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Abstract The distributed manufacturing takes place in a multi-factory environment
including several factories, which may be geographically distributed in different lo-
cations, or in a multi-cell environment including several independent manufacturing
cells located in the same plant. Each factory/cell is capable of manufacturing a variety
of product types. An important issue in dealing with the production in this decentral-
ized manner is the scheduling of manufacturing operations of products (jobs) in the
distributed manufacturing system. In this paper, we study the distributed and flexible
job-shop scheduling problem (DFJSP) which involves the scheduling of jobs (prod-
ucts) in a distributed manufacturing environment, under the assumption that the shop
floor of each factory/cell is configured as a flexible job shop. A fast heuristic algo-
rithm based on a constructive procedure is developed to obtain good quality schedules
very quickly. The algorithm is tested on benchmark instances from the literature in
order to evaluate its performance. Computational results show that, despite its sim-
plicity, the proposed heuristic is computationally efficient and promising for practical
problems.

Keywords Distributed scheduling · Flexible job shop · Makespan · Heuristic

1 Introduction

The significance of distributed manufacturing has been recognized by many re-
searchers and industrialists in recent years due to the changes in the mode of to-
day’s production environment. Single factory or centralized production environment
in traditional manufacturing systems has been gradually replaced by more flexible
distributed settings, including multi-factory networks or multi-cell job shops due to
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the trend of globalization [1]. The distributed manufacturing enables the enterprises
to be closer to their customers and suppliers, to produce and market their products
more effectively, to be responsive to market changes more quickly, to achieve better
product quality, lower production cost, reduced management risk, and better utiliza-
tion of production resources [1–4].

The distributed manufacturing takes place in a multi-factory environment includ-
ing several factories, which may be geographically distributed in different locations
or in a multi-cell environment including several independent manufacturing cells lo-
cated in the same plant [5]. Each factory/cell is capable of manufacturing a variety
of product types. In addition, the factories or cells have different production efficien-
cies, operating costs, production lead times, constraints, etc. [1]. An important issue
in dealing with the production in this decentralized manner is the scheduling of manu-
facturing operations of products (jobs) in the distributed manufacturing system [4, 6].

In this paper, we study the distributed and flexible job-shop scheduling problem
(DFJSP) which involves the scheduling of jobs in a distributed manufacturing en-
vironment described above, under the assumption that the shop floor of each fac-
tory/cell is configured as a flexible job shop (therefore, each factory/cell will be here-
after called flexible manufacturing unit (FMU) [5]). The flexible job-shop scheduling
problem (FJSP) is an extension of the classical job-shop scheduling problem (JSP),
where each operation is allowed to be processed on any among set of available ma-
chines; and thus, the scheduling problem is to choose, for each operation, a machine
and a starting time at which the operation must be processed [7, 8]. The DFJSP con-
sists of the following two subproblems which can be solved sequentially or simul-
taneously: (1) the assignment of each job to exactly one FMU (which corresponds
to one cell in a multi-cell environment or one factory in a multi-factory setting), and
(2) the scheduling of the jobs in each FMU, i.e. solving an FJSP for each FMU. Once
a job is assigned to an FMU and started its processing (but not finished), it is usu-
ally not possible or uneconomical to transfer this unfinished job to another FMU for
the remaining operations [1]. Therefore, we assume that once a job is allocated to an
FMU, all its operations have to be processed in the same FMU. We also suppose that
all the FMUs belong to the same company. Accordingly, they work cooperatively
to define an optimal production plan maximizing the revenue of the company as a
whole. The objective is to minimize the makespan, i.e. the overall completion time
of all the jobs on all the FMUs. The DFJSP is more complicated than the traditional
FJSP in single FMU, because it involves not only the FJSP in each FMU but also the
problem in an upper level that is the assignment of the jobs to the FMUs. This prob-
lem is strongly NP-hard, since the problem with one FMU, i.e. the FJSP, is already
strongly NP-hard [9]. This justifies the need for developing efficient heuristic algo-
rithms to obtain approximate solutions of good quality at little computational cost.
These heuristic algorithms are very fast in comparison with the exact methods and
the metaheuristic algorithms, and if they have been proved to produce solutions with
adequate accuracy, they can be the best approach. Therefore, this paper proposes a
powerful heuristic algorithm to solve the problem.

Almost all existing studies in the field of production scheduling deal with the cen-
tralized or non-distributed production environments, and only few papers investigate
the distributed scheduling problems, especially those involving the DFJSP [6]. Due to
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the complexity of the distributed scheduling problems mentioned above, approximate
algorithms, mainly metaheuristics, have been often used to solve the problem. A re-
view of heuristics developed to solve these problems can be found in references [5, 6].
Wang et al. [10] consider the distributed permutation flow-shop scheduling problem
and present an effective estimation of distribution algorithm (EDA) to solve the prob-
lem. Just this problem is also examined in [11] and solved by a tabu search algorithm.
Jia et al. [4, 12] present a modified genetic algorithm to solve the distributed schedul-
ing problem in a multi-factory network in which each factory is configured as a job
shop. Chan et al. [13, 14] consider the DFJSP and present a genetic algorithm with
dominated genes (GADG) to solve the problem and demonstrate the performance of
the method by using several new DFJSP instances. Also, Chan et al. [1] study a gener-
alized version of the DFJSP in which machine maintenance constraints are considered
and it is assumed that the maintenance time is related to the machine age. A mathe-
matical model and a genetic algorithm with dominant genes (GADG) are developed
for the problem. For both with and without maintenance constraints, the performance
of the presented genetic algorithm is evaluated using some new test instances. Gio-
vanni and Pezzella [5] present an improved genetic algorithm to solve the DFJSP.
The proposed approach is compared with other algorithms for distributed scheduling
and tested on a large set of DFJSP instances derived from well-known FJSP bench-
marks, providing good results. As it can be seen in the above review of literature on
the distributed scheduling problems, studies on methods for solving these problems
are in the early stage. Almost all the proposed methods are metaheuristic algorithms
and very time-consuming in comparison with the heuristic algorithms, because they
perform search procedure in a large part of the solution space.

In this study, we present a heuristic method based on a constructive procedure to
solve the DFJSP with the objective of minimizing makespan (Sect. 3). The main pur-
pose is to produce reasonable and applicable schedules very quickly. It can also be
used to improve the quality of the initial feasible solution of metaheuristics applied
to solve the problem, since the choice of a good initial solution is an important as-
pect of the performance of the algorithms in terms of computation time and solution
quality [15–17]. In order to evaluate the performance of the proposed heuristic, we
implement it using several benchmark problems and present the results of the com-
putational experiments (Sect. 4). The results show that our novel method can obtain
good solutions in very short time. Concluding remarks are given in the last section.

2 Assumptions and notation

The assumptions considered in this paper are as follows:

(1) Each FMU can produce all jobs with different efficiencies.
(2) For each job, all FMUs have the same number of operations.
(3) Jobs are independent of each other.
(4) Setup and transportation times are negligible.
(5) Preemption is not allowed, i.e. a started operation cannot be interrupted during

its processing.
(6) Each machine can process at most one operation at the same time.
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(7) All jobs have equal priorities.
(8) Machines never break down and are available throughout the scheduling period.
(9) All FMUs, jobs and machines are available at time zero.

The notation used throughout the paper is as follows:

l: number of FMUs,
n: number of jobs,
f : index of FMUs; f = 1, . . . , l,
i, z: index of jobs; i, z = 1, . . . , n,
mf : number of machines in FMU f ,
Ji : number of operations of job i,
maxJ : maximum number of operations per job (i.e., maxJ = maxi Ji ),
j : index of operations; j = 1, . . . , Ji ,
k, y: index of machines; k, y = 1, . . . ,mf ,
tfijy: processing time (duration) of operation j of job i on machine y of FMU f ,
cfij: completion time of operation j of job i on FMU f .
Afij: set of machines in FMU f which are capable to execute operation j of job i,
Nfij: number of members of the set Afij,
s′

fij: mean processing time of operation j of job i over the machines belonging to the
set Afij (i.e., s′

f ij = (
∑

y∈Af ij
tf ijy)/Nf ij ),

sjfi: total mean processing time of job i in FMU f (i.e., sjf i = ∑Ji

j=1 s′
f ij ),

skfy: total weighted processing time on machine y of FMU f which is calculated as

follows: skfy = ∑n
i=1

∑Ji

j=1
ify∈Afij

tfijy
Nf ij

,

IFf : number of jobs assigned to FMU f ,
M : a large number.

3 Proposed heuristic approach

In this section, a heuristic method is presented to solve the problem. This approach
is motivated by the idea of developing a constructive heuristic that considers simul-
taneously many factors affecting the solution quality and intelligently balances their
effects in the process of schedule generation, and the observation that it can lead
to good results in some preliminary computational experiments on a wide range of
difficult scheduling problems.

An outline of the proposed heuristic algorithm is given in Fig. 1.
The pseudocode of the proposed heuristic is shown in Fig. 2. In this algorithm,

each unscheduled operation (i, j ) (i.e. operation j of job i) to be scheduled on ma-
chine y of FMU f is evaluated by the following criterion, and the unscheduled oper-
ation with minimum TC is selected for scheduling.

TC =
5∑

r=1

wr × xr × Cr

such that,
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for j := 1 to maxJ do
{

until the j th operation of all jobs are scheduled, repeat
{

• Find i, k, f (such that: 1. (j = 1), or (j > 1 and job i is assigned to FMU f ); 2.
j ≤ Ji ; and 3. j th operation of job i is an unscheduled operation and machine k of
FMU f is capable of processing this operation) that minimizes TC.

• If job i is an unassigned job (i.e. a job not assigned to any FMU) to any FMU
so far, then assign it to FMU f ; and schedule j th operation of this job at the last
position of current partial sequence on machine k of FMU f .

}
}

Fig. 1 General outline of the proposed heuristic algorithm

C1 = max(Cmaxfy
, cf,i,j−1) + tfijy

C2 = max(0, (cf,i,j−1 − Cmaxfy
))

C3 = tfijy
C4 = skfy/(n + maxJ )

C5 = sjf i

TC is weighted sum of some criteria which are established based on the factors
affecting the objective function value. Minimization of TC in the process of sched-
ule generation leads to improvement in solution quality. The wr (r = 1,2, . . . ,5)
are constants and the xr (r = 1,2, . . . ,5) are integer variables used to increase the
flexibility and efficiency of criterion TC and they have a significant impact on the
performance of the algorithm. The constant weights (wr ) are preliminary estimated
weights assigned to criteria according to their importance, and the coefficients xr are
variables bounded in a given range and used to refine the TC. Cmaxfy

is the maximum
completion time across all the operations scheduled on machine y of FMU f ; that
is, Cmaxfy

is equal to the completion time of the operation situated just before oper-
ation j of job i on machine y of FMU f . C1 and C2 are applied to decrease Cmaxfy

and idle times, respectively; clearly, both these objectives affect the main objective
function, i.e. Cmax. For assigning operations to a machine, their processing times are
also taken into account by C3. C4 and C5 are used for taking into account the total
weighted processing time of machines, and the total mean processing time of jobs,
respectively.

Another notation used in the pseudocode of the heuristic is as follows:
TC∗: denotes the best value of TC. After each operation is scheduled, TC∗ is reset

to M.
L_xr (r = 1,2, . . . ,5): lower limit of xr .
U_xr (r = 1,2, . . . ,5): upper limit of xr .
To prevent assigning too many jobs to a single FMU and to achieve balanced

distribution of the jobs among the FMUs, we use a parameter called MIF which is
defined as the maximum number of jobs assigned to a single FMU and calculated as
follows:

MIF = n/l.

Thus, IFf (for f = 1,2, . . . , l) must be less than MIF (IFf < MIF).
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Fig. 2 Pseudocode of the proposed heuristic method
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The algorithm starts by scheduling the first operation of all jobs, then their sec-
ond operation, and so on (F2, L19 (i.e. Line 31 of Fig. 2)). For each j (j =
1,2, . . . ,maxJ ), the algorithm sorts the FMUs in increasing order of their IFf (F2,
L26) and, for each FMU f taken in this order (F2, L31), the algorithm sorts the jobs
in decreasing order of their sjf i and takes a job i in this order (F2, L35). Therefore,
if two unscheduled operations belonging to two different jobs have the same value
of TC, then according to this sorting of the jobs, the operation of job with greater
sjf i is selected for scheduling sooner than the other operation. Next, if job i is an
unassigned job and IFf < MIF, the algorithm evaluates its first operation to be as-
signed to and scheduled on FMU f . If job i is already assigned to FMU f , then
the algorithm evaluates its j th (j > 1) operation (if j ≤ Ji and operation j of job i

is an unscheduled operation). For evaluating operation j of job i on FMU f , sim-
ilarly the algorithm first sorts the machines of FMU f in increasing (decreasing)
order of their skfy and, for each machine y taken in this order (F2, L47), evaluates
this operation (F2, L54 to L60) to be scheduled on machine y (if machine y is ca-
pable of processing this operation, i.e. y ∈ Af ij ). Binary variable x6 is applied for
setting the order of the sorting (i.e. either increasing order or decreasing order): it
takes a value of 1 for increasing order and 0 for decreasing one. Sorting the jobs,
the machines and the FMUs, described above and done before evaluating them for
scheduling, may lead to better solutions. Indeed, in our preliminary computational
experiments, we used these sortings of the FMUs, jobs and machines instead of ran-
domly selecting them, and observed that these sortings can lead to better solutions.
Specially, the results showed that in most cases, sorting the jobs in decreasing or-
der of their sjf i leads to better solutions in comparison with increasing order. It
is because the jobs with larger sjf i which are firstly selected for scheduling have
more sensibility and effect on the objective value. In other words, the schedule of
these jobs determines the performance of overall schedule of the problem. There-
fore, we have used only their decreasing order in the computational experiments.
Similarly, the results showed that in most cases, sorting the FMUs in increasing or-
der of their IFf leads to better solutions in comparison with decreasing order. This
is because this sorting leads to keep balanced distribution of the jobs among the
FMUs. Therefore, we have used only their increasing order in the computational
experiments. For the machines however we could not definitely determine their best
order (i.e. either increasing or decreasing one), and so the algorithm itself selects
the best order for each problem instance. The x∗

r (r = 1,2, . . . ,6) are the best val-
ues of variables xr (i.e. the values corresponding to the best solutions). Indeed, for
various values of xr (r = 1,2, . . . ,6) (F2, L8 to L12), the algorithm in Fig. 1 is
run and a complete schedule is generated. Among all these schedules, the one with
minimum makespan is reported as the final solution (F2, L82 to L84). The values
of variables xr for this best solution are also reported and denoted by x∗

r (see Ta-
ble 2).

As mentioned earlier, the evaluation of the operations for scheduling them is done
using the criterion TC (F2, L54), i.e. the unscheduled operation with minimum TC is
selected for scheduling.
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4 Computational results

This section describes the computational experiments conducted in order to evaluate
the performance of the proposed heuristic method. First, some preliminary experi-
ments have been conducted for the parameter settings. Regarding the test on various
values for the parameters of the algorithm and considering the computational results,
we use the settings of Table 1 for benchmarking the presented algorithm.

The algorithm is coded in C language and run on a Pentium IV, 2.2 GHz and
2.0 GB RAM PC. The computational results of the proposed algorithm are compared
to the results of the improved genetic algorithm (IGA) developed by Giovanni and
Pezzella [5] which, to the best of our knowledge, is the only contribution containing
explicit computational results for the DFJSP. The benchmark problems used are the
set of 69 DFJSP instances presented in [5]. They are classified into three categories:
DFJSP instances with two, three and four FMUs, where the computational results of
them are shown in Tables 2, 3 and 4, respectively. The first three columns refer to the
name of the FJSP instance used to derive the DFJSP instance together with the num-
ber of jobs and machines. LB stands for the lower bounds computed by [5]. BCmax,
Av. (Cmax) and Av. time indicate the best makespan, the average makespan and the
average computational time, respectively. The results obtained by the heuristic are
shown in the last nine columns. Cmax and Time represent the makespan value and
computational time (in seconds), respectively. The best values of variables xr (i.e.
x∗
r ), r = 1,2, . . . ,6, are also reported in the tables. The average value of each vari-

able xr , r = 1,2, . . . ,5, can be considered as the relative effect of the corresponding
criterion on the quality of solutions. For example, the average value of x4 is near zero
in all three tables which means that the total weighted processing time of machines
has little effect on Cmax. Of course, as it can be seen, the values of each variable xr ,
r = 1,2, . . . ,5, have relatively high variance in all three tables, meaning that they are
strongly dependent on the specifications of problem instance under consideration and
on the values of other variables xr . The proposed algorithm selects for each instance
the best combination of xr values leading to the best result. Average weight of C5 is
negative in all three instance sets, i.e. w5 × x5 < 0, which means that it has adverse
effect on Cmax. Average value of x6 in the tables is nearer to 0 than 1. It is because
the machines with larger skfy which are firstly selected for scheduling have more
sensibility and effect on the objective value. RPD is the relative percentage deviation
to LB and is calculated as follows:

RPD = C maxalg −LB

LB
× 100,

where Cmaxalg is the best makespan obtained by the algorithm. The results show that
the heuristic finds the optimal solution (C∗

max = LB) for 46 out of 69 problems, which
represents 66.7 % of the problems tested. For some instances (specially those with
two FMUs), the gap is large, but it is notable that the lower bounds computed by [5]
are poor as stated in this reference. Herein, the heuristic is statistically compared with
the method IGA. For each of the three instance sets, a one-way analysis of variance
(ANOVA) [18] is performed to test the null hypothesis that the means of the two
methods are equal. The results of these ANOVA for DFJSP instances with two, three
and four FMUs are presented in Tables 5, 6 and 7, respectively. As it can be seen,
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Table 5 Results of one-way
ANOVA for the methods: IGA
and proposed heuristic, and for
instances with two FMUs

Source DF SS MS F P

Factor 1 94 94 0.27 0.605

Error 44 15157 344

Total 45 15250

Table 6 Results of one-way
ANOVA for the methods: IGA
and proposed heuristic, and for
instances with three FMUs

Source DF SS MS F P

Factor 1 37.7 37.7 0.91 0.344

Error 44 1815.6 41.3

Total 45 1853.4

Table 7 Results of one-way
ANOVA for the methods: IGA
and proposed heuristic, and for
instances with four FMUs

Source DF SS MS F P

Factor 1 1.94 1.94 0.86 0.359

Error 44 99.03 2.25

Total 45 100.97

in all three instance sets, the difference between the methods is not meaningful at a
significance level of 5 %. However, the average computational time for the heuristic
over all 69 instances is very low, and only (0.4 + 0.5 + 0.8)/3 = 0.57 seconds (on
a Pentium IV, 2.2 GHz) compared to (16.2 + 27.9 + 79.6)/3 = 41.2 seconds (on
a 2.0 GHz Intel Core2 processor) for IGA. Differences in the computers used for
running the programs make the direct comparison among the running times difficult.
However, even accounting for relative differences in the speed between the processors
involved, the heuristic is significantly faster than IGA.

5 Conclusion

This paper investigates the distributed and flexible job-shop scheduling problem
(DFJSP) with the objective of minimizing the overall completion time (makespan).
The main purpose is to produce reasonable schedules very quickly. A simple and eas-
ily extendable heuristic based on a constructive procedure is presented. This heuristic
uses an accurate, relatively comprehensive and flexible criterion for scheduling job
operations and constructing a feasible high-quality solution. In this criterion, several
factors affecting the quality of solutions are used, and to each of these factors, two
weights (i.e. a constant weight and a variable weight) are assigned. By setting dif-
ferent values to the variable weights, different solutions are generated and evaluated.
The proposed algorithm is tested on some problem instances from the literature in
order to evaluate its performance. Since the proposed method is a heuristic, its results
cannot be compared in a meaningful way with those of the method evaluated (IGA)
as it is a metaheuristic based algorithm. Nevertheless, the heuristic is statistically
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compared with the IGA. For each of the three instance sets (i.e. DFJSP instances
with two, three and four FMUs), a one-way ANOVA is performed to test the null
hypothesis that the means of the two methods are equal. The results show that, in all
three instance sets, the difference between the methods is not meaningful at a sig-
nificance level of 5 %. However, the solutions of the heuristic are weakly dominated
the solutions of the IGA in terms of average RPD. The computational times show
the interest of the heuristic, since in a fraction of a second on average, it produces
very good solutions. This algorithm has a simple structure, is easy to implement, and
requires very little computational effort which makes it preferable over other more
complex and time-consuming approaches, even if its results for benchmark instances
are so weakly dominated the lower bounds in the literature. The procedure is useful
in applications that deal with real-time systems and that involve the generation of ini-
tial schedules for local search and metaheuristic algorithms. Further research needs
to be conducted in applying other criteria in the TC in order to improve the solution
quality and adapt the approach to other objectives and process constraints. Moreover,
the performance of the method proposed in this paper can be improved by doing a
detailed study on the impact of different values of L_xr , U_xr and wr on the quality
of solutions and considering other combinations of values of these variables, which
is left as a future research.
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