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Abstract The latest developments in mobile computing technology have increased
the computing capabilities of smartphones in terms of storage capacity, features sup-
port such as multimodal connectivity, and support for customized user applications.
Mobile devices are, however, still intrinsically limited by low bandwidth, computing
power, and battery lifetime. Therefore, the computing power of computational clouds
is tapped on demand basis for mitigating resources limitations in mobile devices.
Mobile cloud computing (MCC) is believed to be able to leverage cloud applica-
tion processing services for alleviating the computing limitations of smartphones. In
MCC, application offloading is implemented as a significant software level solution
for sharing the application processing load of smartphones. The challenging aspect of
application offloading frameworks is the resources intensive mechanism of runtime
profiling and partitioning of elastic mobile applications, which involves additional
computing resources utilization on Smart Mobile Devices (SMDs). This paper inves-
tigates the overhead of runtime application partitioning on SMD by analyzing addi-
tional resources utilization on SMD in the mechanism of runtime application profiling
and partitioning. We evaluate the mechanism of runtime application partitioning on
SMDs in the SmartSim simulation environment and validate the overhead of runtime
application profiling by running prototype application in the real mobile computing
environment. Empirical results indicate that additional computing resources are uti-
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lized in runtime application profiling and partitioning. Hence, lightweight alternatives
with optimal distributed deployment and management mechanism are mandatory for
accessing application processing services of computational clouds.

Keywords Mobile cloud computing · Elastic applications · Distributed systems ·
Application offloading

1 Introduction

The recent developments in mobile computing technology have enriched mobile de-
vices with smart computing capabilities. Users enjoy the computing and communica-
tion services of SMDs with the freedom of mobility. SMDs incorporate the comput-
ing potentials of PDAs and voice communication capabilities of cellular phones by
providing support for new user applications and multimodal connectivity for access-
ing cellular and data networks. Therefore, SMDs are expected as the leading future
computing devices with high user expectations for employing computational inten-
sive applications. Examples of the intensive applications include speech recognition,
natural language processing, computer vision and graphics, machine learning, aug-
mented reality, planning and decision making [39]; however, the intrinsic limitations
in the wireless access medium and mobile nature of SMDs obstruct the employment
of intensive mobile applications [18, 33, 34, 36]. The latest approach to alleviate re-
sources limitations in SMDs is the employment of Cloud Computing (CC) services
and resources, which are accessed by using traditional internet technologies [12]. CC
implements the vision of computing utility and employs diverse IT business mod-
els such as on-demand, pay-as-you-go, and utility computing for the provisioning
of computing services [5, 8]. For example, Amazon Web Services (AWS) are uti-
lized to store personal data through its Simple Storage Service (S3) [3], and Elastic
Cloud Compute (EC2) is employed for application processing services [5]. Success-
ful practices of CC for stationary computers motivate for leveraging cloud resources
and services for SMDs.

MCC envisions software level solutions for addressing the issues of resources lim-
itations in SMDs by leveraging the services and resources of computational clouds
on a demand basis. Currently, a number of techniques are endeavored for the aug-
mentation of the computing potentials of SMDs [2, 25]. Application offloading is
ascertained as a software level solution for addressing the issue of resources inca-
pacitation in SMDs. The traditional offloading algorithms [10, 11, 17, 35] implement
static partitioning or dynamic partitioning algorithms for the distribution of process-
ing load between powerful server nodes and resources constraint SMDs. The critical
aspects of offloading frameworks are the runtime application profiling and partition-
ing, which utilize additional computing resources (CPU, battery power) on SMD.
Moreover, the establishment of distributed platform at runtime involves the issues
of resources utilization on SMD in cloud server arbitration for partition offloading,
application partition migration, and security threats for partition migration [23]. For
instance, the profiler mechanism searches for computational intensive components
of the application and the solver mechanism separates the intensive components of
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the mobile application. The migrator mechanism arbitrates with cloud datacenters
for the selection appropriate remote server node in cloud datacenter and transfers
the partitions of the application at runtime. Therefore, resources intensive distributed
platform is established at runtime. This paper investigates the overhead of application
partitioning by analyzing additional resources utilization in runtime application pro-
filing and partitioning on SMD. SmartSim [40] is deployed for evaluating resources
utilization in runtime application profiling and partitioning. A prototype application
is tested in the Android platform for analyzing the additional cost of runtime appli-
cation profiling. Empirical results indicate that additional computing resources are
utilized in runtime application profiling and partitioning. Hence, lightweight alter-
natives are mandatory for accessing application processing services of computational
clouds. The contribution of the paper lies in analyzing additional resources utilization
in application profiling and partitioning of elastic mobile application for mobile cloud
computing, which assists in proposing lightweight procedures for computational load
in MCC.

The paper is divided into the following sections. Section 2 presents fundamental
concepts of cloud computing, mobile cloud computing, and application offloading for
MCC. Section 3 reviews current elastic application offloading algorithms. Section 4
discusses methodology used to experiment and evaluate the overhead in runtime ap-
plication profiling and partitioning. Section 5 presents results and discussion of the
analytical findings. Finally, Sect. 6 draws concluding remarks and future directions.

2 Background

This section discusses the fundamental concept of cloud computing and mobile cloud
computing and explains the mechanism of application offloading for MCC.

2.1 Mobile cloud computing

Mobile cloud computing is the evolving computing model, which extends the util-
ity computing vision of computational clouds to resources constrained SMDs. Cloud
computing is based on the centralization of resources in cloud datacenters and pro-
vision of resources on demand basis [22]. Service providers provide services in the
form of various service models; Software as a Service (SaaS), Infrastructure as a
Service (IaaS), and Platform as a Service (PaaS) [5]. In the SaaS model, computer
software in the cloud datacenters is provided access on demand basis. An exam-
ple of the SaaS includes GoogleDocs [19], which provides free access for spread-
sheet and word processing tools. Platform as a Service (PaaS) model enables to rent
hardware, operating systems, storage, and network capacity over the Internet. For
instance, the Google App Engine provides an application developmental and deploy-
ment platform in Google’s data centers [16]. The IaaS model of the computational
clouds enables consumers to outsource storage, hardware, servers, and networking
components. AWS [42] offers infrastructure as a service and software as service,
which enable to utilize the virtualize resources and services in cloud datacenters.
AWS are utilized to store personal data through its Simple Storage Service (S3) [5].
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Fig. 1 Model of mobile cloud computing [39]

MCC envisions a distributed computing model, which addresses the issue of re-
sources limitations in SMDs. In this vision, mobile users seamlessly access the ser-
vices and resources of a computational cloud to obtain the resource benefits at low
cost on the move [1]. MCC leverages the storage and application processing services
of resources rich and powerful centralized computing datacenters in computational
clouds for SMDs [32]. The attributes of centralized management, availability of re-
sources, and scalability of services and on demand access to widespread service on
the move are the motivating factors for leveraging cloud services and resources for
SMDs. MCC is an attractive computing model for the business persons for the reason
of a profitable business option, which reduces the development and execution cost of
mobile applications. It enables mobile users to acquire new technology conveniently
on a demand basis and on the move [26]. Different strategies are employed for the
augmentation of SMDs including screen augmentation, energy augmentation, stor-
age augmentation, and application processing augmentation of SMD [1]. The MCC
model is composed of three components: mobile devices, wireless technologies, and
computational cloud. Mobile devices use cellular networks (such as 3G, LTE) or data
networks (such as Wi-Fi) to access the services of computational cloud in mobile en-
vironment. As SMD inherits its nature of mobility, it needs to execute location-aware
services, which consume resources and turned it to be a low-powered client. Figure 1
shows the model of MCC wherein the computational cloud is integrated with SMD
via wireless network technologies.

The storage services of computational clouds are utilized for augmenting the stor-
age capacity [13], whereas the application processing services are leveraged for aug-
menting processing capabilities of SMDs [26]. The application processing capabil-
ities of SMDs are augmented by offloading computational intensive components of
the mobile applications to cloud datacenters.

2.2 Application offloading for MCC

The mechanism of outsourcing computational load to remote surrogates in the close
proximity is called cyber foraging [24]. In MCC, smartphones implement applica-
tion offloading to utilize the computing power of the cloud. The mechanism of out-
sourcing computational load to remote server node is called application offloading.
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Researchers extend process offloading algorithms for pervasive computing [30], grid
computing [27], and cluster computing [7]. In recent years, a number of cloud server
based application offloading frameworks are introduced for outsourcing computa-
tional intensive components of the mobile applications partially or entirely to cloud
datacenters [13, 15, 20, 22, 43]. Mobile applications which are attributed with the
features of runtime partitioning are called elastic mobile applications. Elastic appli-
cations are partitioned at runtime for the establishment of a distributed processing
platform [39]. For instance, Amazon released Silk, which is a cloud-accelerated Web
browser [21] whose software resides both on Kindle Fire and EC2. With the web page
request, Silk dynamically determines the distribution of processing load between mo-
bile hardware and Amazon EC2. The workload distribution considers different fac-
tors such as network conditions, page complexity, and the location of any cached
content [6]. The traditional offloading frameworks implement a static or dynamic
partitioning approach for the division of application processing load at runtime. In
static application partitioning [14], the application is partitioned in a fixed number of
partitions either at compile time or runtime. The computational intensive partitions
of the applications are outsourced to remote servers for offload processing [39]. The
dynamic partitioning approach is implemented to address the issue of dynamic appli-
cation processing load on SMDs at runtime [13, 15, 43]. In dynamic partitioning, the
application is partitioned dynamically at runtime casually or periodically. In casual
partitioning, the runtime partitioning mechanism is activated in critical conditions to
offload intensive components of mobile application, whereas in periodic partitioning
the profiling mechanism evaluates computing resources utilization on SMD periodi-
cally for resolving critical condition.

The dynamic partitioning mechanism is employed in two steps, which include
application profiling and solving [13]. The mechanism in which the intensive com-
ponents of the application are identified is called application profiling, whereas the
mechanism in which the intensive components are separated from the application for
offloading is called application solving. The profiling mechanism evaluates comput-
ing resources requirements of mobile application and the availability of resources on
SMD. In critical condition (the unavailability of sufficient resources on SMD) elastic
mobile application is partitioned and the computational intensive components of the
application are offloaded dynamically at runtime. SMDs negotiate with cloud servers
for the selection of appropriate server node. At that moment, the intensive partitions
of the application are migrated to remote server node for remote processing. Upon
successful execution of the remote components of the application, the result is re-
turned to the main application running on SMD.

3 Traditional elastic application frameworks for mobile cloud computing

The application offloading frameworks implement runtime application partitioning
in two ways: static partitioning or dynamic partitioning [39]. The static application
partitioning involves one time application partitioning mechanism for the distribu-
tion of workload between SMD and cloud server node. The intensive components
of the application are partitioned and transferred to the remote server node. The dis-
tribution of workload between SMDs and cloud server nodes occurs only once. For
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example, the primary functionality offloading [17] mechanism involves partitioning
and offloading of the intensive components at runtime. The interactive components
of the application are configured on SMD, whereas the intensive and none interac-
tive components of the application are offloaded to remote server node. VM based
cloudlet [35] involves the overhead of virtual machine deployment and management
for component offloading at runtime. In [37, 41], we investigate the impact of VM
deployment for application processing. MISCO [14] implements a static partition-
ing approach for the classification of the application processing load between Map
and Reduce functions. Map function is applied on the set of input data that produces
<key, value> pairs, which are grouped into a number of partitions. The intermedi-
ate results of every partition are passed to a reduce function, which returns the final
results. Application developers classify the functionalities of the application as the
Map and Reduce functions. Mobile devices serve as worker nodes and are monitored
through the centralized master server. The worker nodes provide the services of pro-
cessing Map and Reduce functions. Static partitioning is a lightweight mechanism for
the distribution of workload between SMD and cloud server node. However, it lacks
in coping with the dynamic processing load of the mobile device. Therefore, the latest
application offloading frameworks implement the dynamic partitioning mechanism.

Dynamic partitioning of the intensive mobile application is a robust technique for
solving the critical condition of resources limitations repeatedly on SMD [39]. The
traditional dynamic partitioning approaches evaluate the statistics of resources uti-
lization on SMD and execution requirements of the application at runtime. In [15], a
middleware framework is proposed for the dynamic distribution of application pro-
cessing load between SMD and the cloud server node. The framework deploys the
application partitioning in the optimal mode and dynamically determines the execu-
tion location for modules of the mobile application. The partioning mechanism deter-
mines the intensive components and splits the application in modules on the basis of
its behavior. The framework implements the K-Step algorithm for dynamic partition
at runtime, whereas the ALL algorithm is employed for static partitioning of the ap-
plication. In order to reduce search space, the framework implements a preprocessing
mechanism on the consumption graph. Preprocessing separates local and remote bun-
dles of the application. It searches for the application modules, which can result in
high cost in offloading and for that reason are not feasible for offloading. The frame-
work distributes workload as per the statistics of resources available on SMD. The
framework determines the optimal solution for the optimization problem in order to
optimize different objective functions, such as interaction time, communication cost,
and memory consumption. The runtime partitioning strategy, however, requires addi-
tional computing resources in the dynamic application partitioning mechanism. The
distributed platform in AIDE [29] is composed of computing devices in the locality
of mobile devices; SMD access, a preconfigured surrogate server, which maintains
information of the volunteer server nodes. The runtime profiling mechanism of the
framework is activated dynamically, which implements class level granularity for par-
titioning of mobile application. The application profiler determines the feasibility of
partition offloading on the basis of the execution history of the application and predic-
tion of the future resources required for the application. AIDE provides a transparent
distributed application deployment framework for mobile applications and provides
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the notion of application being processed on mobile device locally. However, the
runtime partitioning of the application requires additional computing resources uti-
lization for the establishment of a distributed platform.

Mobile Assistance Using Infrastructure (MAUI) [13] focuses on energy saving for
SMD. Application developers identify the local and remote components of the appli-
cation at design time. The MAUI profiler determines the feasibility of a remotely
annotated method for offload processing. Each time a method is called, the pro-
filer component assesses it for energy saving, which utilizes additional computing
resources (CPU, energy) on SMD. The MAUI solver operates on the input provided
by application profiler. It determines the destination of execution for the method an-
notated as remote. The framework implements application proxies on SMD and the
cloud server node. MAUI generates a wrapper for each method marked as remote
at compile time. The wrapper method is created with two changes: one additional
input argument, and one additional return type. Input argument is required for the
state transfer of smartphone to MAUI server through client application proxy. The
additional return value is used to transfer the application state back from the server
to the smart mobile device using server proxy. State of the method is transferred
in serialized form. MAUI implements application level partitioning for outsourcing
computational load of SMD. However, the mechanism of runtime application pro-
filing and solving at runtime involves additional computing resources utilization for
application partitioning. Development of the applications on the basis of MAUI re-
quires additional developmental efforts for annotating the execution pattern of each
individual method the application. MAUI deploys full proxies of the application on
both SMD and the cloud datacenter. MAUI involves the overhead of dynamic appli-
cation partitioning, component migration, and reintegration.

CloneCloud [11] involves partitioning and reintegration of the application at the
application level. The partitioning phase of the framework includes static analysis,
dynamic application profiling, and optimization solution. A preprocess migratory
thread is implemented on mobile devices to assist in the partitioning and reintegration
of the thread states. The elastic application model [43] provides a middleware frame-
work for mobile applications. Application is dynamically partitioned into weblets,
which are migrated dynamically to cloud server node. The framework implements
different elastic patterns for the replication of weblets on the remote cloud. It consid-
ers different parameters for offloading of the weblets; such as status of the mobile de-
vice, cloud, application performance measures and user preferences, which comprise
power saving mode, high speed mode, low cost mode, and offload mode. The frame-
work considers an optimal cost model for the execution configuration of the weblets,
which considers different costing factors such as power consumption, monetary cost,
performance attributes, and security and privacy. The framework implements a re-
sources intensive mechanism for runtime application partitioning and the migration
of weblets between SMD and remote cloud nodes. It includes additional resources
utilization on SMD in the process of application profiling, dynamic runtime parti-
tioning, weblets migration and reintegration, and continuous synchronization with
the cloud server node for the entire duration of application processing.

Traditional computational offloading frameworks for MCC involve the issues of
additional resources utilization on SMD in the establishment of distributed plat-
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form [39]. For instance, the profiler mechanism searches for computational inten-
sive components of the application and the solver mechanism separates the intensive
components of the mobile application. The migrator mechanism arbitrates with cloud
datacenters for the selection appropriate remote server node in the cloud datacenter
and transfers the partitions of the application at runtime. Therefore, resources inten-
sive distributed platform is established at runtime.

4 Methodology

Experimental setup The overhead of runtime application profiling and partitioning
is investigated in simulation and in the real mobile computing environment. SmartSim
[40] is employed for the evaluation of the overhead of runtime application partition-
ing on SMDs. SmartSim is a simulation tool that models the application processing
capabilities of the mobile device and mobile applications. It is deployed for the evalu-
ation of resources utilization by mobile application on SMD. The resources provision
algorithm schedule computing resources of the SMD for the processing of application
or application components.

The overhead of runtime application profiling is further analyzed by benchmark-
ing the prototype application for Android devices in the real mobile cloud computing
environment. The experimental setup is composed of cloud server node, Wi-Fi wire-
less network, and Samsung Galaxy SII mobile device. The virtual device instance is
employed on the server machine for the execution of offloaded application at runtime.
The mobile device accesses the wireless network via a Wi-Fi wireless network con-
nection of radio type 802.11g, with the available physical layer data rates of 54 Mbps.
A Java based Android software development toolkit (Android SDK) is deployed for
the development of the prototype application. Power Tutor tool [31] is used for the
measurement of battery power consumption in distributed application processing.

Mobile application The simulated mobile application is composed of a finite set of
components with a specific processing intensity (CPU) and memory allocation re-
quirement (RAM). Mobile application is composed of 10 components with different
computational intensities. The overhead of runtime application partitioning is ana-
lyzed by evaluating the partitioning mechanism of simulated mobile application with
varying processing intensities in two different scenarios. In scenario I, the application
is composed of none intensive operations and all the operations of the application are
executed on SMD, whereas in scenario II represents the application is composed of
intensive operations wherein SMD is not able to fulfill resources requirements of
the intensive mobile application. Therefore, the execution of the application employs
runtime optimization to resolve the critical condition and separate the intensive com-
ponents of the applications. Application partitioning is a CPU intensive and time
consuming mechanism. Therefore, we analyze the percent additional CPU utilization
and percent additional time taken in separating the intensive components of the ap-
plication. We use wall clock time for evaluating the execution time of the application
in the simulation environment. Wall clock time is the time taken from submission of
the application until the completion of the execution [9].



92 M. Shiraz et al.

A prototype application is developed by using Service Oriented Architecture
(SOA) of Android applications. The application tested the Android device for the
evaluation of the additional overhead of runtime profiling mechanism on SMD. The
prototype application is composed of three service components. (a) The sorting ser-
vice component implements the logic of bubble sort for sorting linear list of integer
type values. The sorting logic of the application is tested with 30 different computa-
tional intensities (11000–40000). (b) The matrix multiplication service of the appli-
cation implements the logic of computing the product of 2-D array of integer type
values. Matrix multiplication logic of the application is tested with 30 different com-
putational intensities by varying the length of the 2-D array between 160 ∗ 160 and
450 ∗ 450. (c) The power compute service of the application implements the logic
of computing bˆe, whereas b is the base and e is the exponent. The power compute
logic of the application is tested for 30 different computational intensities by varying
the exponent between 1000000 and 200000000. Empirical data are collected by sam-
pling all computational intensities of the application in 30 different experiments and
the value of sample mean is signified with 99 % confidence interval for the sample
space of 30 values in each experiment. The measurement parameter includes percent
CPU utilization, Execution Time (ET) in Milliseconds (ms), percent RAM allocation
and Energy consumption Cost (EC) in units of Joules (J).

5 Results and discussion

Current computational offloading frameworks [4, 10, 11, 13, 15, 17, 20, 22, 28, 35,
43] establish distributed application processing platform at runtime which utilizes
computing resources of the mobile devices for the entire duration of distributed appli-
cation processing. Such approaches focus on what components of the application to
offload and where to offload the computational intensive components of the applica-
tions. Current frameworks lack of considering the overhead of runtime distributed ap-
plication deployment on SMD. The overhead comprises computing resources (CPU,
memory, battery) exploitation in application partitioning and component offloading
dynamically at runtime.

5.1 Analysis of runtime application partitioning

The overhead of runtime application partitioning is analyzed by evaluating the sim-
ulated mobile application in two different scenarios. The computational intensity of
mobile application is varied in eight different experiments. The profiler mechanism
is activated in the critical situations, wherein insufficient resources exist on the SMD
for the execution of mobile application. Profiler identifies the intensive components at
runtime and activates the solver mechanism to separate the intensive components of
the mobile application. The process continues until the mobile device becomes capa-
ble to execute the application locally. The profiler mechanism identifies the intensive
components of the application to resolve the critical condition.

We evaluate percent CPU utilization and Execution Time (ET) of the application
on SMD in scenarios I and II (as discussed Sect. 4). Figure 2 compares CPU utiliza-
tion on SMD in scenarios I and II, wherein operations/components of the application



Investigation on runtime partitioning of elastic mobile applications 93

Fig. 2 Comparison of percent
CPU utilization in scenarios I
and II

Fig. 3 Comparison of
application execution time in
scenarios I and II

with the same processing intensity are executed on SMD. It is found that scenario
II involves partitioning of the intensive components application at runtime to resolve
the critical condition, which increases CPU utilization. It is examined that the execu-
tion of nine components of the application with processing intensity 326 MI utilizes
40.8 % CPU in scenario I and 44.8 % CPU in scenario II. Similarly, the execution of
five components of the application with processing intensity 157 MI utilizes 19.6 %
CPU in scenario I and 33.7 % CPU in scenario II. In the same way, the execution
of two components of the application with the processing intensity 23.6 MI utilizes
3 % CPU in scenario I and 22.6 %CPU in scenario II. It shows that in scenario II,
creating a single partition, which has processing intensity 520 MI increases CPU
utilization 3.4 %, creating five partitions of the application, which have processing
intensity 2185 MI increases CPU utilization 14.2 % and creating eight partitions of
the application, which have processing intensity 3039 MI increases CPU utilization
19.7 %.

Figure 3 compares the ET of the application in scenario I and scenario II. In both,
the scenarios operations with the same processing intensity are executed on SMD. It
is examined that the ET of the application increases in scenario II for the reason of
partitioning the application at runtime. It is found that execution of nine components
of the application with processing intensity 326 MI takes 57830107 wall clock time
in scenario I and 60907932 wall clock time in scenario II. Similarly, the execution of
five components of the application with processing intensity 157 MI takes 20099920
wall clock time in scenario I and 52393007 wall clock time in scenario II. In the same
way, the execution of two components of the application with the processing intensity
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Fig. 4 Additional time taken in
partitioning intensive
component of the application

23.6 takes 1498245 wall clock time in scenario I and 35395345 wall clock time in
scenario II. It shows that creating a single partition, which has processing intensity
520 MI increases the ET 5 %, creating five partitions of the application, which have
processing intensity 2185 MI increases ET 61.6 % and creating eight partitions of the
application, which have processing intensity 3039 MI increases ET 95.5 %.

Investigation of the application processing in scenarios I and II shows that runtime
partitioning of the elastic mobile application requires additional computing resources
on SMD. It is observed that the average CPU utilization of the SMD increases 10.4 %
and an average ET of the application increases 54 % in scenario II for the process-
ing application composed of 2–10 operations, which shows the overhead of runtime
application partitioning.

In another example, it is found that the number of partitions created for an appli-
cation depends on the computational intensity of the application. For instance, in the
first experiment, the computational intensity of the application is kept low as a re-
sult the entire application is executed on the mobile device. Therefore, the overhead
of runtime partitioning is found zero. In the second experiment, the total processing
intensity of the application is 520 MI, wherein the profiler identifies a single highly
intensive component of the application to resolve the critical condition and enable
mobile application to be processed locally on mobile device. The remaining nine
components of the application are executed on local mobile device. Similarly, the
partitioning mechanism separates five intensive components of the application with
processing length 2185 MI, whereas the remaining five components of the application
are executed on local mobile device. In the same way, in another experiment eight in-
tensive partitions are separated from the application of processing length 3039 MI,
whereas a single component of the application is executed on the mobile device. It is
examined that additional computing resources are utilized on SMD for each instance
of application partitioning at runtime.

It is found that the overhead of runtime application profiling depends on two fac-
tors, which include the number of partitions created and the number of components in
the mobile application. Therefore, larger instances of application partitioning at run-
time utilizes higher computing resources for a larger period of time and, therefore,
results in larger additional overhead on SMD. The mechanism of runtime applica-
tion partitioning is time consuming and, therefore, increases the execution time of
the application. Figure 4 shows the additional time taken in runtime partitioning of
the mobile application. The runtime partitioning of single component of mobile ap-
plication with processing intensity of 520 MI takes 12 % additional time of the total
application processing time on SMD. The partitioning of four intensive components
with the processing intensity 1770 MI takes 59 % additional time of the total applica-
tion processing time on the mobile device. Similarly, partitioning of eight components
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Fig. 5 Additional CPU
utilization in partitioning
intensive components of the
application

with processing intensity 3039 MI takes 97 % additional time of the total application
processing time on SMD. It shows that partitioning of larger number of intensive
components results in higher resources utilization on SMD for a longer period of
time. The increase in execution time of the application is for the reason that each in-
stance of application partitioning involves additional time taken in profiler and solver
activation for the identification and separation of the highly intensive component of
the application at that specific instant. For instance, additional partitioning time in
creating two partitions is 25 % higher as compared to creating a single partition as it
involves the activation of partitioning mechanism two times. Similarly, the additional
partitioning time in creating eight partitions is 83.5 % higher as compared to creating
two partitions, as it involves the activation of partitioning mechanism eight times.

Figure 5 shows the additional CPU utilization in runtime partitioning of elastic
mobile application. It is found that creating a single partition involves additional
27 MIPS() utilization in application partitioning, which constitutes 7.6 % of the total
CPU utilization in application processing on the local mobile device. Similarly, par-
titioning six components of the application involves additional 124 MIPS utilization
in application partitioning which constitutes 62.3 % allocation of the total CPU uti-
lization for application processing. In the same way, creating eight partitions involves
additional 157 MIPS utilization, which constitutes 87 % of the total CPU utilization
for application processing on the mobile device. Analysis of the results show that the
duration of CPU utilization is 83.5 % longer for separating eight intensive compo-
nents as compared to separating a single intensive component of the application at
runtime. It indicates that the mechanism of runtime application profiling and solving
utilizes a higher percentage of CPU for a longer period of time in resolving larger
instances of critical conditions.

The total overhead of runtime application partitioning is the sum of the resources
utilization in application profiling and application solving. On the average, the pro-
filer uses an additional 3.1 MIPS for profiling (1–8) components of the application
at runtime and the solver uses additional 83.2 MIPS for solving (1–8) components
of intensity level (520–3039 MIPS). Similarly, runtime application partitioning takes
additional 52.6 % time and 40.4 % CPU of the application processing for partitioning
(1–8) components of intensity level 520–3039 MIPS, which indicates the additional
processing overhead on SMD in the deployment of runtime application partitioning.

5.2 Analysis of runtime application profiling

Profiling is employed for automatically partitioning elastic mobile application and
partition offloading. For instance, application profiling mechanism dynamically eval-
uates availability of resources (CPU, RAM) on the mobile device and computational
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Fig. 6 Sort service execution
time on SMD without
employing profiling and by
including profiling mechanism

requirements of mobile application. Similarly, the network profiling mechanism de-
termines accessibility of network and quality of signal strengths while accessing the
wireless access medium in MCC. Energy profiling mechanism examines utilization
of battery power during the processing of mobile application. However, the imple-
mentation of runtime profiling mechanism is resources intensive, energy starving and
time consuming. In this section, we analyze the impact of the application profiling
mechanism on the execution time and energy consumption cost of the mobile ap-
plication for Android devices. The components of mobile application are executed
without including runtime profiling and by including runtime profiling mechanism.

Figure 6 shows the comparison the Execution Time (ET) of sorting service ex-
ecution on the mobile device in two different scenarios, i.e., without profiling and
with profiling. Sort service execution time is evaluated for 30 different computational
intensities by varying the length of sorting operation between 11000–40000 values.
It is examined that the ET on the local SMD is smaller for sorting operation in the
scenario of without employing runtime profiling as compared to performing sorting
operation with including profiling mechanism. For instance, the ET for sorting op-
eration without employing profiling is found 2438 ms for list length 11000 values,
11647 ms for list length 25000 values, and 24468 ms for list length 40000 values.
Whereas the ET for sorting operation with employing the runtime profiling mecha-
nism is found 18318 ms for list length 11000 values, 121600 ms for list length 25000,
and 268409 ms for list length 40000 values. It shows that by including the runtime
profiling mechanism the value of ET increases 86.7 % for sorting list of 11000 val-
ues, 90.4 % for sorting list of 25000 values and 90.8 % for sorting list of 40000
values. The overall increase in the ET of sorting service by including runtime profil-
ing in the sorting operation is found 90 % for sorting list length 11000–40000 in 900
experiments.

Figure 7 shows the comparison the Execution Time (ET) of matrix multiplication
service execution on the mobile device in two different scenarios. Matrix multiplica-
tion service execution time is evaluated for 30 different computational intensities by
varying the length of matrix 2-D arrays between 160 ∗ 160–450 ∗ 450 values. It is ex-
amined that the ET on the local SMD is smaller for matrix multiplication operation in
the scenario of without employing runtime profiling as compared to performing ma-
trix multiplication operation by including the profiling mechanism. For instance, the
ET for matrix multiplication operation without employing profiling is found 359 ms
for matrices of length 160 ∗ 160, 1951 ms for matrices of length 290 ∗ 290 and 8248
ms for matrices of length 450 ∗ 450, whereas the ET for matrix multiplication op-
eration by including profiling mechanism is found 960 ms for matrices of length
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Fig. 7 Matrix multiplication
service execution time on SMD
without employing profiling and
by including profiling
mechanism

Fig. 8 Power compute service
execution time on SMD without
employing profiling and by
including profiling mechanism

160 ∗ 160, 5445 ms for matrices of length 290 ∗ 290 and 21590 ms for matrices of
length 450 ∗ 450. It shows that by including the runtime profiling mechanism the
value of ET for matrix multiplication operation increases 62.6 % for multiplying ma-
trices of length 160 ∗ 160, 64.1 % for multiplying matrices of length 290 ∗ 290 and
61.8 % for multiplying matrices of length 450 ∗ 450. The overall increase in the ET
by including runtime profiling in the matrix multiplication service execution is found
63 % for 30 different intensities of the matrix multiplication operation.

Figure 8 shows the comparison the Execution Time (ET) of power compute ser-
vice execution on the mobile device without employing profiling and with including
profiling mechanism. The power compute service execution time is evaluated for
30 different computational intensities of power compute operation, i.e., 2ˆ1000000–
2ˆ2000000000. It is examined that the ET on the local SMD is higher for power
compute operation in the scenario of employing runtime profiling as compared to per-
forming power compute operation without including the profiling mechanism. For in-
stance, the ET for the power compute operation without employing profiling is found
51 ms for computing 2ˆ1000000, 1501 ms for computing 2ˆ50000000, and 69044 ms
for computing 2ˆ2000000000, whereas the ET for the power compute operation with
employing profiling is found 160 ms for computing 2ˆ1000000, 5885 ms for com-
puting 2ˆ50000000, and 425382 ms for computing 2ˆ2000000000. It shows that by
including the runtime profiling mechanism the value of ET for power compute oper-
ation increases 68 % for computing 2ˆ1000000, 74.5 % for computing 2ˆ50000000,
and 83.8 % for computing 2ˆ2000000000. The overall increase in the ET by includ-
ing runtime profiling in the power compute service execution is found 76.8 % for 30
different intensities of the power compute operation.

Figure 9 shows the comparison the Energy consumption Cost (EC) of sorting ser-
vice execution on the mobile device by employing profiling and without employing
the runtime profiling mechanism. The EC of sort service execution is evaluated for
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Fig. 9 Energy consumption
cost of sort service execution on
SMD without employing
profiling and by including
profiling mechanism

Fig. 10 Energy consumption
cost of matrix multiplication
service execution without
employing profiling and by
including profiling mechanism

different intensities of sorting operation (11000–40000). It is found that the runtime
profiling mechanism increases the EC of application. For instance, EC for sorting
operation without employing profiling is found: 13.6 J for list length 11000 values,
28.6 J for list length 25000 values, and 60.1 J for list length 40000 values, whereas
the EC for sorting operation with employing runtime profiling mechanism is found
21.6 J for list length 11000 values, 104.7 J for list length 25000, and 253.6 J for list
length 40000 values. The inclusion of runtime profiling mechanism increases energy
consumption cost on mobile device as 37 % for sorting list of 11000 values, 73 % for
sorting list of 25000 values, and 76 % for sorting list of 40000 values. The overall
increase in the EC of sorting service by including runtime profiling in the sorting
operation is found 68.4 % for sorting list length 11000–40000.

Figure 10 shows the increasing trend EC of matrix multiplication service execu-
tion on mobile device and the comparison of EC for 30 different intensities of matrix
multiplication operation. The EC of the application depends on the intensity of opera-
tion being performed. It is found that higher intensive operations execute for a longer
period of time and are energy starving. For instance, the EC of matrix multiplica-
tion service execution without employing profiling mechanism is examined 11.5 J
for multiplying matrices of size 160 ∗ 160, 24.7 J for multiplying matrices of size
300 ∗ 300, and 69.9 J for multiplying matrices of size 450 ∗ 450. It shows the EC
of matrix multiplication operation for matrices of size 450 ∗ 450 is 83.5 % larger as
compared to multiplying matrices of length 160∗160, whereas the EC of matrix mul-
tiplication service execution with the inclusion of runtime profiling is found 14.6 J
for multiplying matrices of size 160 ∗ 160, 35.2 J for multiplying matrices of size
300 ∗ 300, and 90.2 J for multiplying matrices of size 450 ∗ 450. It shows that the
additional cost of application profiling increases for higher intensities of matrix mul-
tiplication operation. For instance, the increase in EC is found 21.2 % for multiplying
matrices of length 160 ∗ 160, 29.9 % for multiplying matrices of length 300 ∗ 300,
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Fig. 11 Energy consumption
cost of power compute service
execution without employing
profiling and by including
profiling mechanism

and 22.5 % for multiplying 450 ∗ 450. The overall increase in the EC by including
runtime profiling in the matrix multiplication service execution is found 25.1 % for
30 different intensities of the matrix multiplication operation.

Figure 11 shows the increasing trend EC of power compute service execution on
the mobile device and the comparison of EC. The EC of power compute operation
is evaluated with 30 different intensities of power compute operation in two differ-
ent scenarios. It is found that EC increases for higher intensities of power compute
operation in either scenario. For instance, the EC with of power compute service
execution without employing profiling mechanism is examined 2.2 J for computing
2ˆ1000000, 4.5 J for computing 2ˆ50000000, and 67 J for computing 2ˆ2000000000.
It shows the EC of computing 2ˆ2000000000 is 40 % larger as compared to com-
puting 2ˆ1000000. The EC of power compute service execution with the inclusion
of runtime profiling is found 2.2 J for computing 2ˆ1000000, 10.3 J for comput-
ing 2ˆ50000000, and 176.7 J for computing 2ˆ2000000000. Analysis of the results
shows that the additional overhead of runtime profiling is negligible for smaller in-
tensities of power compute service execution. For instance, the EC is found 2.2 J for
computing 2ˆ1000000 with including and excluding runtime profiling mechanism.
However, the additional cost of application profiling increases for higher intensities
of power compute operation. For instance, the increase in EC is found 11.5 % for
computing 2ˆ2000000, 39.1 % for computing 2ˆ40000000, and 62.5 % for comput-
ing 2ˆ2000000000. The overall increase in the EC by including runtime profiling in
the power compute service execution is found 40 % for 30 different intensities of the
matrix multiplication operation.

In runtime, application profiling additional RAM is allocated for maintaining state
information of the running application. It is observed that the mechanism of runtime
application profiling is allocated additional 8192 KB RAM for maintaining a tem-
porary trace file in all instances of the experimentation. The prototype application
is evaluated for offloading the running instance of the application component to the
remote server node. At one instance, all the three services are executed locally on
SMD, whereas in another instance the sorting service is offloaded to the remote server
node. We evaluate computational load on SMD, and the impact of runtime compo-
nent offloading on the resources allocation and execution time of the locally executing
components. It is examined that offloading the intensive service at runtime increases
system load and the resources utilization on SMD and adversely affects the execution
time of the locally executing components of the mobile application. Analysis shows



100 M. Shiraz et al.

that the CPU allocation to local services increases on average 8 % and the execution
time of the locally executing services reduces on average 32.6 %. The increase in
the local services execution time on SMD is for the reason of additional overhead of
active service migration to the remote server node at runtime. Further, analysis indi-
cates that in normal scenarios the operating system average CPU utilization remains
is 5.6 % for the entire duration of application processing on the SMD. During the
service outsourcing process, the average CPU utilization increases to 9.8 %, which
shows 42.8 % increase in the CPU utilization during the runtime component offload-
ing process. Hence, the runtime service migration mechanism increases the system
CPU utilization up to 76.3 %.

The deployment of cloud based application processing for mobile application in-
volves the following issues. (1) The traditional elastic mobile application frameworks
[13, 43] require the classification of the components of mobile application at de-
sign time. Application developers are bound to annotate the individual components
of application as local or remote. (2) The configuration of ad-hoc distributed plat-
form dynamically at runtime is resources intensive and time consuming. SMDs arbi-
trate with the cloud datacenters for the selection of appropriate remote server node
for each instance of application partition/component offloading. The unavailability
of predefined server component of the application sets up a resources intensive dis-
tributed processing environment. (3) Traditional approaches for application offload-
ing employ runtime profiling, and solving mechanism on SMDs to evaluate applica-
tion processing requirements and the availability of computing resources on SMD.
Therefore, the deployment of a distributed platform is resources intensive. (4) Cur-
rent offloading frameworks require dynamic management of the distributed execu-
tion environment all through the remote processing of the mobile application. As a
result, the computing resources on SMD are consumed for the entire duration of dy-
namic distributed platform. (5) The dynamic migration of intensive components of
the application increase communication overhead. Transferring data over the cellular
network or Wi-Fi is a power starving mechanism and exceeds the energy consumed
by data processing on SMD. (6) The management of the runtime distributed platform
requires continuous synchronization between SMD and the remote server node. The
implementation of uninterrupted synchronization mechanism in the wireless network
medium is resources starving and time consuming mechanism. In [38], we propose
a distributed application model for intensive mobile application. The framework re-
duces the instances of runtime application partitioning by implementing the tradi-
tional client/server architecture for the design time classification of application pro-
cessing load. It focuses on the configuration of explicitly configured server in the
cloud data center, which is accessed on demand basis for mobile devices.

6 Conclusion and future work

The paper investigates the overhead of runtime profiling and partitioning in simu-
lation and a real mobile computing environment. The mechanism of runtime parti-
tioning and offloading of the intensive components of the mobile applications is a
resource intensive mechanism. Empirical analysis indicates that the additional re-
sources utilization on SMD depends on two factors; (1) the instances of runtime
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application partitioning and offloading, and (2) the computational intensity of the
application partitions. We conclude the runtime application profiling and partition-
ing of the traditional elastic mobile applications results in the additional overhead
for the deployment and management of distributed platform. The mechanism of dy-
namic application offloading at runtime involves complications in arbitration with
cloud servers for the selection of appropriate remote node, dynamic assessment of
the resources utilization and availability of resources on SMDs, runtime profiling
and solving, application migration and reintegration, and continuous synchronization
with cloud servers for the entire duration of the distributed platform, since the tra-
ditional offloading frameworks lack in the consideration of the intensity of runtime
distributed deployment on SMD.

The intrinsic limitations associated with the mobile devices demand for optimal,
and lightweight procedures in cloud based application processing. Lightweight pro-
cedures will result in minimum computing resources utilization (CPU, RAM), energy
consumption, and reduce application processing time. We aim for the incorporation
of client/server model with the elastic attributes of the traditional offloading tech-
niques for reducing the instances of runtime application partitioning on SMD. Com-
putational clouds provide the SaaS model for the employment of preconfigured ser-
vices on the cloud server node. The proposed framework is aimed to employ simple
developmental and lightweight deployment procedures for utilizing the application
processing services of computational clouds on a demand basis.
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