in the availability state within time. When a workflow
is submitted, a window with a specified length is assumed on the availability trace of
each resource. The availability information within this window is analyzed to predict
the state of each resource. In this paper, two stochastic prediction methods are pro-
posed: PE and PW. In PE, all historical information within the window has the same
value while in PW; the information nearer to the prediction point gets more weight.
The probability of being in a state is computed based on the percentage of time the
state has occupied within the window. Simulation results indicate that PW performs
better than PE in state prediction.

To compute the QoS of a workflow, the input workflow graph is converted to a
tree structure. In the tree, leaf nodes are activities. Middle nodes are basic structures
with their children from left to right indicating the operands they must be applied on.
The QoS metrics are computed by aggregating the QoS of nodes, in a bottom-to-top
manner according to the structure of the tree. To enable computation, at first the QoS
of each activity must be computed. This computation is based on the prediction of
the availability states of the host. Then, the QoS metrics of activities are aggregated
to form the QoS of basic structures. At the end, these values are composed based on
tree structure to generate the QoS of the workflow.

The method has been evaluated for random and real world workflows. We com-
pare our work with Heterogeneous Earliest Finish Time (HEFT) QoS estimation [18].
To make this comparison, we get the output scheduling of HEFT as the input of our
algorithm and estimate the QoS parameters. Then our estimation and HEFT estima-
tion are compared with the actual values. These values are achieved by simulating
workflow execution on the grid of Notre Dame University (NDU) according to Con-
dor trace at 2007 [21]. For 25620 random workflows in simulation, in comparison
with HEFT, WQE has gained 52 %, 41.3 % and 48.2 % improvement in reliability,
response time and cost estimation, respectively.

In the rest of this paper, the related works are mentioned in Sect. 2. In Sect. 3,
the problem statement and preliminaries are described. The details about our work
will be discussed in Sect. 4. In Sect. 5, the complexity of the proposed algorithm will
be analyzed. The results will be presented in Sect. 6, and finally, Sect. 7 gives the
conclusion and directions for future work.

A grid workflow Quality-of-Service estimation based on resource 499

2 Related works

We categorize the related works into two groups: (i) resource state prediction, (ii) job
QoS estimation. Each group is explained separately.

2.1 Resource state prediction

Some prediction methods for load on resources have been presented before. The Net-
work Weather Service (NWS) uses a mixture of experts based on a linear model to
choose the best prediction among experts [22]. Linear predictors have been proposed
based on averaging the states during last N intervals [23]. Hu et al. proposed two
methods of load prediction based on support vector regression and neural network.
They emphasized using the least amount of features in prediction to reduce the cost
of monitoring [24].

Byun et al. defined a Markov chain with three states for a resource: idle, in use
and stopped. The resources are monitored every 30 minutes to estimate the rate of
transitions among the states. The resource with the highest availability probability is
employed for a submitted job [11]. Jiong et al. assumed two states, idle and busy, for
each resource. With the assumption of static and predefined transition rates, they tried
to boost job scheduling [25]. Lili and Shoubao specified CPU usage, network usage
and failure of resources as Markov state variables [26]. They supposed a value for
each state and aggregated these values to compute a rank for each resource. Resources
with higher ranks were used during job scheduling. Ren et al. used CPU load, memory
thrashing and unavailability of resources to form a Markov chain with five states.
They emphasized on computing the probability of transitioning from available states
to other states [27]. Rood and Lewis used the same states introduced in this paper but
they performed a discrete transitional analysis to compute the probability of resource
states [6]. They also took advantage of this analysis for independent job scheduling.
Ramakrishnan and Reed suggested a birth-and-death process with six availability
states to model resource state changes. Based on static transition rates, they predicted
the probability of the resource being in each state [12].

2.2 Job QoS estimation

Most of the current researches predict the execution time of atomic jobs on resources.
They perform this prediction directly [7–10] or based on resource state prediction [6,
11, 12]. Most workflow scheduling algorithms use static information about resources
to estimate QoS of a workflow [17, 18, 20, 28–30]. In these works, the dynamicity
of resources has been ignored and they do not support selection and loops in the
structure of a workflow.

There are some works in QoS computation of composite web services. A com-
posite web service is made of some tasks, each supposed to call a web service. The
works in this area are categorized into two groups: In the first group, determinis-
tic behavior for web services is assumed, while in the second group, the probability
distributions of web service responses are considered to be well defined. Jaeger et
al. estimated the QoS of a composite service by aggregating the QoS of individual

500 S. Kianpisheh, N. Moghadam Charkari

Fig. 2 Four basic structures used in workflows

services. They assumed a deterministic behavior of web services in responding to
requests [15]. Cardellini et al. also estimated the QoS of a workflow with this as-
sumption. They modeled service selection as a linear programming problem based
on the computed QoS values. To adapt with dynamicity of web service behaviors,
they proposed rescheduling. However, rescheduling makes overhead for a workflow
management system [31]. Hwang et al. [14] used a probability mass function (PMS)
for QoS of services. It aggregates the PMS to give a probabilistic QoS for a workflow.
Zheng et al. introduced kernel estimation as a nonparametric method to estimate the
probability density function of services. The PDFs were aggregated to generate the
PDF of QoS for a workflow [16]. However, applying these methods on grid work-
flows is impractical because of resource heterogeneity and dynamicity.

3 Problem statement and preliminaries

In this section, we illustrate the formal definition for a workflow and grid resources,
and describe the problem.

3.1 Workflow

A grid workflow can be represented by a directed graph G = (A,E) where A =
{a1, a2, . . . , aM} is a set of activities and E is the set of edges showing precedence
relationships among activities. In a given workflow graph, the activity with no pre-
decessor is an entry and the activity with no successor is called an exit activity. REi

is the set of resources having software/hardware requirements needed for executing
activity ai . D is an M × M matrix where dij shows the amount of data transmitted
from ai to aj .

A composition of four basic structures can be used in the workflow graph: se-
quence, loop, selection and parallel (Fig. 2). Each Xi can be regarded as an operand

A grid workflow Quality-of-Service estimation based on resource 501

Table 1 Symbols used in the
proposed algorithm

aWe define {0,1,2} as the
indices of available, user
present, and CPU threshold
exceeded, respectively. Note that
in this paper, these indices are
used for computing processing
speed at each state. In NDU
trace, different numbers have
been used

Category Symbol Description

Workflow
specification

A Set of all activities with size M

ai Activity i of the input workflow

Oi Number of operations in activity i

REi Set of resources capable of executing
activity ai

fi Probability of selection for activity ai

fl Number of iterations in loop l

DM×M Data transmission matrix among activities

Resource RE Set of all resources with size N

rj Resource j

AL Availability levels defined for resources

ial Index of availability level ala

qj,t Availability state of resource j at time t

CSj Computational speed of resource j in the
highest availability level

αal Resource speed degradation coefficient of
availability level al

ci,j |al Cost of executing task i at resource j when
it is in availability state al

βcost Cost coefficient for executing one operation

Network BWN×N Bandwidth matrix between resources

NL1×N Network latency

Mapping
policy

MM×1 Mapping policy vector

M(ai) Index of resource responsible of executing
activity ai

for the correspondent basic structure. An operand can recursively involve a basic
structure or be an atomic activity, i.e., Xi ∈ {seq,par, sel, loop}∪A. In the loop struc-
ture, fl is assumed to be the mean number of iterations, and in the selection block,
fi is the probability of selection of Xi . For sequence, loop and parallel structures, we
have: ∀Xi; fi = 1.

3.2 Grid computing resources

The set RE = {r1, r2, . . . , rN } is the set of all grid resources. The computational speed
of resource rj is represented by CSj . BW is an N × N matrix where BW ij indicates
the bandwidth between resources ri and rj . NL is a vector of N elements where NLj

shows the network latency of resource rj . A ready time of resource rj is denoted by
rtj which is defined as the time the resource is waiting to accept a new process after
it has finished processing previously assigned processes. Table 1 shows the summary
of symbols used in the proposed method.

502 S. Kianpisheh, N. Moghadam Charkari

Fig. 3 HEFT algorithm

3.3 Problem statement

Let G = (A, E) be the workflow and RE = {r1, r2, . . . , rN } be the set of resources.
Let M be an M × 1 vector where M(ai) shows the index of the host for activity
ai . The problem is to estimate QoS parameters for G under the mapping M , relative
to the dynamic behavior of RE. The QoS parameters include: Response time which
is the mean time where the execution of the workflow completes; Reliability which
is the probability of the workflow execution being completed without failure; Cost
which is the budget user should pay for consuming resources.

3.4 HEFT algorithm

Figure 3 shows the HEFT algorithm [18]. Accordingly, activities and edges are as-
signed some weights. The weight of each activity defines its average execution time
on resources. The weight of each edge is the average required time to transfer data
from the predecessor to the successor activity. By traversing the graph of the work-
flow from the bottom to the top, and using a recursive relation, a rank is computed
for each activity. The ranks of leaf activities, i.e., activities without any successor,
are the same as their weight. The ranks of other activities are the maxima of sums of
ranks of their immediate successors and the weights of connecting edges. This rank-
ing gives execution priority to critical activities to minimize the makespan. Activities
are sorted by these ranks to form a list. They are removed from this list one by one,

A grid workflow Quality-of-Service estimation based on resource 503

and each activity is assigned to a resource with minimum completion time. In this al-
gorithm, resources are assumed to be available and have static computational speed.
The mapping of activities to resources and the estimated values for QoS parameters
including response time (makespan), reliability and cost are regarded as the output
of this algorithm. We use HEFT mapping as the input to our proposed method and
compare our estimation of QoS with HEFT estimation.

The HEFT does not support selection and loop structure. A loop structure can be
considered as the repetition of the structure for a specific number of iterations. For
selection some solutions are possible:

• For every workflow that consists of selection, construct a set of workflows. Each
workflow in this set is a possible execution of the original workflow with its prob-
ability of execution computable according to the selection probabilities. For exam-
ple, for a workflow which has two selection structures with selection probabilities
(0.2, 0.8) and (0.4, 0.3, 0.3), six workflows with probabilities 0.08, 0.06, 0.06,
0.32, 0.24, 0.24 will be constructed. For each workflow a mapping is generated by
HEFT. The QoS parameters are computed as weighted sums of the QoS of each
workflow where the weights are execution probabilities of workflows.

• The selection structure can be substituted by a single activity with its number of
operations obtainable as a weighted sum of the number of operations of tasks in-
volved in the structure. The selection probabilities form the weights.

• Ignoring the selection probabilities, a mapping can be found for the workflow.
Regarding the found mapping, the QoS parameters are recomputed as the weighted
sums of QoS of the activities where the weight of activity ai is equal to fi .

In this paper, we used the third solution because it does not have the computation
overhead of the first solution and it does not omit the selection structures as in the
second solution.

4 Workflow QoS estimation system

Figure 4 shows the architecture of the proposed method. There are two main compo-
nents:

(a) Resource monitoring and analysis—To detect the dynamic behavior of resources,
we employ a simple monitoring system. Some availability states are defined for
resources. These states represent load of works on resources. A higher availability
state implies a lower workload on the resource, which leads to a better processing
capability. The monitoring system monitors each resource periodically and logs
the changes in the availability states. A stochastic predictor analyzes the log to
predict the availability state of each resource.

(b) Workflow QoS computation—In this part, the QoS of a workflow is computed
based on the resource analysis result. To achieve this goal, the QoS of each ac-
tivity is estimated after data transmission modeling. Then, the quality of service
for basic structures involved in the workflow is computed. Finally, the QoS com-
position estimates the whole workflow QoS by traversing a tree corresponding to
the workflow from the bottom to the top.

In the rest of the paper, we explain each component in detail.

504 S. Kianpisheh, N. Moghadam Charkari

Fig. 4 Architecture of the proposed method for workflow QoS estimation

4.1 Resource monitoring & analysis

A simple monitoring system monitors each resource periodically to record the
changes in availability state of the resource with time. In this paper, we use the four
availability states supported by Condor [5, 6]: available, user present, CPU thresh-
old exceeded, and unavailable. An available machine is currently connected to the
network, has more than 15 minutes of idle time, and a CPU load less than the CPU
threshold.2 In the user present state, the resource owner has touched the keyboard
or mouse. In CPU threshold exceeded, the local CPU load surpasses some specific
threshold, due to new or currently running processes. Finally, when a machine fails
or becomes unreachable, it will be unavailable.

The multi-state system assumed for modeling the changes in the availability of a
resource is shown in Fig. 5. Rood et al. proposed a discrete transitional availability
state predictor for atomic jobs [6], which is not suitable for our work. As a workflow
has many activities, it takes a long time to be processed. In this regard, the Rood’s pre-
dictor misses most of the information in the history, which leads to low information
for prediction. So, other predictors must be employed.

Figure 6 shows the concept of our predictor. Assume we want to predict the state
of a resource at time t . A window with size L is used, which contains the latest
historical information during time interval [t −L, t −1]. Inside the window, there are

2Generally, the CPU threshold value can be defined by resource owners. The Condor uses 30 % as CPU
threshold for an available state [6].

A grid workflow Quality-of-Service estimation based on resource 505

Fig. 5 State diagram used for
modeling the behavior of
resources in the NDU Trace

Fig. 6 Concept of resource
state prediction using historical
information inside a window
with size L

some subintervals, each corresponding to a specific availability state. For instance, as
it is shown in Fig. 6, there are three subintervals with availability states 1, 3, and
2, respectively. We define the distance from the middle of subinterval k (in the time
range of [tk1 , tk2]) to time t as in Eq. (1):

dk
mt = t − tk1 + tk2

2
(1)

Two predictors are proposed: Prediction with Equal Weights (PE) and Prediction
with Weighting (PW). In PE, all observations have the same weight while in PW the
observations nearer to the prediction time are regarded to be more important, hence
they will get more weight. The reason for observation weighting is that our investiga-
tion on the NDU trace [21] has shown a behavior similar to the Markov property in
state changes of resources. In other words, a future state of a resource depends mostly
on the sequence of earlier events than the later ones. So PW tries to give more weight
to observations closer to the prediction point, in order to enhance the prediction accu-
racy. The weight of an observation for resource j at time i belonging to subinterval s

is defined in Eq. (2):

wj,i =
⎧
⎨

⎩

1 PE

mink dk
mt

ds
mt

PW
(2)

506 S. Kianpisheh, N. Moghadam Charkari

Fig. 7 Stochastic resource availability state predictor

In PE, all observations get 1 as the weight. In PW, the weight is computed in such a
way that the observations belonging to the nearest subinterval to the prediction time,
have weight equal to 1. Every other observation has weight reversely proportional to
the distance of the middle point of its subinterval to the prediction time. In Eq. (2),
k is an arbitrary subinterval within the window. With this weighting, all observations
within one subinterval get equal weight which is reversely proportional to their av-
erage distance from prediction point. The probability that resource j is at state al at
time t is computed by the percentage of time the resource was at al according to the
history in the window as defined by Eq. (3):

πj,al(t) =
∑t−1

i=t−L wj,i(qj,i = al)
∑

i∈[t−L,t−1] wj,i

(3)

where qj,i is the observation for resource j at time i and (qj,i = al) is equal to 1
where the state of resource j at time i is al otherwise it is zero. Figure 7 shows steps
of resource state prediction.

A grid workflow Quality-of-Service estimation based on resource 507

4.2 Workflow QoS computation

To compute the QoS of a workflow under the mapping M , the QoS is estimated at
the level of activity. These estimates are aggregated to form the QoS of the basic
structures. The composition of the QoS of the basic structures results in the QoS of
the whole workflow. In the following sections, each part is explained separately.

4.2.1 Data transfer time modeling

Before the execution of each activity, its required data must be transmitted from pre-
decessors host to the activity host. We assume that the data transfer time between any
two activities has a normal distribution with the mean value computed by Eq. (5).
It is the relation of the size of data transmitted between two activities to the band-
width of hosts. The network latency has also been considered. The variance of data
transmission can be determined according to network communication.

∀ai, aj dt t (ai, aj ,M) ∼ N
(
μdt(ai, aj ,M), σdt2(ai, aj ,M)

)
(4)

μdt(ai, aj ,M) = NLM(ai) + dij

BWM(ai),M(aj)

(5)

4.2.2 Activity level

In this section, we estimate the QoS parameters of an arbitrary activity ai . Before the
start of execution of an activity, some latency (possibly zero) will exist. This latency
is due to the time needed for transmitting data from predecessors to the activity or due
to the current process on the mapped resource. Equation (8) shows the computation
of the latency. Let FTaj

be the finish time of activity aj and rtM(ai) be the ready
time of ai ’s host. The finish time of data transmission is computed by Eq. (6), and
the latest predecessor is defined by Eq. (7). The first equation in (8) occurs when
the data has been transmitted but the host is not ready to process the activity. In
this case, the difference of the ready time and finish time of the latest predecessor
defines the latency. The second equation in (8) occurs when the resource is waiting for
completion of data transmission. In this case, the latency is equal to data transmission
time from the latest predecessor.

FTDT = max
aj ∈pred(ai)

{
FTaj

+ μdt(aj , ai,M)
}

(6)

ap = argmax
aj ∈pred(ai)

{
FTaj

+ μdt(aj , ai,M)
}

(7)

lat(ai,M) =
{

rtM(ai) − FTap rtM(ai) > FTDT

μdt(ap, ai,M) rtM(ai) ≤ FTDT
(8)

Let CSj be the built-in computational speed of resource j . We assume that com-
putational speed reduces by a coefficient of αal in the availability state al as computed

508 S. Kianpisheh, N. Moghadam Charkari

by Eq. (9). The degradation coefficient is specified by statistic information.

CSj |al =
{

CSj (1 − αal) al ∈ AL\unavailable

0 al : unavailable
(9)

The expected time of executing activity ai when the host is in state al is computed by
Eq. (10) where Oi is the number of operations in ai .

ti,M(ai)|al = Oi

CSM(ai)|al
(10)

Using Eqs. (8), (9), (10) and the prediction result gained from predictor, the mean
response time is computed by Eq. (11) which is latency plus a weighted sum of the
probability vector of resource states and expected execution time of activity in each
state. Note that the mean response time of an activity shows the required time the re-
source successfully completes the activity execution. So, in the computation, unavail-
able states have been omitted, and the probability of each state under the condition of
the resource being up has been used.

μ(ai,M) = lat(ai,M) +
∑

al∈AL\unavailable

πM(ai),al
∑

al∈AL\unavailable πM(ai),al
× ti,M(ai)|al

(11)
The probability of a successful execution of an activity is computed by multiplying

two probabilities: the probability that required data has successfully been transmit-
ted and the probability that a resource is available. This probability is found as in
Eq. (12):

r(ai,M) =
∏

ap∈pred(ai)

r dt (ap, ai,M) ×
∑

al∈AL\unavailable

πM(ai),al (12)

The execution cost of activity ai when the host is in state al is computed by
Eq. (13). This cost has a direct relation to the number of operations of the activity
and the computational speed of the host at availability state al. In this equation, the
division by the maximal computational speed is for normalization. βcost is a cost coef-
ficient which is assumed for execution of each operation. This coefficient is specified
by the grid owners according to their economic policy.

ci,M(ai),|al = Oi × βcost × CSM(ai)|al

maxj∈REi
CSj

(13)

The total execution cost of activity ai is computed by a weighted sum of the prob-
ability vector of resource states and the expected cost of execution in each state as in
Eq. (14):

c(ai,M) =
∑

al∈AL\unavailable

πM(ai),al
∑

al∈AL\unavailable πM(ai),al
× ci,M(ai)|al (14)

A grid workflow Quality-of-Service estimation based on resource 509

Table 2 QoS of basic structures. Xi ∈ {seq,par, sel, loop} ∪ A

Basic structure Quality of Service Basic structure Quality of Service

Sequential μ(seq,M) = ∑n
i=1 μ(Xi,M) Parallel μ(par,M) = maxi=1,...,n μ(Xi,M)

r(seq,M) = ∏n
i=1 r(Xi ,M) r(par,M) = ∏n

i=1 r(Xi ,M)

c(seq,M) = ∑n
i=1 c(Xi,M) c(par,M) = ∑n

i=1 c(Xi,M)

Selection μ(sel,M) = ∑n
i=1 fi × μ(Xi,M) Loop μ(loop,M) = fl × μ(seq,M)

r(sel,M) = ∑n
i=1 fi × r(Xi ,M) r(loop,M) = r(seq,M)fl

c(sel,M) = ∑n
i=1 fi × c(Xi,M) c(loop,M) = fl × c(seq,M)

4.2.3 QoS of basic structures

The QoS of basic structures are computed as shown in Table 2. In a sequence struc-
ture, the response times of all operands are accumulated and the reliabilities of them
are multiplied. In a parallel structure, the maximal response time of all operands
forms the final response time and the reliability is again found by multiplication of
reliabilities of all operands. The cost in these structures is the sum of costs for all
operands. The computation is similar for selection. The only difference is that the
probabilities of selection of operands are involved in the computation. A loop can be
considered as a sequence structure which repeats for iterations.

4.2.4 QoS composition

The input of the system is a directed graph representing the workflow. This graph
is converted to a tree structure (T). In the tree, the leaf nodes are activities and the
middle nodes are basic structures with their children from left to right indicating the
operands the basic structure must be applied on. An example is shown in Fig. 8. The
tree structure can be constructed by syntax definition of the workflow. To compose
the whole QoS, it is enough to call {μ(root(T),M), r(root(T),M), c(root(T),M)}.
Figure 9 shows the sequence of calls occurred during the mean response time compu-
tation from the tree structure in Fig. 8. The whole algorithm based on the mentioned
steps has been shown in Figs. 10 and 11.

4.3 An illustrative example

To demonstrate the steps of the algorithm, in this section we illustrate by an example.
Figure 12 shows a workflow to be executed on three resources. The labels on the
edges show the data amount transmitted among activities. For simplicity, the inter-
bandwidth among all resources is assumed to be 1 while the intra-bandwidth is ∞
and the data transmission variance is zero. The resources change their behavior as
shown in Fig. 13. The fastest resource r1 starts with a user present and transitions to
CPU threshold exceeded at time 50. It becomes unavailable at time 200. The slowest
resource r3 is permanently available. The mediocre resource r2 is in CPU threshold

510 S. Kianpisheh, N. Moghadam Charkari

Fig. 8 An example workflow and its corresponding tree structure

Fig. 9 Sequence of calls for
mean response time
computation of sample tree
structure in Fig. 8

Fig. 10 The pseudocode of workflow QoS estimation

A grid workflow Quality-of-Service estimation based on resource 511

Fig. 11 The pseudocode for computing the QoS of a node in tree

Fig. 12 An example workflow supposed to be executed on three resources. Ranks in part (b) are computed
by HEFT as described in Fig. 3

exceeded state. In this example βcost = 0.01 and ∀al αal = 0.3. The predictor is PW
with window size of 350 s.

The workflow is submitted at times 70 and 250. The HEFT and WQE estimations
of workflow execution at submit time 70 have been shown at Fig. 14. The actual
execution of workflow has also been shown for comparison. As it is found, the WQE
is much closer to the actual execution than HEFT. Note that the actual execution

512 S. Kianpisheh, N. Moghadam Charkari

Fig. 13 Resources behavior

can be traced according to resources behavior in Fig. 13. For example, at time 70
the r1 is in CPU threshold exceeded and has a speed of CS1|CPU thr execeeded = 10 ×
(1 − 2 × 0.3) = 4 ops/s according to Eq. (9). Thus, submitting a1 at time 70 takes

O1
CS1|CPU thr execeeded

= 40
4 = 10 s.

The final results of the response time, reliability and cost estimation in WQE,
HEFT and the actual values are shown in Table 3. At time 250, the r1 is unavailable
and the workflow execution fails. The HEFT assumes the execution is reliable while
the WQE computes the reliability as 0.013. For more clarification, some parts of the
computations have been shown in Table 3.

5 Complexity analysis

In this section, we analyze the time complexity of the proposed method for estimating
QoS metrics for a workflow with M activities and E edges supposed to be mapped on
N resources defined in the mapping vector M . Before proceeding with the analysis,
the following theorems are proved.

Theorem 5.1 The number of edges in a structured workflow with M activities as
defined in Sect. 3.1 is O(M).

Proof Each activity is inserted to a workflow through a basic structure including
sequence, parallel, selection, and loop. As it is observable in Fig. 2, this insertion to
any arbitrary basic structure adds at most two more edges to the workflow. Thus, the
number of edges is at most twice of the number of activities, i.e., E = O(M). �

Theorem 5.2 The number of nodes in the correspondent tree of any structured work-
flow with M activities is O(M).

Proof The minimum possible corresponding tree has two levels with one root and M

activities as leaves. This tree obviously has O(M) nodes. As the number of leaves
is constant and equal to M , to construct a tree with maximum possible nodes, the
middle nodes should be maximized. Ignoring loops, these nodes can be labeled as

A grid workflow Quality-of-Service estimation based on resource 513

Fig. 14 WQE and HEFT estimation of task execution on resources when the workflow in Fig. 12 has been
submitted at time 70. The actual execution has been shown for comparison

“seq”, “sel” or “par” and function as operators. In order to maximize the middle
nodes, the least number of operands, which is obviously two, should be selected for
each node. Consequently, the biggest tree is a full binary tree having M leaves. This
tree can be balanced or unbalanced. As analyzing either case gives the same result,
we continue the analysis with a balanced full tree, i.e., full and complete tree. Let M ′
be the smallest positive number greater than or equal to M such that it is a power of
two. In other words, M ′ = 2	logM

2
. Assuming these M ′ nodes as leaves of a tree, the
total number of nodes in a full and complete tree is 2logM ′

2 +1 − 1 = 2M ′ − 1. Above
each node of this tree, a “loop” can be inserted which leads the number of nodes
being 2 × (2M ′ − 1) = O(M). �

514 S. Kianpisheh, N. Moghadam Charkari

Table 3 WQE and HEFT results for workflow of Fig. 12

Submit time: 70

HEFT Estimation

Reliability: 1.0

Makespan: 44.0

cost: 4.51

WQE

π1,available = 0, π1,user present = 0.37, π1,CPU thr exceeded = 0.63, π1,unavailable = 0

w1,i∈{0..50} = 10.5
70− 0+50

2
= 0.23 w1,i∈{50..69} = 10.5

70− 50+69
2

= 1

π1,user present = 51×0.23
51×0.23+20×1 = 0.37 π1,user present = 20×1

51×0.23+20×1 = 0.63

π2,available = 0, π2,user present = 0, π2,CPU thr exceeded = 1, π2,unavailable = 0

π3,available = 1, π3,user present = 0, π3,CPU thr exceeded = 0, π3,unavailable = 0

Reliability: 1.0

Makespan: 80.67

cost: 2.41

Actual Execution 〈Successful execution〉
Makespan: 90.0

cost: 2.01

Submit time: 250

HEFT Estimation

Reliability: 1.0

Makespan: 44.0

cost: 4.5

WQE

π1,available = 0, π1,user present = 0.07, π1,CPU thr exceeded = 0.35, π1,unavailable = 0.58

π2,available = 0, π2,user present = 0, π2,CPU thr exceeded = 1, π2,unavailable = 0

π3,available = 1, π3,user present = 0, π3,CPU thr exceeded = 0, π3,unavailable = 0

Reliability: 0.013

r(par{a2, . . . , a5},M) = (0 + 0.07 + 0.35)2 × 12 = 0.176

r(root,M) = r(a1,M) × r(par,M) × r(a6,M) × r(a7,M) = 0.423 × 0.176 = 0.013

Makespan: 85.51

cost: 2.18

c(a1,M) = 40 × 10−2 × { 0.07
0.42 × 7

10 + 0.35
0.42 × 4

10 } = 0.18 c(a2,M) = 70 × 10−2 × { 1
1 × 5

10 } = 0.35

c(a3,M) = 50 × 10−2 × 0.45 = 0.22 c(a4,M) = 100 × 10−2 × 0.45 = 0.45

c(a5,M) = 80 × 10−2 × { 1
1 × 2.8

10 } = 0.22 c(a6,M) = 110 × 10−2 × 0.45 = 0.49

c(a7,M) = 60 × 10−2 × 0.45 = 0.27 c(root, M) = 2.18

Actual Execution 〈Failure execution〉

As our analysis has shown the same time complexity for the response time, relia-
bility and cost estimation, in the rest of this section we concentrate on the response
time estimation. Estimating the response time involves four processing steps: first,

A grid workflow Quality-of-Service estimation based on resource 515

the availability prediction of resources, second, data transfer time computation, third,
the response time estimation of activities, and fourth, the response time composition.

Let |SI| be the number of subintervals within prediction window of size L. Note3

that 1 ≤ |SI| ≤ L. The availability prediction is done by processing the subintervals
within a window.4 Thus, the availability prediction for all resources is O(|SI| · N).

To compute the mean data transmission time for each pair of activities, a computa-
tion as in Eq. (5) is required for each edge in the workflow. According to Theorem 5.1,
this processing needs O(M) operations.

The estimation of response time of activity ai needs O(|pred(ai)|) operations
to compute the latency of data transmission time and O(|AL|) time to compute the
weighted sum of the response time at availability levels as indicated by Eq. (11). In
total, the estimation of the response time for activity ai takes5 O(|pred(ai)|) opera-
tions.

The composition is done via a post order traversal of the corresponding tree in
which the complexity depends on the number of nodes in the tree. According to
Theorem 5.2, the process is done within O(M) time.

The time complexity of all four steps results in O(|SI| · N + M +
∑

i=1,...,M |pred(ai)|+M) = O(|SI| ·N +M +E)
Theorem 5.1=⇒ O(|SI| ·N +M) where

1 ≤ |SI| ≤ L.

6 Experiments

The simulation has been done over NDU data set. Condor has recorded the availabil-
ity changes of 64 nodes over 6 months in the early 2007 [21]. To choose a suitable
resource state predictor, in the first part of the simulation, PE and PW with different
window sizes are initially examined. The results in the second part of the simulation
are based on the best performed predictor. To measure the accuracy of the workflow
QoS estimation, the actual QoS parameters have been gained by simulating the exe-
cution of workflows on resources which behave exactly according to the NDU trace.
The errors of the QoS estimation in HEFT and the WQE methods have been measured
in comparison with the actual values.

6.1 Resource state prediction results

The state of each resource has been predicted each hour within 6 months. The avail-
ability state with the maximum probability has been selected as output of the predictor
as in Eq. (15):

predicted state for resource j at time t = arg max
al

πj,al(t) (15)

3In the case that |SI| = 1, all observations refer to one availability state. In the case that |SI| = L, each
observation refers to a different availability state in comparison with its previous and next observation.
4There is no difference between complexity of PW and PE. PW scans subintervals twice while PE scans
once.
5As the number of availability levels is bounded, it can be ignored in complexity computation.

516 S. Kianpisheh, N. Moghadam Charkari

Fig. 15 Resource availability
prediction accuracy vs. size of
window

Fig. 16 Resource availability
prediction accuracy vs. distance
of prediction point from history

When the predicted state is equal to the actual reported state in the trace, the pre-
diction is correct otherwise it is wrong. Figure 15 indicates the prediction accuracy
when the window size changes from 1 to 25 hour. The smaller the window size, the
better the achieved accuracy. PW outperforms PE. The reason is that the information
near to the prediction time gets more weight in PW. This makes sense as the state of
a resource is more dependent on its recent states rather than farther states in the past.

To examine the effect of distance of prediction point from history, we have chosen
1 and 2 hour as the window size, since, in Fig. 15, they showed the highest accuracy.
Figure 16 shows how the accuracy reduces when the distance of prediction point
from history increases. This accuracy reduction has a great effect in workflow QoS
estimation. After submitting the workflow, it takes some time for the activities to be-
come ready for execution. So, when we predict the state of a resource at a workflow
submit time, the prediction does not necessary hold true when the activity starts ex-
ecution. The figure shows that when the distance of prediction point changes from 0
to 12 hours, the accuracy reduces from 96 % to 85 %. When this distance is less than
2 hours, the PW performs better, but for distances above 2 hours PE has performed
better. In the rest of the experiments, we use PW with window size of 1 hour as a
predictor, since 70 % of the workflows have makespan less than 4 hours and in this
range PW performs better than PE.

A grid workflow Quality-of-Service estimation based on resource 517

Table 4 Parameters related to resources and 25620 random generated workflows in the simulation

Category Parameter Name Value

Workflows Number of activities {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70}

Height {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}

And–Or ratio {0, 0.2, 0.4, 0.6, 0.8, 1}

CCR {0, 0.2, 0.4, 0.6, 0.8, 1, 1.2}

Max edge ratio {1.1, 1.3, 1.5, 1.7, 1.9}

Operations of activity N{μ = U(15 MOP, . . . ,1500 MOP), σ = 0.25μ}
Resources RE 56 nodes of NDU tracea

CSj Floating point operation speed of resource j in NDU trace

αal ial × 0.3

βcost 10−7

aNodes with ids 14, 32, 56, 4, 15, 61, 42, 26 have been omitted to increase load balancing among resources

6.2 Workflow QoS estimation results

6.2.1 Random workflows

To measure the accuracy of QoS estimation, 25620 random workflows were gen-
erated. The 56 nodes of NDU trace have been considered as resources. Simulation
parameters have been shown in Table 4. Among the parameters, Height shows the
height of the workflow graph which is equal to the length of the longest path from the
root to the exit activity. And–Or ratio is the probability that the basic structure would
be and rather than or when a split occurs. Max edge ratio is a parameter controlling
the maximum out-degree of a node. The number of operations per activity is mod-
eled by a normal distribution with its mean uniformly selected from the range of 15
Mega Operation (MOP) to 1500 MOP while the standard deviation is a quarter of the
mean. For the sake of simplicity, we have assumed that there is no loop in the work-
flows. As there was no bandwidth information for resources of NDU trace, we use
the Communication-to-Computation Ratio (CCR) to compute communication time
[19]. The communication time between each two activities is modeled as a normal
distribution with mean computed by Eq. (16) and the standard deviation of 20 s. We
assume that network communication is reliable.

μdt(ai, aj ,M) =
⎧
⎨

⎩

0 if M(ai) = M(aj)

CCR ×
Oi

CSM(ai)
+ Oj

CSM(aj)

2 else
(16)

In this part of simulation, we compare the accuracy of HEFT estimation of QoS
with WQE estimated values. The accuracy is computed by comparing the estimated
values with actual values achieved by simulating workflow execution on NDU trace.
Each workflow is submitted to the grid in time interval of 2 hours during 6 months.
The results are the average for all workflows and all submit times.

Table 5 shows the failure and the resource utility reports of workflows execution.
It has been found that about 75 % of workflows have a failure rate less than 60 %,

518 S. Kianpisheh, N. Moghadam Charkari

Table 5 Failure and resource utility report

Failure percent [0, 20 %] (20 %, 40 %] (40 %, 60 %] (60 %, 80 %] (80 %, 100 %]

Failure report Percent of workflows 21 % 29 % 25 % 13 % 12 %

Total mean 43 %

Resource utilization [0, 20 %] (20 %, 40 %] (40 %, 60 %] (60 %, 80 %] (80 %, 100 %]

Resource
utility report

Percent
of workflows

54 % 25 % 11 % 4 % 6 %

Total mean 27 %

Table 6 Mean actual response time and cost report

Actual response time (hour) (0, 2] (2, 4] (4, 6] (6, 8]

Response time report Percent of workflows 30 % 40 % 27 % 3 %

Total mean 3

Actual cost (base unit) (0, 1425] (1425, 2850] (2850, 4275] (4275, 5700]

Cost report Percent of workflows 44 % 35 % 16 % 5 %

Total mean 1827

while 25 % of them have a failure rate above 60 %. About 80 % of workflows use less
than 40 % of the resources. The reason is that HEFT is a greedy algorithm toward
using the fastest resources which is defined by the static speed of resources.

Table 6 illustrates the actual response time and cost report of successfully executed
workflows, respectively. 70 % of workflows have been executed within 4 hours, and
the execution of the rest has been completed in at most 8 hours. About 80 % of the
workflows have been executed with the cost less than 2850 of base units and the rest
of them have cost up to 5700.

In order to measure the accuracy of reliability prediction, we use the following
rules:

rule 1: if workflow execution failed ∧ r
(
root(T),M

)
< 0.5 → accurate

rule 2: if workflow execution succeeded ∧ r
(
root(T),M

)
> 0.5 → accurate

rule 3: otherwise → inaccurate
(17)

When the reliability is predicted correctly, we measure the certainty of prediction
by confidence value as in Eq. (18):

confidence =
{

1 − r(root(T),M) rule 1

r(root(T),M) rule 2
(18)

A grid workflow Quality-of-Service estimation based on resource 519

Fig. 17 Cumulative distribution
function of mean absolute error
for response time estimation

Fig. 18 Cumulative distribution
function of mean absolute error
for cost estimation

85 % of failure/success execution of workflows has correctly been predicted in
WQE with confidence of 0.82. HEFT has the accuracy of 56 % in failure/success
prediction which is low in comparison with WQE. This is because HEFT always
assumes that the execution will be completed successfully.

The cumulative distribution function (CDF) of the mean absolute error (MAE) of
the response time estimation has been shown in Fig. 17. The curve of WQE is above
HEFT, which indicates its superior performance due to considering resource state
prediction in the computation of the QoS parameters. In 80 % of cases, the MAE
in WQE is less than 18 minutes, while this value increases to 32 minutes in HEFT.
Similar results have been obtained in cost prediction as shown in Fig. 18.

In the rest of this section, we investigate the effect of the workflow structure on
estimation accuracy. As the behavior of cost curves was similar to the response time
curves, due to lack of space, we only show the results of the response time estimation.

Figure 19 indicates the effect of height when it varies in the range from 2 to 20.
As it is shown, the increase of height causes a makespan increment, and therefore,
an increment in distance of prediction point from history. Thus, the quality of esti-
mation decreases. In this way, a slight descending slope in the accuracy of reliability
prediction and at the same time a large ascending slope in MAE of the response
time are generated. HEFT has reverse behavior in reliability prediction. Since, when

520 S. Kianpisheh, N. Moghadam Charkari

Fig. 19 The effect of the height variation on the accuracy of workflow QoS estimation. The accuracy
of reliability is the percentage of times that a success/failure execution of a workflow has been correctly
predicted using the rules in Eq. (17)

Fig. 20 The effect of the number of tasks variation on the accuracy of a workflow QoS estimation. The
accuracy of reliability is the percentage of times that a success/failure execution of a workflow has been
correctly predicted using the rules in Eq. (17)

the height increases,6 it becomes greedier toward using few fast resources. In NDU
trace, fast resources have high availability. Thus, less reliability prediction error will
be involved in HEFT.

To investigate the effect of the number of tasks, we have shown the accuracy as
a function of the number of tasks in the range of {5,10, . . . ,70}. Figure 20 shows
the result. As expected, HEFT performs worse with a considerable slope variation.
On the other hand, we get a less variable slope behavior in WQE. The reason is
that increasing the number of tasks does not necessary make an increment in the
makespan. It means that the distance of prediction point is kept rather at the same
level. So, in WQE, the quality of estimation does not change a lot.

Figures 19 and 20 also show that as the workflow becomes larger either by height
or the number of tasks, WQE will outperform HEFT even more. In large workflows,
HEFT causes a huge error in estimation while WQE has much better performance
due to regarding the dynamic states of resources in QoS estimation. For very small

6Since we are assuming approximately the same amount of tasks, the workflow gets closer to the shape of
a sequence structure.

A grid workflow Quality-of-Service estimation based on resource 521

Table 7 Actual workflow structures used in simulation

workflows, for example, with height less than 4 as shown in Fig. 19(b) or under 10
activities as shown in Fig. 20, applying WQE has less benefit.

6.2.2 Actual workflows

The method has been evaluated on actual workflows (Table 7). We have constructed
the tree according to the structure of workflows. The CCR is supposed to be 0.2
to enhance the effect of resource dynamicity on QoS parameters. The number of
operations per activity is a normal distribution with mean uniformly chosen from
15 MOP to 1500 MOP and the variance equal to a quarter of the mean. Table 8
shows the results. The superior performance of WQE is enhanced when the workflow
becomes bigger. For example, for Avian Flu, the MAE of the response time estimation
in WQE is about 79 s less than HEFT, while in Motif, this outperformance increases
to 39 min. For very small workflows like Avian Flu and Gene 2 Life, the accuracy of
reliability prediction in WQE is less than HEFT, but for other workflows the WQE
has predicted better. The reason is that small workflows consume few fast resources.

522 S. Kianpisheh, N. Moghadam Charkari

Ta
bl

e
8

E
va

lu
at

io
n

of
Q

oS
es

tim
at

io
n

on
ac

tu
al

w
or

kfl
ow

s

W
or

kfl
ow

N
um

be
r

of
ta

sk
s

R
es

ou
rc

e
ut

ili
ty

Fa
ilu

re
pe

rc
en

t
M

ea
n

ac
tu

al
re

sp
on

se
tim

e
(h

ou
r)

M
ea

n
ac

tu
al

co
st

W
Q

E
H

E
FT

R
el

ia
bi

lit
y

ac
cu

ra
cy

R
el

ia
bi

lit
y

co
nfi

de
nc

e
M

A
E

of
re

sp
on

se
tim

e
(m

in
)

M
A

E
of

co
st

R
el

ia
bi

lit
y

ac
cu

ra
cy

M
A

E
of

re
sp

on
se

tim
e

(m
in

)
M

A
E

of
co

st

A
vi

an
Fl

u
[3

2]
4

3.
6

%
0.

07
0.

95
28

5
0.

89
0.

88
2.

38
5.

3
0.

93
3.

70
10

.6

G
en

e
2

L
if

e
[3

2]
8

3.
6

%
0.

07
1.

43
64

8
0.

87
0.

86
3.

6
10

.8
0.

93
5.

43
19

.7

PS
L

oa
d

[3
2]

20
16

.0
%

0.
50

1.
65

16
41

0.
81

0.
79

7.
10

25
.4

0.
50

10
.8

1
47

.1

E
pi

ge
no

m
ic

s
[3

3]
20

7.
1

%
0.

35
2.

64
14

38
0.

88
0.

88
7.

26
21

.1
0.

64
14

.8
48

.8

A
ni

m
at

io
n

w
or

kfl
ow

[3
4]

22
19

.6
%

0.
55

1.
63

17
17

0.
79

0.
78

3.
80

20
.9

0.
45

10
.8

58
.6

L
ig

o
in

sp
ir

al
an

al
ys

is
[3

3]
40

21
.4

%
0.

55
2.

63
28

79
0.

79
0.

78
5.

91
29

.3
0.

45
15

.9
94

.1

M
ot

if
[3

2]
13

8
10

0
%

0.
95

2.
61

85
30

0.
95

0.
95

15
.5

11
5.

4
0.

04
54

.3
48

1.
1

A grid workflow Quality-of-Service estimation based on resource 523

Fig. 21 The effect of the data
transfer time variation on
response time estimation

These resources in NDU trace are also highly available. When the size of workflow
grows, WQE provides more accurate prediction for reliability.

6.2.3 Network stability effect

In the previous sections, we assumed that the data transmission time between each
pair of activities is done with a mean computed by Eq. (16) and the standard deviation
of 20 s. As the network may not be stable for communications, this variance might
be higher in reality. To investigate the effect of this variation, we have changed the
standard deviation of data transmission time for each edge in the Epigenomics work-
flow in the range from 20 to 420 s. The result is shown in Fig. 21. As the standard
deviation increases, the estimation error of both methods increases, since the estima-
tion of communication time has a direct effect on workflow QoS estimation. A good
prediction method for network operation can be composed with the proposed method
to minimize the effect of data transfer time variation.

6.2.4 Computation time

In this part of simulation, the effect of the parameters on the run time of WQE has
been investigated. These parameters include the number of activities (M), number of
resources (N), and prediction window size (L). In each part of the simulation, one
parameter changes while others remain constant. A Java-based simulator runs on a
system with Intel® Core™ i7-3770k CPU (3.50 GHz) and uses 128 MB of memory.

In the first part of the simulation, N = 64 and L = 1 h. M changes in the
range of {500,1000, . . . ,8500} to reflect various numbers of activities. To have fair
communication-to-computation and the number of parallel-to-selection splits, CCR
and And–Or ratio have both been selected to be 0.5. The max edge ratio is 1.5 and the
height is 50. Figure 22 shows that the run time of the algorithm changes from 17.2 ms
for a workflow with 500 activities to 68.6 ms for a workflow with 8500 activities. As
expected by theoretical analysis of Sect. 5, there is a linear relationship among the
points of the plot. For example, when the number of activities changes from 1000 to
4000, the run time smoothly increases from 28.8 to 45.7 ms.

524 S. Kianpisheh, N. Moghadam Charkari

Fig. 22 Run time of WQE for
workflows with different sizes.
CCR = 0.5; And–Or ratio =
0.5; Max edge ratio = 1.5;
height = 50; L = 1 h. NDU
resources have been used. The
results are averages over 50 runs

Fig. 23 Run time of WQE for
workflow with 4500 tasks vs.
number of resources. CCR =
0.5; And–Or ratio = 0.5; Max
edge ratio = 1.5; height = 50;
L = 1 h. The results are
averages over 50 runs

Fig. 24 Run time of WQE for
workflow with 4500 tasks vs.
size of window. CCR = 0.5;
And–Or ratio = 0.5; Max edge
ratio = 1.5; height = 50. The
results are averages over 50 runs

In the second part of the simulation, M = 4500 and L = 1 h. N changes in the
range of {4,8, . . . ,64} to reflect various numbers of resources. As expected by theo-
retical analysis, there is a linear relationship among the run time and the number of
resources as shown in Fig. 23.

Finally, we change L in the range of {1,7, . . . ,108} hours in the case when M =
4500 and N = 64. Figure 24 shows that as the size of the window increases, the
run time of the algorithm slightly changes from 45.4 to 55.9 ms. The slight changes
indicate that the most important parameters in the run time of WQE are the number
of activities in the workflow and the number of resources. Increasing the size of the

A grid workflow Quality-of-Service estimation based on resource 525

prediction window slightly increases the number of subintervals and thus has less
effect on the run time increment.

7 Conclusion and directions for future work

Accurate workflow QoS estimation enhances the performance of a workflow schedul-
ing algorithm. In this paper, we propose a method called WQE, for estimating the
QoS parameters of a Grid Workflow. These parameters include reliability, response
time and execution cost. The two main components of WQE include resource moni-
toring and analysis and workflow QoS computation.

We have employed a simple monitoring system which monitors each resource
periodically to record the changes in availability state of them within time. The avail-
ability states represent both the workload and availability of resources. The resource
behavior with respect to availability changes is modeled by a multi-state system. Two
prediction algorithms (PE and PW) have been proposed to stochastically predict the
availability state of a resource. These predictors use different weighting mechanisms
for historical availability information. Simulation results showed the superior perfor-
mance of PW in comparison with PE.

The workflow QoS computation is done in four steps: data transfer modeling,
activity level estimation, basic structures computation, and QoS composition. The
QoS of activities are computed based on resources availability analysis. We support
sequential, parallel, selection, and loop as basic structures. The QoS of each basic
structure is computed by aggregating the QoS of each operand involved in the ba-
sic structure. Assuming the workflow graph is converted to a tree structure, the QoS
composition uses QoS of basic structures to compute the QoS of the root which is
regarded as the final computation. NDU trace has been used to simulate workflow
executions to get the actual QoS values. Simulations have been carried on for random
and actual workflows. WQE outperforms estimation of HEFT, and the estimated val-
ues are much closer to actual values.

There are three directions for future work. First, the presented estimation method
can be exploited to enhance the quality of a workflow scheduling algorithm. A good
trade-off among reliability, performance, and cost in scheduling is possible when em-
ploying estimated QoS of workflow. Second, a network operation prediction method
can be combined with WQE to improve consistency with the actual world. Finally,
the method might be justified for estimating the QoS of the workflow running on
virtual machines inside a data center to move toward cloud computing. The major
challenge will be predicting the behavior of a virtual machine which needs much
more investigation in this way.

Acknowledgements This work is being supported by Iran Telecommunication Research Center (ITRC),
Tehran, Iran, Contract No. 12200/500.

References

1. EGEE homepage (2008). http://egee.cesnet.cz/en/info/
2. Teragrid homepage. http://www.teragrid.org

http://egee.cesnet.cz/en/info/
http://www.teragrid.org

526 S. Kianpisheh, N. Moghadam Charkari

3. PlanetLab (2008) P.L.A. open platform for developing debugging and accessing planetary scale ser-
vices. http://www.planet-lab.org

4. Frey J, Tannenbaum T, Livny M, Foster I, Tuecke S (2001) Condor-g: a computation management
agent for multi-institutional grids. In: International conference on high performance distributed com-
puting, pp 55–63

5. Litzkow M, Livny M, Mutka M (1988) Condor—a hunter of idle workstations. In: International con-
ference on distributed computing systems, pp 104–111

6. Rood B, Lewis MJ (2009) Grid resource availability prediction-based scheduling and task replication.
J Grid Comput 7:479–500

7. Kiran M, Hashim A-HA, Kuan LM, Jiun YY (2009) Execution time prediction of imperative paradigm
tasks for grid scheduling optimization. Int J Comput Sci Netw Secur 9:155–163

8. Smith W (2007) Prediction services for distributed computing. In: International symposium on paral-
lel and distributed processing, pp 1–10

9. Tao M, Dong S, Zhang L (2010) A multi-strategy collaborative prediction model for the runtime of
online tasks in computing cluster/grid. Clust Comput 14:199–210

10. Glasner C, Volkert J (2011) Adaps—a three-phase adaptive prediction system for the runtime of jobs
based on user behaviour. J Comput Syst Sci 77:244–261

11. Byun E, Choi S, Baik M, Gil J, Park C, Hwang C (2007) MJSA: Markov job scheduler based on
availability in desktop grid computing environment. Future Gener Comput Syst 23:616–622

12. Ramakrishnan L, Reed D (2009) Predictable quality of service atop degradable distributed systems.
Clust Comput. doi:10.1007/s10586-009-0078-y

13. Wang H-C, Lee C-S, Ho T-H (2007) Combining subjective and objective QoS factors for personalized
web service selection. Expert Syst Appl 32:571–584

14. Hwang S-Y, Wang H, Tang J, Srivastava J (2007) A probabilistic approach to modeling and estimating
the QoS of web-services-based workflows. Inf Sci 177:5484–5503

15. Jaeger MC, Rojec-Goldmann G, Muehl G (2004) QoS aggregation for web service composition using
workflow patterns. In: International conference on enterprise distributed object computing, pp 149–
159

16. Zheng H, Yang J, Zhao W (2010) QoS probability distribution estimation for web services and service
compositions. In: International conference on service-oriented computing and applications, pp 1–8

17. Maheswaran M, Ali S, Siegel HJ, Hensgen D, Freund RF (1999) Dynamic mapping of a class of
independent tasks onto heterogeneous computing systems. J Parallel Distrib Comput 59:107–131

18. Topcuoglu H, Hariri S, Wu MY (2002) Performance-effective and low-complexity task scheduling
for heterogeneous computing. IEEE Trans Parallel Distrib Syst 13:260–274

19. Cao H, Jin H, Wu X, Wu S, Shi X (2010) DAGMap: efficient and dependable scheduling of DAG
workflow job in grid. J Supercomput 51:201–223

20. Chen WN, Zhang J (2009) An ant colony optimization approach to a grid workflow scheduling prob-
lem with various QoS requirements. IEEE Trans Syst Man Cybern 39:29–43

21. http://fta.scem.uws.edu.au/
22. Wolski R, Spring N, Hayes J (1999) The network weather service: a distributed resource performance

forecasting service for metacomputing. Future Gener Comput Syst 15:757–768
23. Dinda P, O’Hallaron D (1999) An extensive toolkit for resource prediction in distributed systems.

Technical report CMU-CS-99-138, Carnegie Mellon University
24. Hu L, Che X-L, Zheng S-Q (2012) Online system for grid resource monitoring and machine learning-

based prediction. IEEE Trans Parallel Distrib Syst 23:134–145
25. Jiong Y, Guo-Zhong T, Ling C (2008) Allocating resource in grid workflow based on state prediction.

In: IEEE/IFIP international conference on embedded and ubiquitous computing, pp 417–422
26. Lili S, Shoubao Y (2009) A Markov chain based resource prediction in computational grid. In: Inter-

national conference on frontier of computer science and technology, pp 119–124
27. Ren X, Lee S, Eigenmann R, Bagchi S (2007) Prediction of resource availability in fine-grained cycle

sharing systems empirical evaluation. J Grid Comput 5:173–195
28. Wu AS, Yu H, Jin S, Lin K-C, Schiavone G (2004) An incremental genetic algorithm approach to

multiprocessor scheduling. IEEE Trans Parallel Distrib Syst 15:824–834
29. Tao F, Zhao D, Hu Y, Zhou Z (2008) Resource service composition and its optimal-selection based

on particle swarm optimization in manufacturing grid system. IEEE Trans Ind Inform 4:315–327
30. Young L, McGough S, Newhouse S, Darlington J (2003) Scheduling architecture and algorithms

within the ICENI grid middleware. In: UK e-science all hands meeting, pp 5–12

http://www.planet-lab.org
http://dx.doi.org/10.1007/s10586-009-0078-y
http://fta.scem.uws.edu.au/

A grid workflow Quality-of-Service estimation based on resource 527

31. Cardellini V, Casalicchio E, Grassi V, Iannucci S, Presti FL, Mirandola RR (2012) MOSES: a frame-
work for QoS driven runtime adaptation of service-oriented systems. IEEE Trans Softw Eng 38:1138–
1159

32. Ramakrishnan L, Plale B (2010) A multi-dimensional classification model for scientific workflow
characteristics. In: International workshop on workflow approaches to new data-centric science

33. Pegasus Workflow Generator. http://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
34. Chong A, Sourin A, Levinski K (2006) Grid-based computer animation rendering. In: International

conference on computer graphics and interactive techniques, pp 39–47

http://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator

	A grid workﬂow Quality-of-Service estimation based on resource availability prediction
	Abstract
	Introduction
	Related works
	Resource state prediction
	Job QoS estimation

	Problem statement and preliminaries
	Workﬂow
	Grid computing resources
	Problem statement
	HEFT algorithm

	Workﬂow QoS estimation system
	Resource monitoring & analysis
	Workﬂow QoS computation
	Data transfer time modeling
	Activity level
	QoS of basic structures
	QoS composition

	An illustrative example

	Complexity analysis
	Experiments
	Resource state prediction results
	Workﬂow QoS estimation results
	Random workﬂows
	Actual workﬂows
	Network stability effect
	Computation time

	Conclusion and directions for future work
	Acknowledgements
	References

