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Abstract High Performance Cluster Computing Systems (HPCSs) represent the best
performance because their configuration is customized regarding the features of the
problem to be solved at design time. Therefore, if the problem has static nature and
features, the best customized configuration can be done. New generations of scien-
tific and industrial problems usually have dynamic nature and behavior. A drawback
of this dynamicity is that the customized HPCSs face challenges at runtime, and con-
sequently show the worse performance. The reason for this might be due to the fact
that dynamic problems are not adapted to configuration of the HPCS. Hence, requests
of the dynamic problem are not in the direction of the HPCS configuration. The main
proposed solutions for this challenge are dynamic load balancing or using reconfig-
urable platforms.

In this paper, a vector algebra-based model for HPCS reconfiguration at runtime
is presented and named AMRC. This model determines the element causing the dy-
namic behavior and analyzes the reason regarding both software and hardware at
runtime. Some results of the presented model show that by defining a general state
vector whose direction is toward reaching high performance computing and whose
weight is based on the initial features and explicit requirements of the problem, as
well as by defining a vector for each process in the problem at runtime, we can trace
changes in the directions and uncover the reason for them.
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1 Introduction

Traditional high performance cluster computing systems (HPCSs) are well known as
solutions to reach the required performance of either complex programs or programs
interacting with a large volume of data [1]. These systems use a customized initial
configuration to reach the required performance. The configuration is a result of co-
operation between experts of hardware, software, and the problem. They produce
constraints, limitations, and features of the problem and design as well as develop a
HPCS based on them to provide required computing power [2, 3].

A new generation of problems in the twenty-first century has dynamic nature and
requirements [4–6]. The unknown nature of these problems causes dynamic behavior
in processes at runtime. Dynamism of a process means that some of its requirements
are unpredictable and formed at runtime as a result of the communication and the
interaction with the environment of HPCS.

Based on Arthur Maccabe in [7], resource requests can be made in two ways:
explicitly and implicitly. The former, explicit requests, are completely determined
and stated in the program’s source code. The latter, implicit requests, are generated at
runtime and they are completely unpredictable. The programs with implicit requests
are dynamic in nature.

On the other hand, we face dynamic computing platforms in the twenty-first cen-
tury [8, 9] as well. Dynamic computing platforms mean platforms hosting different
and heterogeneous resources leaving and joining a system. In these platforms, re-
source availability is changeable and these changes are unpredictable, thus cause dy-
namic processes.

Dynamism in programs and computing platforms violate the traditional model,
that is, customized initial HPCS configuration. Approaches proposed for solving this
problem can be categorized into two groups, the first of which aims to solve the dy-
namism in problems by building dynamic hardware platforms. Vast researches on
building reconfigurable hardware platforms have been done. These researches aim to
bring the same degree of flexibility represented in software into hardware. Many of
these researches make use of FPGA [10, 11]. By the introduction of dynamic prob-
lems, efforts on adding runtime capabilities to these systems have been carried out.
Among these researches, we can point to [12] whose authors introduced a partial
run-time reconfiguration for computing systems. The challenge stated as the author’s
motive is related to the limitation of reconfigurable computing systems in satisfying
big problems’ needs when they request more resources than are available in the sys-
tem. In such a situation, the underlying platform formed by reconfigurable hardware
elements must be able to satisfy requests of the program at runtime.

The second group aims to solve the dynamism in computing platforms by build-
ing dynamic management systems [13]. Among these researches, we can point to the
approach proposed in [14]. This approach aims to have problems based on homoge-
neous HPCSs, executive on heterogeneous and dynamic grid platforms by building
an adaptive load balancing mechanism. In this research, Virtual Reactor Simulator, a
well-known, important, and complex application simulating plasma chemical deposi-
tion vapor, is used as a test case and the Russian-Dutch grid as the executive platform.
The proposed approach for adaptive load balancing in heterogeneous environments
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works by minimizing inter-process communications and gaining the tradeoff between
generating workload based on the capacity of processes. In this approach, two sets
are defined: the first contains resource features and the second is the program’s pa-
rameters. It is possible for these sets to be updated as soon as a change in resources
or in program features occurs. For each obtained parameter, the corresponding load,
based on available resources, is calculated.

In [15], a dynamic HPCS with dynamic state is considered as the underlying plat-
form, and they investigate changes caused by sudden and asynchronous behaviors of
communication, scheduling mechanisms, heterogeneity of processes, and workload
changes, as well as effects of workload changes in performance of the load balancing
algorithm. Based on these investigations, some approaches for improving workload
algorithm in situations with high frequency of changes are introduced. They have pro-
posed four rules, which must be considered in any load balancing algorithm. These
rules are: load measurement, information rules, initiation rule, and load balancing
operation. Following, they have investigated the effects of workload changes on each
of these four rules.

The approach of this paper is based on transferring the concept of HPCS configu-
ration from design time to runtime. In other words, the element responsible for HPCS
configuration must be able to reconfigure the system at runtime as well. For this, we
need to answer three questions. First, which is the element responsible for the runtime
system reconfiguration based on newly created needs? Second, how can the elements
detect the dynamic behavior (i.e., what is the criterion)? Third, which are the states
causing dynamic nature? To answer to these questions, this paper proposes an alge-
braic model for reconfiguration of HPCSs at runtime (AMRC). To answer the first
question, in the AMRC, the element responsible for HPCS configuration at runtime
changes from an external entity (HPCS experts) to an internal entity (HPCS man-
agement system). In such a situation, since the goal of an HPCS expert is to reach
the peak performance of HPCS, the HPCS management system must operate toward
reaching the peak performance in executing the program by reconfiguring and man-
aging units of HPCS. Reaching this goal (peak performance) in the best case means a
process is able to use all the resources in the HPCS such as the local resources (Sin-
gle System Image). In distributed computing, a Single System Image (SSI) HPCS is
a cluster of machines that appears to be one single system [16]. In such a system, the
processes use all of the global resources as local resources.

In order to answer the second and third questions, there must be a criterion based
on which HPCS management system can detect a dynamic process as well as a mea-
sure on which this process is compared and its deviation from the HPCS configuration
is calculated. The AMRC model represents a vector algebra-based math model [15]
to determine the process whose direction is not in the direction of the HPCS con-
figuration and which causes this mismatch. The represented model is based on the
principle that the runtime HPCS reconfiguration is possible by matching the changed
directions of the executive elements (i.e., processes) to the direction of the problem’s
general state vector (based on which the initial HPCS configuration is obtained).

This paper is organized as follows: Sect. 2 describes the preliminary concept of the
model; Sect. 3 includes the related research in this area; Sect. 4 discusses customized
configuration; Sect. 5 presents the responsible element of the runtime reconfigura-
tion; Sect. 6 introduces the function of configuration at design time; Sect. 7 presents
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the AMRC model for the HPCS reconfiguration at runtime; Sect. 8 discusses the
proposed model; and finally, Sect. 9 concludes the paper.

2 Preliminary concepts

Regarding the fact that the AMRC in this paper presents a new level of abstraction
for HPCSs to solve the reconfiguration challenges at runtime for twenty-first century
programs, we will review some concepts of HPCS in this section.

2.1 High performance cluster computing systems

An HPCS contains of a set of loosely connected or tightly connected computers
that cooperate together so that in many respects they can be viewed as a single sys-
tem [17].

HPCSs have their own (just like other systems) causality and structure:

(A) Causality of an HPCS is that the system can execute a problem (which consists
of some executive elements or processes) within the shortest possible time.

(B) The structure of an HPCS relates to what executive elements (processes) of the
system? And, as viewed by the HPCS management system, on what basis are
they defined? On the basis of what response structures do the executive elements
interact with each other to reduce the total response time of the system?

2.2 The concept of customized configuration in HPCS

The configuration of an HPCS is identifying the response structures (at the design
time or at the runtime) to requests so that an HPCS can achieve its causality.

In the twentieth century problems, since the problem expert demonstrates full
knowledge of all aspects of a problem (nature of the problem; executive elements
of the problem; and the characteristics, limits, and capabilities of each executive el-
ement), he/she designs an accurate response structure based on them. The duty of
an HPCS management system is to utilize and manage the response structure that is
determined by the HPCS expert during the life time of the HPCS.

In twenty-first century problems, there are three types of dynamic-interactive be-
haviors: dynamic behaviors in executive elements, a high complexity in communi-
cations among the executive elements inside the system or complex communication
among the executive elements of system, and executive elements of environment. The
expert does not have full knowledge of executive elements constituting the problem.
In this case, the problem expert has implicit knowledge of the problem and, therefore,
he/she cannot define an accurate response structure on the basis of characteristics,
limitations, and capabilities of the executive elements. Therefore, the problem expert
defines a responding structure to solve the problem on the basis of his/her own view
about the problem generally. When an HPCS executes the program, the initial model
of configuration offered by the problem expert incurs distortion because of the occur-
rence of one of three conditions that has caused the dynamic-interactive behavior.
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2.3 Dynamic-interactive nature in 21st century scientific programs

In order to obtain a precise view on dynamic-interactive nature, we need to have a
precise understanding of two concepts: the cause of dynamic nature and the time of
the occurrence of dynamic behavior.

If we compare the twenty-first century programs’ natures to the ones of the twen-
tieth century that required the use of HPCS, we realize a very significant difference
in the said program’s nature. In scientific programs of the twentieth century, the rules
dominating a natural phenomenon are exploited in a special field of science, and the
aim of an HPCS expert in using the HPCS is to consider the program parameters
against the high volume of data, or exploit the rules related to communication among
parameters, or investigate the natural event in a shorter response time. The very im-
portant thing is the existence of rules on a natural phenomenon in a special field of
science. Existence of such rules helps the system expert obtain full knowledge on the
nature of the program that is being executed on HPCS as well as know what exec-
utive elements the program can be divided into, which helps the expert have more
precision and dominance on advantages, limits, capabilities, and characteristics of
executive elements. On the other hand, in HPCSs of the twentieth century, we ob-
serve batch executive behavior, which means the HPCS starts its activation against a
specific program and only seldom changes occur in HPCS responding structures. It
helps the expert obtain full knowledge about HPCS functions and also decide char-
acteristics and limitations of the HPCS. In addition, all of this information (program
nature and its executive elements and the HPCS) helps the expert precisely distribute
the executive elements on HPCS and resource allocation to executive elements.

During the trend of executing the executive elements on HPCS, few distortions
may occur on load distribution because of the executive program code nature exe-
cuted on HPCS element. To solve this problem, the expert defines a fundamental ac-
tivity called the load distribution on HPCS that preserves the load distribution model
offered by the expert at the runtime using tools and means called migration, resource
reallocation, monitoring, and synchronization.

That is, if we consider the set of activities of migration, resource reallocation, mon-
itoring, and load redistribution as the duties of an HPCS management system, then
the load redistribution activity on HPCS will be the axial activity based on which
other activities are defined and executed. The load distribution on HPCS is executed
on the basis of executive elements, and the HPCS management system defines the
axis of activity based on executive elements existing in the system level that are the
processes existing on HPCS level. The aim pursued by the expert in using the HPCS
is to reduce the response time; therefore, the mechanism of load redistribution is de-
signed in a way that whenever any one of the effective factors in machines eliminates
the cause of HPCS utilization, the mechanism of load redistribution utilizes its own
means (such as the process migration, resource reallocation, and monitoring) to pre-
serve the main causality of HPCS utilization.

Meanwhile, twenty-first century programs try to exploit and determine the rules
dominating over natural phenomena. The objective instance of such scientific pro-
grams can be observed as new weather forecasting or optic programs. In this con-
dition, the expert designs the HPCS on the basis of general laws that are the basis
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of developing the scientific program in this regard (such as the traditional rules of
light and mass–energy) that is executing the program. On the other hand, lack of
full and precise knowledge of the expert on problem nature, and consequently the
requirements of executive elements causes the lack of a precise and specific view on
the functional nature of HPCS. The practical factor that increases the complexity and
causes lack of precise knowledge and dominance on the problem is the existence of
unpredictable communication and interaction among the executive elements at the
runtime. Existence of new interactions and communications in the system cause the
initial responding structures to be unable to meet the scientific program needs and
thus to be unable to execute the program.

Complicated interactions and communications are themselves the main cause of
interactive-dynamic nature in twenty-first century programs and are the results of the
following:

(A) During the program execution, the executive elements develop new executive
elements (fork a process) allover system, and as viewed by the program expert,
the newly developed elements either indicate the gaining of new effective pa-
rameters during exploitation of rules on natural phenomena or indicate a new
communication between parameters of rules on natural phenomena.

(B) During the program execution, the executive elements (including the initial el-
ements or the elements created during program execution) require new interac-
tions and communications inside the system that are not considered in initial
responding structures.

(C) During the program execution, the executive elements (including the initial ele-
ments or the elements created during program execution) require interaction and
communication with the system-environment. This, as viewed by the program
expert, means that the limits considered for exploiting the rules on natural phe-
nomena are not correct or that there are parameters on the system-environment
that are highly interdependent with the rules on natural phenomena (and con-
sequently, the parameters that create and describe the phenomena). The com-
munications and interactions of the system-environment cause scalability of the
system (including the size, geographical, or managerial) as viewed by the HPCS
management system.

Therefore, the problem question that we follow in this paper is what model HPCS
management system can manage the HPCS to cope with distortion condition of
dynamic-interactive behavior so that the HPCS causality is always established? How
does the management model affect the fundamental activity of a traditional HPCS
(load distribution)?

3 Related work

Two general policies can be used for reconfiguring the system to execute dynamic-
interactive programs efficiently. The first policy uses the approach of Adam Smith’s
model of the invisible economic hand of the market [18] in self-regulating behavior of
the marketplace. Based on a model derived and expanded from Adam Smith’s model,
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we can be sure that the HPCS certainly can achieve best configuration at another point
in which the HPCS causality is established again. This other point is a new responding
structure for HPCS in which problem execution elements interact and communicate
with each other so the system again can run the program within the shortest possible
time. In order to accelerate the process of achieving another balance point, it is pos-
sible to use numerous mechanisms such as load redistribution [19] based on dynamic
nature or using the hardware that are capable of reconfiguration [20].

Some different solutions have been presented for load redistribution in different
researches, and they have suggested the special purpose load redistribution model
generally [21–23].

The first model emphasizes the fact that whatever caused the distortion creating
factor affects the load distribution unit. Thus, it defines the mechanisms such as load
redistribution capability at runtime on HPCS. Although the load redistribution mech-
anisms cause the HPCS to return to its causality establishment condition, the main
and important challenge is dependency on a special program and exploitation of pro-
gram distortion models. That means that the HPCS expert exploits the models that
cause distortion by consecutively executing the scientific programs. He/she defines
the mechanism in the load distribution unit so that the effect of said distortions on
load distribution concept in HPCS is eliminated. Although this method initially seems
to be an efficient and precise method, it cannot be generally utilized because of the
following three challenges:

(1) Consecutive execution of program on HPCS to obtain distortions is somewhat
expensive and time-consuming.

(2) The nature of identifying the rules on natural phenomena in exascale duration
programs is moving toward identifying the unknown facts in science, which
makes the identification of distortion models in this program complicated or in
some cases impossible. Therefore, consecutive execution of this program cannot
help us.

(3) One-dimensional attitude on load distribution. In this method, the main hypothe-
sis is based on the fact that, notwithstanding the nature of distortion development
in HPCS, the distortion necessarily and definitely will be effective on load distri-
bution as the fundamental unit of HPCS; therefore, we have:

f (Disorder) : (Disorderspace) → (Load RedistributionSpace) (1)

In Eq. (1), which is used as the main equation of load redistribution model or dynamic
distribution of load, the status effect called distortion (consisting of three states of A,
B, and C) is only discussed on load distribution status. The said assumption may
be deemed as an acceptable assumption, considering the simple modes of A and B
states and ignoring state C; however, the existence of complicated states of A and the
existence of state C cause the only impressible state from among distortion not to be
limited to load distribution in HPCS level. The existence of state C causes attention to
concepts such as models of communication between processes, as well as the capacity
of the machines, benefiting from HPCS regarding scalability, and the existence or lack
of existence of information about the whole HPCS as the impressible states.
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The most important challenge of HPCS in using the approach of Adam Smith’s
model is due to the nature of HPCS; the HPCS is developed for executing one sci-
entific program within the shortest response time, and the required time to achieve
the new balance (new configuration) is not defined at the moment of designing and
developing the initial configuration.

Indeed, the initial configuration is optimized because the system expert’s knowl-
edge of the system, the functional nature of HPCS, the cause of using the HPCS to
execute the program (reducing the responding time), and the mechanisms of imple-
menting the responding structures and the problem (separating the program to execu-
tive elements) results in the most optimized configuration possible in the system and
the scientific program (problem). This concept, titled “Customized Configuration” in
this paper, means the causes of optimization of initial configuration. Considering the
concept of customized configuration with respect to the fact that time is the main
cause of causality in HPCS, we can obtain the clear result that HPCS cannot use
Adam Smith’s model because this process is time consuming.

The second policy that we used in this paper is based on determining the dynamic-
interactive behavior and reconfiguring the system based on customized initial config-
uration at the distortion event. With this policy, we need to use a general mechanism
for identification of distortion agent and confrontation with distortion nature.

The limitations mentioned above for the equation of load and the complexity in
scientific programs in exascale Computing [24] demand that we be needful of a so-
lution that: (1) is able to exploit the cause of distortion in every scientific program
without using the initial assumptions; and (2) is able to investigate the effects of
causes of distortion in HPCS in various perspectives, and on the other hand, can offer
an applicable model (without using a general mechanism distinctive from scientific
program nature and on executive elements) for reconfiguration of HPCS when con-
fronting with distortion caused by dynamic-interaction nature. Reaching this solution
requires:

(A) Exploitation of the initial customized configuration presented by the system ex-
pert.

(B) Definition of the HPCS based on beneficiary elements in HPCS configuration.
(C) In today’s HPCSs, the definition of the HPCS management system about the

executive element is equivalent with the definition obtained from the role of
the executive element in HPCS based on load distribution fundamental activ-
ities. Meanwhile, in order to contend with distortion of scientific programs of
the twenty-first century, a definition by the HPCS management system should
exist that is independent from the scientific program, is distinctive from the rule
of executive element in load distribution, and is developed based on the bene-
ficiary elements in the HPCS configuration. The HPCS management system al-
ways considers the executive element (or process) as active on a machine based
on load distribution indexes with the fastest response time possible. In case we
accept this assumption that the initial customized configuration of HPCS is the
best configuration implemented from scientific program on HPCS, the executive
element should describe its condition regarding the initial configuration during
the specific time, and it should contain a mechanism to determine the deviation
from or compliance with the initial configuration.
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(D) Defining a general management mechanism without dependency on time and
place but dependent only on the new definition of HPCS, and defining the execu-
tive element condition so that it can change the HPCS elements or the executive
condition of executive element to return the executive element and the initial
customized configuration when there are faults in executive element condition
conformity and function.

In other words, the said general management mechanism is a mechanism which
only:

(1) Depends on HPCS (based on agents effective on configuration) and the definition
of executive elements against the configuration.

(2) Is able to return to its initial balanced condition whenever inconformity of one
or several processes occurs due to distortion or changes in effective elements in
configuration or executive nature of executive elements.

(3) Is the run-time mechanism and occurs in HPCS management system level (espe-
cially by the executive elements structures).

(4) Is ineffective on execution of traditional programs, and maximum compatibility
can be obtained by the traditional HPCSs.

Thus, the discussion challenge is how to define the HPCS on the basis of elements
effective on configuration so as to be capable of defining the executive elements based
on configuration status so that the executive element can describe its own condition
with respect to conformity with or deviation from initial customized configuration.
This way, when distortions occur, the HPCS management system can change the
configuration status or the executive condition of the executive element to make the
executive element conform to the initial configuration at the runtime.

In this paper, the said mechanism and the executive element definition is based on
vector algebra [25]. The most important characteristic of vector algebra is that it can
be used regardless of time and place. When the element (the executive elements of
the entire operation) is defined based on vector algebra, the description is conducted
without considering the time and place. The most important ability of vector algebra
in describing the element is based on two concepts of weight and direction of the
element. On the other hand, the vector algebra can be defined on the basis of two
general operands, each one of which can conduct activities on the described elements
based on vector algebra, which results in a new condition.

4 Customized configuration model

Customization in HPCS means designing and developing an HPCS based on the re-
quirement and features of the problem [26]. The pattern of designing a customized
HPCS is as follows: the problem’s experts (problem creator and system programmers)
specify the problem’s constraints, features, requirements, and execution model. Then,
based on these, the HPCS experts design and develop a customized HPCS to meet the
conditions and the features of the problem [27]. A simple model for the customization
can be as follows, and we named it “five-phases design model”:

Phase 1: Problem and HPCS experts cooperate.
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Phase 2: Problem’s experts form a set named Problem Technical Accounting (PTA),
based on problem features, including: its constraints, special features, requirements,
and technical information.

Phase 3: HPCS experts design and develop the HPCS management system based on
the PTA set and set of available resources in the system. The HPCS management
system must control system resources in a way that each process, within its lifetime,
behaves with the entirety of resources in the system as if they are local resources.

Phase 4: The nature of the problem nature is static, and its processes are static as
well. The HPCS manager executes processes based on the PTA set, which is static.

Phase 5: HPCS experts leave the system, and the system enters execution phase.

Therefore, the concept of an HPCS configuration can be defined as the set of oper-
ations performed by the system experts. These operations try to configure resources
of the HPCS in a way that the PTA set requirements for achieving high performance
are met. The HPCS management system is to control processes’ executions and to
provide them the required resources.

In this system, three elements play the main roles: the HPCS experts, the PTA
set, and the resources set. A function for the design time system configuration (i.e.,
the configuration function from the HPCS expert’s point of view) can be defined by
considering the problem as the function’s domain and its solution as the function
range (problem-solution). The execution of this function matches the resources set to
the PTA set.

This function must have the following features:

1. A mathematical function whose design and definition are not considered as con-
straints for the HPCS.

2. The function execution must be handled by an existing element within the HPCS.
In other words, a new element, whose addition to the system increases its com-
plexity, must not be responsible for the function’s execution.

3. This function must be adapted to the dynamic nature of the PTA set and variable
resources with the goal of reaching high performance (this means in the lifetime
of the HPCS, its final goal must not violate).

5 The responsibility of the HPCS reconfiguration at runtime

The traditional model was well qualified in achieving high performance because both
the resources set and the PTA set were static. By using these two static sets, HPCS
experts were able to drive out the match model based on how resources could be
configured in a way to achieve high performance.

By the move of the PTA set toward being dynamic, we have to change the fun-
damental element responsible for HPCS reconfiguration. Having another look at the
assumed scenario for the HPCS configuration at design time, it is worth noting that
one of the basic reasons for being unable to handle the dynamicity of the PTA set in
the traditional configuration model is initiated at Phase 5, by removing the element
responsible for configuration of the HPCS (i.e., the HPCS experts). Nevertheless,
even assuming that this element is not removed from Phase 5, since this element is
considered as an external entity to the HPCS, the following scenario with an added
phase 6 is defined.
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Phase 6 The HPCS expert is notified that the nature of the PTA set has changed. On
the other hand, the HPCS is executing processes. At this moment, either the HPCS
expert must change its position from an external entity to an internal entity to recon-
figure the system or direct the system to a suspend state, after which it can reconfigure
the HPCS based on the new PTA set, which is of course very time consuming.

Indeed, if we change the limits of HPCS and consider the system expert (which
undertakes configuring the HPCS) as an internal element of the system, then this
element should reconfigure the HPCS in case of occurrence of distortions A, B, or C
in the system, on the basis of a new PTA. This is essential to note that Phase 6 is an
abstract phase, and it is impossible to define such a phase in the real world. What we
look for in Phase 6 is the element capable of reconfiguring the system in runtime.

Therefore, it is not beneficial for the system to be reconfigured by the system
experts. However, the sixth phase points out an important matter: the changing of
system experts from an external entity to an internal entity. As a result, the system
manager, as an internal entity, not only controls execution of the operations (which
consequently requires process management) but also takes the responsibility for the
system reconfiguration and plays the role of the HPCS experts within the runtime.

6 HPCS configuration function at design time

We first investigate the HPCS configuration from the view point of the HPCS man-
ager as the deputy of the system experts. Assuming the responsibility of the HPCS
configuration in the design phase is with the system manager, the concept of con-
figuration is simplified to the introduction of a single system image for a process.
That is because the HPCS management system handles processes in order to config-
ure the system to achieve the required performance. The HPCS management system
expresses the concept of system configuration in the form of the following function:

“Configuration Function” : (Set of resources)
Mapping−−−−→(SSI) (2)

The above function expresses that the elements of the resources set must be managed
in such a way that at the end, the process (processes) being executed on the HPCS
faces a Single System Image (SSI), which means the process uses all the resources
in the system including local resources. By such a management over the resources
set, the system configuration can be customized toward achieving high performance.
Therefore, the problem-solution concept can be defined by two more perceptible con-
cepts in HPCSs. These two concepts operate under the control of the HPCS manage-
ment system. The first concept is the resource set of the HPCS as the problem and
the second concept is SSI as the solution. This is assumed in Eq. (2) that the function
domain (Total resources existing in HPCS) plays the role of a vector space where the
members equal with resources existing in HPCS, and their weight demonstrate the
number of existing resources, and their direction is positive when used in HPCS and
negative when not used. The range of this function is achieving the aim of SSI. In the
following paragraphs, we will note that with respect to the fact that implementation
of the AMRC model should be on kernel level of operating system and as viewed
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by the operating system the resources existing in system level should be classified in
four general groups of input/output, memory, processor, and inter-process communi-
cation [28, 29], and the file resources (or storage). The HPCS should be able to define
quadric vector sub-spaces for each process so that the process deems the elements of
each one of the quadric vector sub-spaces as its own local resource. Indeed the HPCS
should develop the SSI vector space in quadric sub-spaces in each one of which there
are the resources of the sub-spaces and its weight shows the utilization amount and
its vector is positive in case it can provide the SSI concept.

This function is considered as an initial function based on which a second function
for reconfiguring the system at runtime is defined. The mentioned function has some
ambiguities. For example, this function operates as a mapping function; however,
although mapping can be realized at design phase, how it can be realized at runtime
remains an open issue. Another example is the definition of SSI and whether SSI can
make it reach customization. The final example concerns the resources set and their
status at runtime. We try to disambiguate these as follows.

Equation (2) represents the main goal of the HPCS management system. The main
duty and the final concern of the HPCS management system is to execute a function
whose domain covers a space, called available resources in the system, and range
covers a space, called the HPCS goal.

Equation (2) shows the model of configuration that HPCS experts use for the sys-
tem to achieve high performance to execute the scientific programs. This model is
used in of twentieth century scientific programs because of complete competency of
the expert on the programs and also the HPCS at the time of designing the HPCS. In
scientific programs of the twenty-first century, the HPCS expert cannot use Eq. (2)
precisely and completely at the time of designing the HPCS because of the dynamic-
interactive nature (distortion models) and because the expert is not knowledgeable in
programs. Obviously, transferring Eq. (2) to the runtime is so complicated and dif-
ficult that in some cases it results in total failure in causality of HPCS. However, as
mentioned before, the customized configuration model of HPCS is the best model
used for configuring the HPCS; therefore, in the following paragraphs we will try to
exploit a model after precisely defining the range of Eq. (2) to describe the HPCS and
processes as the executive elements so that it can be used as the criteria function at
the runtime to protect the customized configuration of HPCS.

At this point, we would like to describe the situation of this function regarding
‘n’ member nodes in the system. A HPCS can be usually made up by n sub-systems.
These n sub-systems can be either complex or simple systems subsequently. Sim-
ple sub-systems involve a single independent computer, and complex sub-systems
involve any type of systems formed to provide high performance. From the stand-
point of the HPCS management system, with responsibility of reconfiguration of the
HPCS at runtime, the whole system can be considered as ‘n’ sub-systems. Based on
the situation of all the elements within the HPCS, the HPCS management system
can perform the configuration operation. Therefore, in the AMRC model, from the
HPCS management system point of view, the whole system can be considered an
n-dimensional space. In such a situation, we have:

(Causality of HPCS Manager) : (Set of Resources)
nMapping−−−−−→SSI (3)
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We need to investigate the final function of the HPCS management system more ac-
curately. This function is responsible for the HPCS management system and works
toward solving the problem, meaning HPCS configuration. In the following, its con-
stituting elements are explained in detail.

7 The AMRC model for HPCS reconfiguration at runtime

In this section, the detail of the AMRC model is described and the principles, ba-
sic concepts, and operators of the model are discussed. First, we will define three
concepts needed for configuring the HPCSs at the runtime. As mentioned before,
the HPCS management system is able to handle the reconfiguration process at the
runtime on behalf of the system expert (Phase 6), and on the other hand, Eq. (3)
expresses the ultimate aim of the HPCS management system. Thus, we need to in-
vestigate Eq. (3) further on the basis of fundamental concepts so that we can define
the vector generating space of HPCS, and consequently, the process (executive el-
ement) as a sub-space in the vector generating space of HPCS; and finally, specify
and determine the vector algebra that is the HPCS management system based on two
concepts of system space-process for reconfiguring the HPCS at the runtime. The
model of AMRC is indeed the developed form of Eq. (3) based on vector algebra
and provides the possibility for the HPCS management system (that is based on it) so
that at the runtime, in addition to performing the traditional tasks, it can identify the
distortion models and manage them on the basis of returning back to the customized
configuration.

7.1 Principles

As described by Eq. (3), the model explaining the HPCS management system per-
forms a mapping between two spaces. To achieve the high performance, the HPCS
management system must be able to match the elements of the set of resources to
either the problem features or PTA set. This means that at any instance within the
lifetime of the system, the configuration model will never contain an execution pat-
tern of processes in which system’s executing elements do not match with the features
of the PTA set.

The first principle, named T1, is derived from the underlying philosophy of the
HPCS experts that consider HPCS as a problem solver that a scientific problem is
as an input, and outputting is a solution to it. Therefore, our first principle is to map
the resource requirements of a problem space to a solution space by adapting the
capabilities of the solving nature. The adaptation is done by the processes that run
computer programs to solve the problem. T1 comes from a systematic approach [30]
to HPCS philosophy.

T1 principle is the most important principle in describing the challenge of twenty-
first century dynamic problems. Therefore, in this paper, the main problem is the
violation of T1 at runtime of the above processes and lack of a model for the runtime
HPCS configuration.

T1 principle investigates another important point as well. The mapping model in
the descriptor function of the HPCS, and furthermore, in the subsequent sections of
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the paper, must cover the customization concept in the two sets: the set of resources
and the PTA set. However, a model which can transfer T1 principle from design
time to runtime can be considered a reasonable model for HPCS configuration in
interacting with dynamic problems.

We know that any solution to a scientific problem requires computer processing,
memory, I/O, and/or stable storage (e.g., disk) resources [28]. To allow for dynamic
configuration of our chosen solver, the HPCS, we use this feature as our second prin-
ciple. We partition an HPCS into four parts, each part responsible for one of the types
of resources. Note that each HPCS can be constructed from any number of HPCSs.
This is the nice property of a single system image supported by the system.

HPCSs provide a single system image to users and programs. Using the vocabu-
lary of system science, the implication of single system image is that every element
(member) of a system plays a particular role and performs a particular set of opera-
tions (determining its causality) in orchestration with other elements to accomplish
the main goals and causalities of the HPCS, namely, solving a given problem. The
elements are thus no more general purpose when they are assembled and aggregated
as a system to solve a certain problem, although they provide a single system image
to outsiders; they are special-tailored to the requirements of the problem.

The second principle, named T2, investigates the two basic and important points
in the function introduced in Eq. (3). The first point is that the dynamic nature of
twenty-first century processes is not mutually exclusive to their processing behavior
(dimension). Any change in the four-dimensional process management expressed in
T2 principle can cause violation of customization and T1 principles. The second point
is that SSI concept can only be considered as the goal of an HPCS if it can be applied
to other dimensions of a process.

The third principle, named T3, gives a general categorization of the elements play-
ing roles in the HPCS. According to this principle, the effective elements in the HPCS
and heterogeneity of elements can be classified into four general spaces. Three of
them are hardware, application software, and system software, and they are com-
monly mentioned in some researches in the HPC area [31–33]. The fourth space that
was considered in design of exascale computing is Functionality [4].

Looking at the road map of exascale computing, we can realize that the scien-
tific programs in the new generation of exascale computing systems are of dynamic-
interactive nature, and thus, we will consider the concept of Functionality in addition
to the above three concepts.

In fact, HPCSs are built from independent communicative computers with the
same or different hardware features and capabilities (H). They may run under the
same or different system software (SS); they may execute the same or different (parts
or whole of) application software (AS), and they may provide the same or differ-
ent functionalities (F). This is to say that the elements (members) of HPCS can be
heterogeneous in H, SS, AS, and F; this is our meaning of heterogeneity.

7.2 General concerns of the AMRC model

Based on the systematic investigation, two systems are considered equal if first, the
generator space of the two spaces are equal, and second, the operators of the two
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systems that describe their main activities (functions) are equal. The AMRC model
uses these basic principles to define AMRC vector algebra. Furthermore, The AMRC
model uses the vector algebra as a tool for determining the element, which is not
in the same direction of the current configuration of the HPCS. The AMRC model
can describe the reason of changing the directions of the vectors at runtime by using
linear algebra.

The general approach in the AMRC model is that the HPCS management system
must be able to determine new changes and requirements of dynamic processes. The
HPCS management system must also compare these changes and requirements to a
main indicator existed in the time of system’s stability.

T1 principle is one of the main solutions for this problem. This principle, based on
mapping concept, at any instance of time investigates whether a change in the domain
of the function causes reaching its range or not. T2 principle states: According to the
four groups of resources, determine in which direction domain changes occur, so that
the HPCS management system can control these changes toward reaching the range.
Now this question arises: What is the criterion that the HPCS management system
can use to make measurements? T3 basic principle is applicable solutions to this
problem.

The general model of the AMRC is based on vector algebra. Vector algebra has
some interesting features including that it can be applied both in scalar and vector
areas. The following elements exist in the AMRC model:

1. The AMRC model produces its generator space based on Eq. (2); this generator
form of function is equal to a generator form of vector. However, there is a princi-
ple stating that if two different systems use the same generator form, then these two
systems are equal. As a result, general rules of the two systems are equal, and con-
sequently their operators can be equal, as well. Using this principle and the AMRC
generator form of vector, the AMRC model can define the operators of the AMRC
vector algebra. Again, using the mentioned principle, the AMRC model can state that
the above operators are held (or are operational) in the space in which its generator
form equals the space of the generator form of Eq. (2). Therefore, a set of operators is
obtained that can be used for finding the state of the vector of each process and also
specifying deviation of its direction of the general state vector.

2. In the AMRC model, a vector, called general state vector, is defined for the
whole system. This vector direction is based on the HPCS management system,
which must control involved elements of the system so that the required performance
of the program is achieved. This vector can be figured out based on different ap-
proaches including: the program’s initial information or the system’s initial configu-
ration information (information provided by the experts based on which system was
configured), explicit information provided in the program. In this paper, it is assumed
that this vector can be obtained based on the information explicitly expressed in the
program about the required resources.

3. The AMRC model adds to the data structure of each process created in the
system some fields called Process Vector fields. These fields can be controlled by
the HPCS management system. These vectors describe each process’s state regarding
effective elements in the HPCS.

4. The AMRC model defines some operators for these vectors. Based on these
operators, the HPCS management system can produce some information about the
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process’s state that has caused the system to be in a disordering situation and also
about those elements of the resources set disordering as a result of interoperating
with that process. By using the T3 basic principle and by making some changes in
the state vector of the process and its interoperations with the HPC effective elements,
stability can dominate the system again.

7.3 General state vector

One of the most important elements in the AMRC model is the general state vector,
or vector Ik . Vector Ik represents the state of the problem to be solved by the HPCS
against the elements of the set of the system’s four groups of resources (described
in T2 basic principle). Vector Ik in the most general form can be represented as in
Eq. (4):

Ik = IkIO
+ IkF

+ IkP
+ IkM

As ‘+’ is vector plus (4)

A program generally has four types of needs to resources from view of the system’s
manager (Operating System or any HPCS management systems). Therefore, the re-
quirements of programs can be investigated in quadric vector spaces, and the total
vector amount of these four shows the total requirements of the program to the re-
sources existing in the system. Equation (4) shows segregation of program require-
ments to quadric vector sub-spaces. The weight of these vectors shows the signifi-
cance level of each one of these main classes, and their direction is always positive
(because they should essentially respond).

As shown by Eq. (4), general state vector contains four vectors. The AMRC model
assumes that vector Ik is actually the sum of the four Ik vectors in memory, process,
input/output software, and file spaces. It should be noticed that interpreting vector Ik

in a specific space will show (generally and without considering details) the expec-
tations of a problem from the set of available resources in the system for reaching
its required performance. In this paper, to obtain Iki

vectors, explicit requirements of
programs to resources are used.

In the AMRC model, required information for constituting of Iki
vectors are stored

in data structures at initial customized configuration of the HPCS performed by ex-
perts and using available information provided by the programs.

7.4 Generator space of the HPCS management system

According to T1 principle, mapping means matching the resources set to the PTA
set. Having the general activity vector, a more accurate view of the PTA set can be
obtained. As a matter of fact, the PTA set is the generator space of general state
vectors. Each general state vector is an interpretation of the PTA set regarding one of
the four dimensions stated in T2 basic principle. We can use T3 basic principle and
heterogeneity in the four dimensions to define any machine (or any sub-system in the
HPCS). So, we have:

∀Machine ∈ HPCS set: Machine Space in HPCS = (H,SS,AS,F ) (5)

Equation (5) gives a description of elements within a machine playing a role in the
execution of the problem (program) to be solved (executed) by the HPCS. Now, by
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substituting the original domain of the function presented in Eq. (3) with T1 basic
principle, we reach Eq. (6), which represents the state of each HPCS in the mapping
process.

Substituting Eq. (3) in Eqs. (2), (4) presents a more meaningful definition of our
theory, namely to map a network of independent machines into an HPCS to solve a
given problem. Space ‘C’ represents the final goal of an HPCS. As shown in Eq. (2),
from the standpoint of HPCS experts, space C is equal to the problem solution.

Function(Causality of HPCS Manager) : (H,SS,AS,F )n
Mapping−−−−→C (6)

Equation (6) is derived from T3 principle and represents the original domain in T1
principle and those elements of a machine involved with HPCS management sys-
tem. In order for the system to be able to solve a problem with the high performance
(required), these elements must be configured by the HPCS management system. Al-
though this function gives a description of the basic activity of the HPCS management
system, in practice it covers the communications between the effective elements of
the HPCS and the PTA set.

As stated previously, if we look at the range of a function from the standpoint
of HPCS experts, the range must be interpreted as a quality and thus will not be
measurable. On the other hand, the AMRC model needs the range of a function to
be a quantity so that using its measurable nature (like the quantity used in Eq. (6) to
represent a function’s domain), the generator form of the HPCS goal can be created.
As stated by Eq. (3), from the standpoint of the HPCS management system, the range
of a function is equal to SSI. However, as T1 principle, the HPCS from the view point
of the executive elements must match the two sets, set of resources, and the PTA set.
On the other hand, according to T2 principle, SSI concept must be applied in four
dimensions. That is because customization concept or an equivalently matching set
of resources to the PTA set must be performed in four dimensions. In addition, it
must be noticed that T3 principle determined the set of resources and T1 principle
determined the elements of the PTA set. Generally, categorization of the requirements
of a problem is provided by T2 principle, and the PTA set contains four sub-sets,
each representing requirements of the program to execute. Nevertheless, in the real
world, each line of a computer program executes an activity related to one of the four
sub-sets expressed in T2 principle. Thus, based on T2 principle, we expect that SSI
concept contains four sub-spaces: SSII/O , SSIMemory, SSIFile, and SSIProcess.

Causality of HPCS Manager : (H,SS,AS,F )n

→ (SSII/O,SSIMemorySSIFile,SSIProcess). (7)

One of the most significant and special points is implementing the HPCS con-
figuration to Eq. (7). The range of Eq. (7) is indeed the developed mode of range
of Eq. (2). In this mode, considering the hypothesis T1 we can convert Eq. (2) in
the range to Eq. (7). Depending on how the scientific program nature should be and
which one of the four aspects of resources is needed for SSI, the HPCS expert can
decide on selecting or not selecting the quadric sub-spaces of the range of Eq. (7).
The total weight (the weight allocated by each one of the quadric spaces to exploit the
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total weight of SSI) and also defining the vector direction of each one of the quadric
sub-spaces of SSI space are the two main means of the HPCS expert for configuring
the HPCS. In the programs of the twentieth century, the HPCS expert can provide an
efficient map from HPCS space as the ultimate space of HPCS that is SSI, consider-
ing his knowledge of the programs and HPCS nature at the time of system designing
with the range changes of Eq. (7). In scientific programs of the twenty-first century,
the AMRC model can decide for processes execution changes by investigating the
vectors of processes and system mode vector (the vector of estimation of the quadric
sub-space of SSI). For example, in a general observation and without considering
the details, it is possible to realize that in the case of distortions causing mode C,
the weight, and direction of vectors existing in SSIProcess and SSII/O sub-spaces will
have more changes.

Equation (7) expresses the final goal of the HPCS management system ac-
cording to T2, T1, and T3 basic principles. As shown by Eq. (6), the final goal
of the HPCS management system is to map the space (H,SS,AS,F )n to the
(SSII/O,SSIMemory,SSIFile,SSIProcess). According to the T1 principle, the function
is a map function, in which the initial mapping of the sets of resources to the PTA
set is expressed in the form of the above mapping. The range of this function is de-
rived from the T3 principle and its domain from the T2 principle. At this moment, we
need to produce the generator form of Eq. (7) by using spaces (H,SS,AS,F )n and
(SSII/O,SSIMemory,SSIFile,SSIProcess). To describe the final goal of an HPCS from
the perspective of its management system, it is worth noting that this final goal is
defined based on these two spaces.

HPCS Manager = (Effective-Elements,C) (8)

Equation (8) states firstly that the HPCS management system is considered a sub-
system in the HPCS. Secondly, it states that an HPCS is designed based on the spaces
‘C’ and Effective-Elements. In fact, space Effective-Elements is the domain of func-
tion in Eq. (7).

Equation (8) discusses a form based on which the configuration concept of an
HPCS from the view point of its management system is created. In addition, it dis-
cusses the AMRC algebraic vector and introduces an algebraic vector model to de-
termine the element not in the same direction as the configuration of the HPCS and
gives the factor of this matter at runtime.

In the previous section, it was stated that the generator form of the final goal of an
HPCS from the perspective of its management system, which is equal to the configu-
ration model of the HPCS from that element’s perspective, is equal to Eq. (8) as well.
The AMRC algebraic vector model investigates situations in which a process whose
direction is not the same as that of the initial configuration of the HPCS is formed
and tries to find the factor of this matter.

In the AMRC model, each one of the twelve vectors descriptor of problem has
direction and weight according to customized configuration of the HPCS, and it is
changed during the HPCS life and based on program instructions execution, and also
it is able to investigate the changes and return back to primary balance mode.

The HPCS management system, regarding each instruction of the program ex-
ecuted by executive elements (or processes), investigates the resulted changes and
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Pseudo-code 1 General scheme of the AMRC functional model

Q, Initial 12 vector based on customized configuration (HPCS-2Phase)

For each executed instruction in each machine

{

If direction of the vector is changed {

Define disorder_state;

Use operator � to solve;

}

If value of vector is changed {

Define value_disorder_state;

Use operator # to solve;

}

Q1.Update information ();

first determines whether change caused any distortion mode in the system; second,
in a more general approach, tries to return the changed direction of vector (caused
by the instruction execution) to the initial direction (the direction according to the
customized configuration).

The Pseudo-code 1 is the operation that is executed by the HPCS management sys-
tem based on the AMRC model. This Pseudo-code contains two significant points:
first, it should be able to describe the initial mode of the twelve vectors problem
descriptor on the basis of a set of information by using Eq. (9) and Eq. (10) and a
concept called the two stage model of data exploitation (PTA) in the AMRC model;
second, in the AMRC model, any kind of change caused by program instruction ex-
ecution is known as a distortion. One of the most similar activities to the AMRC
model are the models that exploit the distortion triple distortion modes in HPCS and
define a set of approaches based on executing the program several times to encounter
the triple distortion modes imaginable in the HPCS management system performing
twenty-first century programs. Although this method precisely describes the nature of
triple distortion modes in twenty-first century HPCS, its most significant challenge is
increasing the response time. In order to solve this problem in the AMRC model, the
first supposition of the HPCS management system is based on the fact that execution
of each instruction by each one of the executive elements creates a distortion mode in
HPCS. Depending on whether the instruction execution leads to changing the direc-
tion or weight of the vector, two operation of � or # are defined in the AMRC model
based on vector algebra. In case instruction execution creates a new vector that does
not align with the primary vector or its weight is not in conformity with the primary
vector, the management system changes the elements of HPCS to correct the mode
and return them to the initial customized mode.

The HPCS management system is defined in each machine that is a member of
HPCS, and in the Pseudo-code 1, only the Q1 and Q2 lines are executed generally
and by the machine start the operation and the rest of the program codes are locally
executed inside each machine.

In the following, we will discuss more precisely the concepts of the HPCS-2Phase
model and � and # operators.
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7.5 HPCS-2phase model

If we suppose Problemv is a sub-problem resulted by � and # operators executed on
two vectors defined in HPCS, then the HPCS management system uses the problem
description concept based on HPCS generator space (in order to describe the problem
and also determine the operational nature that should be executed on HPCS) against
the management of program execution trend (based on the customized configuration
and also the fundamental concept of load distribution). Determining the sub-problems
based on vector algebra requires converting the main problem to some vectors (with
specific weight and direction). In the AMRC model, we need to map the problem
from its traditional definition to a definition based on vectors descriptive space.

Equation (9) shows that in the AMRC model the HPCS management system
(based on the model defined in Eq. (10) maps the Problemv from the traditional
definition space of the problem (the program that should be executed by the HPCS
management system) to the vector descriptive space:

F(manager) : (Problem)v
Mapping−−−−→(ProblemVector)v (9)

Equation (10) shows a model that is used by HPCS management systems to an-
alyze the problem into the sub-problems executable in HPCS based on beneficiary
machines. Each beneficiary machine in HPCS are described and determined on the
basis of four generating spaces. Problemv can be partitioned into twelve sub-space
problems. Equation (10) gives these twelve sub-spaces. As you can see:

1. Any problem (program) needs hardware in order to be solved (executed). Assume
that all hardware devices can be categorized into four groups: input/output devices,
memory, processor, and storage (or file). Let us show them by HIO , HM , HP , and
HF , respectively.

2. Any problem also needs system and application software in order to be solved.
System and application software are managing or performing some activities re-
lated to the four groups. Let us show them by AIO , AM , AP , and AF ; and SIO ,
SM , SP , and SF .

3. ‘n’ means number of elements in Effective-Elements set.

The AMRC considers any activity ‘k’ (a sub-activity of process ‘v’) occurring
within a machine to be a descending or ascending vector for each set. This descend-
ing or ascending vector is created because of the occurrence of activity ‘k’, not only
causes the current status of one of the problem v’s sub-problems to be changed in con-
text, but also in its movement toward completion of the sub-problem and in reaching
the final state.

Problemv =
n(Effective-Elements)⋃

i=1

ProblemHIO
∪

n(Effective-Elements)⋃

i=1

ProblemHp

∪
n(Effective-Elements)⋃

i=1

ProblemHM
∪

n(Effective-Elements)⋃

i=1

ProblemHF
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∪
n(Effective-Elements)⋃

i=1

ProblemAF
∪

n(Effective-Elements)⋃

i=1

ProblemAIO

∪
n(Effective-Elements)⋃

i=1

ProblemAM
∪

n(Effective-Elements)⋃

i=1

ProblemAF

∪
n(Effective-Elements)⋃

i=1

ProblemSF
∪

n(Effective-Elements)⋃

i=1

ProblemSIO

∪
n(Effective-Elements)⋃

i=1

ProblemSM
∪

n(Effective-Elements)⋃

i=1

ProblemSP
(10)

The problem requirements can be classified in four dimensions so the image of
each dimension on each generating spaces of the HPCS should be obtained. Equa-
tion (10) is the image of each one of the quadric spaces of activity requirement in
each one of the triple real generating spaces of HPCS. Therefore, if we want to de-
scribe a problem (set of requirements that should be responded to by the HPCS) based
on the AMRC model, the problem will be concerted in duodecimal vectors in three
spaces. The significant point is the weight of the vectors and also their direction. The
weight of each vector is the significance of vector in solving (executing) the problem
(program), and its direction is always positive.

In the AMRC model, Eq. (10) is used to calculate and define two general groups
of vectors. The global operation starter machine uses Eq. (10) to calculate the general
vector of the operation, and the HPCS management system in each machine uses
Eq. (10) to calculate the vectors that describe the beneficiary element role in global
operation. So that each unit of HPCS management system in each member machine of
the system uses Eq. (10) locally to calculate the vectors describing the sub-problem(s)
that is being execute inside the machine.

In the AMRC model, the HPCS-2phase model is used to calculate the weight of
duodecimal vectors of problem description (or sub-problem) by the management sys-
tem. Both the management system of the machine that starts the global operation and
the beneficiary machines of HPCS at the time of formation of the problem describ-
ing duodecimal vectors (or sub-problem) consider the vector’s direction positive. The
HPCS-2phase model is based on the fact that it is feasible to obtain the data related to
vector weight from either two general groups of user data (PTA) or the data provided
from initial data structures.

Based on this model, a program in its most general status contains two sections
of the initialization structure (the assignment of an initial value for a variable) and
the computation structures. In twentieth century programs, these two sections are
completely separated from each other, while in twenty-fist century programs, the ini-
tialization structures may appear again during the program execution trend due to
dynamic-interactive nature.

Classification of scientific programs in two sections of initialization structures and
computation structures helps us:
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(A) Obtain an implicit view on weight, computation, communication, and also
interactions on the basis of primary initialized structures of the program.

The primary initialized structures demonstrate the initial data amount that the
problem expert has regarding the problem nature and functionality of HPCS. The
data existing in initialized structures offers a suitable view (explicit or implicit) of
the problem nature and also regarding the HPCS to the management system in the
AMRC model.

In the HPCS management system based on the AMRC model, the initialization
structures are used as elements to determine the vector direction. In order to decide
on direction of each duodecimal problem describing vectors, the structures of ini-
tialization are used. The information existing in initialization structures is used as a
part of information utilized by HPCS management system (including the manage-
ment system in starting the machine or in the HPCS beneficiary machines) to deter-
mine the direction of duodecimal vectors. The amount of information of initialization
structures in the scientific program constitute a small part of the scientific program
(compared to computation structures); however, in the HPCS management system
based on the AMRC model that should be implemented in kernel level of the operat-
ing system, data structure of kernel change is due to initialization structures and are
able to offer an acceptable view on the weight of duodecimal vectors. Consequently,
this is necessary to keep in mind that when a simple initialization on the level of
program is transferred to the kernel of the operating system, it activates structures of
various data such as memory, process, and even in some cases the I/O data structure.

The amount of exploitable data in a simple initialization on scientific program
level in kernel level is as much as the management system (the starting machine or
the beneficiary element) can decide upon the weight of vector. On the other hand, in
the AMRC model, using the primary information (user-initialized information in the
machine that starts the global operation) and also the dynamic nature of the weight of
the problem (sub-problem) describing duodecimal vectors help the weight of vectors
move toward the real weight during the HPCS life.

(B) Computation structures involve some information about the functional nature
of the scientific program.

The information existing in computation structures in the AMRC model is used
for calculating the changes resulting from execution. Execution of each instruction
by a process inside the local machine is as a change in duodecimal sub-problem de-
scribing vectors level. The management system of the local machine starts evoking
the #, � right after execution of an instruction by the local processor in order to re-
alize whether the change made in weight or direction of problem describing vectors.
The significant point is that the local management system decides on which duodec-
imal problem describing vectors should the changes made by instruction by process
according to what data structure has the process changed on operating system kernel
level. This is possible because of the implementation of the local management system
on operating system kernel level.

7.6 Operator # in the AMRC model

What is our set of vectors in the vector space? The operation of a process running on
an HPCS machine in the Effective-Elements set is considered a directional vector (we
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call it Saurus). Operations by all running processes make up our vector space. We
define two directions for the vectors—positive and negative. The positive direction of
a vector shows that the requirements of the process denoted by this vector are in the
same direction of the vector representing the capability of the HPCS in its customized
configuration. The negative direction of a vector shows that the requirements of the
process denoted by this vector are not in the same direction of the vector representing
the capability of the HPCS in its customized configuration.

Based on defined sets of scalar values and vectors, we can now define two vector
operators. Equation (11) defines the operator ‘#’ for every two members of “Saurus”.

∀i, j ∈ Saurus : v = i#j ∴ v ∈ Saurus and v presents cooperation between i, j

(11)
Equation (11) shows that the two members of Saurus such as ‘i’ and ‘j ’, repre-

senting vectors of two processes in the system, can communicate to each other and
form another (real or virtual) process as a result, like ‘v’, and then the vector ‘v’ can
be considered for the newly created process. Vector ‘v’ is either in the same direc-
tion as the general state vector or not. If they are in the same direction, configuration
of the HPCS must not change. Otherwise, execution of that process will change the
configuration and it needs to be reconfigured.

Generally, operator ‘#’ represents the direction of the process created as a result of
the interoperation of two processes, and in fact describes a concept called the effect
of sub-activities on the general state vector. However, it makes the decision about the
direction of the obtained vector with the general state vector.

According to what is called customized configuration of the HPCS, given that both
processes ‘i’ and ‘j ’ existed explicitly at design time of the HPCS, the system had
been configured by the HPCS expert such that both processes reach their required
performance. However, the interoperation of these two processes may not have been
accurately mentioned at design time. The vector ‘v’ can be thought as a virtual (e.g.,
the interoperation of two processes does not conclude in a process to be created in
the system, but some effects are exerted on the HPCS) or real process.

If the effects of process ‘v’ on the HPCS were mentioned explicitly at design
time, the HPCS experts must have taken into account the necessary configuration for
executing process ‘v’ with its required performance. Otherwise, if process ‘v’ was not
explicitly mentioned at design time, it shows the dynamic nature of the interoperation
of processes ‘i’ and ‘j ’. The AMRC model, based on operator #, creates process ‘v’
within an HPCS machine and gives the following definition:

(Machine X) : (v
IO

compare IkIO
) and (v

F
compare IkF

)

and (v
M

compare IkM
) and (v

P
compare IkP

) (12)

Equation (12), the difference of vector ‘v’ and vector Ik , represents how much the
newly created process ‘v’ is in the direction of the problem’s solution. Let us assume
that the vector of the created process forms an angle with the general state vector Ik .
This means that the requirements of process ‘v’ must be handled such that this angle
is removed.

Equation (12) is used by the HPCS management system in each machine to be able
to decide for occurrence or non-occurrence of distortion. In Eq. (12), the operator
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“and” means that HPCS management system should check all these comparisons
and in case the condition of I/O condition vector, memory, file, or processor and
inter-process communications related to machine x is changed compared to global
operation condition vector, then a distortion condition is created inside machine x. In
other words, Eq. (10) pursues discovery of the fact that whether machine x is or is not
afflicted with one of the distortion models because of executing various processes.
Pseudo-code 2 can be used for Eq. (12) inside each machine that is a member to
HPCS:

Pseudo-code 2 General
schema of Eq. (12) In kernel level after execution of the system call:

If Process v such that involved HPCS operation do activity {

If system call is I/O then {

Update vector vio

If (Compare vio with Iio) is not True then

Send I/O state and run AMRC Function;}

If system call is File then {

Update vector vf

If (Compare vf with If ) is not True then

Send file state and run AMRC Function;}

If system call is memory then {

Update vector vm

If (Compare vm with Im) is not True then

Send memory state and run AMRC Function;}

If system call is Process then {

Update vector vp

If (Compare vp with Ip) is not True then

Send process state and run AMRC Function;}

As stated, a heterogeneous machine in the system has some advantages with re-
spect to the others in executing some operations. This relative advantage is caused by
one of the four factors defined in T2 principle. The AMRC reconfiguration model can
solve the problem of initial configuration being altered using three operations: first,
a simple comparison, almost a comparison between the information stored in two
data structures; second, the heterogeneity concept in HPCSs; and third, the relative
advantage of each machine with respect to each of the four elements defined in the
T2 principle.

Now we should calculate the direction of vector ‘v’. The first and most impor-
tant question about operator # concerns the manner of calculating vector ‘v’ using it.
When an HPCS uses the AMRC model to determine the element that is not in the
same direction as the current configuration of the HPCS and investigates the factor
of this matter, a data structure called HPCS_Vector is created in the system. This
data structure subsequently contains the four sub-data structures: HPCS_Vector_IO,
HPCS_Vector_F, HPCS_Vector_M, and HPCS_Vector_P. On the other hand, for
each process created in the system at design and execution phases, a data structure
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called Process_Vector, containing itself four sub-data structures, is created. These
four sub-data structures are exactly the same as those created in HPCS_Vector.

Operator # creates vector ‘v’. If the result of the interoperation between processes
i and j causes a new problem name Problemv , then Problemv is considered a sub-
problem of the main problem, which the HPCS is executing.

Based on the AMRC model, when a sub-problem is created inside each machine,
then as viewed by the HPCS management system, the sub-problem based on Eqs. (9)
and (10) turns to a duodecimal sub-problem describing vectors. It should be noticed
that the above sets are considered as vector sets in this situation, and for each set a
state, called final state, can be defined. To better understand, let us assume that the
problem to be solved by the HPCS is changed to twelve Problemvs. Each Problemv

is a finite set and is completed under a special condition. This means that by the
occurrence of each activity ‘k’, this vector set is either moved toward or away from
its completion.

Now, let us assume for process ‘i’, there exists a shadow of vector Ik , called ‘S1’,
and for process ‘j ’, a shadow of vector Ik , called ‘S2’. These two vectors are con-
sidered in the customized configuration of the system, and on the other hand, they
are members of Saurus. Therefore, operator ‘#’ is defined for them. Let us assume
that ‘S’ represents the result of applying operator ‘#’ on the two vectors (it represents
Ik regarding sub-activities of process ‘v’). If sub-activities of ‘v’ are in the same di-
rection with the direction of ‘S’, then they are also in the same direction with the
direction of Ik and vice versa. In such a condition the following equation holds:

∀k ∈ S̈ so that S = S̈#
...
S then S

Toward finding−−−−−−−−→
︷︸︸︷
S or S

Toward finding−−−−−−−−→ S̆ (13)

Equation (13) describes how when an instruction is executed by a process, the
HPCS management system in the local machine investigates whether or not the cor-
responding vector with the executed instruction is stabilizing toward the equivalent
global operation with its own vector. When an instruction is executed by a process,
in view of the HPCS management system, the most important question would be
whether executing the instruction has caused a distortion in HPCS. To investigate
the issue, the HPCS management system compares the vector resulted from changes
caused by instruction execution to an equivalent vector of global operation (one of
the problem describing vectors); if the direction-weight of the vector is resulted from
changes aligned with the vector weight-direction of equivalent global operation, then
executing the instruction shows lack of occurrence of distortion on configuration level
of HPCS.

Set ‘S̈’ can be any one of the twelve sets above, and it is the current state vector of
the set. According to the property of operator ‘#’, since both ‘S̈’ and ‘

...
S ’ are members

of the Saurus, applying operator ‘#’ to ‘S̈’ and ‘
...
S ’ causes state vector ‘S’ to move

toward either state vector ‘
︷︸︸︷
S ’ or ‘r̆’. State vector ‘

︷︸︸︷
S ’ represents all the necessary

events occurred for set ‘S̈’ to complete in the HPCS. On the other hand, state vector
‘v̆’ is a zero state vector and indicates that no activity toward completion of set ‘S̈’
has been performed. Therefore, Eq. (13) states if activity ‘k’ is of type set ‘S̈’, then

the state vector ‘S’ moves either toward ‘
︷︸︸︷
S ’ or ‘ŏ’. However, state vector ‘S’ in

the case of any activity is vector IK .
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7.7 Operator � in the AMRC model

The AMRC model assumes the occurrence of two general events in the system causes
a process with dynamic nature to be created in the system. Another situation under
which dynamism resulted occurs when a process creates another real or virtual pro-
cess with dynamic nature which had not been considered in the customized config-
uration of the HPCS. However, in this situation, creation of a process is a result of
a change in the value of one of the elements of the set of resources (such as CPU
power, capacity of the main memory, network latency, etc.) with which the creator
process is interoperating.

Operator ‘�’ describes the state of processes with dynamic nature. We assume that
“Heterodont” and “Saurus” are bidirectional structures in Cartesian space. However,
in practice, the aforementioned structures can be defined in any multidimensional
space.

As mentioned before, generally a program can be divided into four general parts.
Each part has some special features and can be considered by these features: for
example, the processing part has features such as CPU time, CPU usage, and so forth;
the memory-based part has features such as allocated memory size, shared memory
size, etc.; the disk-based part includes page fault ratio, seek time, amount of read
and write, etc.; and finally, the I/O-based part has features like I/O delay time, access
time, queue size, etc. All of these features form the Heterodont set. Based on these
two set, Heterodont and Saurus, operator ‘�’ is defined. Equation (14) defines the
operator ‘�’ for every two members of “Heterodont” and “Saurus”.

∀i ∈ Heterodont and j ∈ Saurus: v = i�j

so that v presents the role of process j in sloving a given problem (14)

Equation (14) assumes that the state of a process is equal to vector ‘i’ before the
value of the HPCS set of resources element executing the process is changed. Then,
according to operator ‘�’, process interoperation and its state is set to process ‘v’
after the scalar value (amount of available resources) is changed to ‘j ’. Using an
approach like the one described for operator ‘#’, direction of vector ‘v’ is calculated.
This calculation is carried out to decide whether process ‘v’ is in the direction of
the configuration of the HPCS or not. When the dynamic nature is initiated by the
operator ‘�’, the HPCS management system has the choice between two approaches
for decision making. The first approach suggests changing the scalar value (resource
state) to its previous state, and the second one recommends using the concept of
relative advantage for changing the location where process ‘v’ is being executed to a
suitable location.

8 Discussion

The presented model, AMRC, for HPCSs reconfiguration at runtime; first offers the
mathematical definition for HPCS based on generating spaces, and second, presents
a mathematical definition of the executive element (Process) based on vector algebra
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derived from generating spaces of HPCS. The mathematical definition of HPCS and
executive element has resulted in the fact that the HPCS management system, against
considering the process as an element that is defined based on load distribution, maps
the process functional space to a space called the problem describing duodecimal
vectors space (global operation).

Defining each process as the executive element is based on the global operation
and the generating spaces of HPCS. On the other hand, in the AMRC model, the
HPCS management system (contrary to traditional systems) does not use fundamen-
tal unit of load distribution to achieve its goals, but it considers each process as an
executive element that is on a beneficiary element of HPCS, and a set of activities
should be performed to accomplish some part of the global operation. The functional
definition of process element is based on Eq. (10). That fact shows that the local
management system maps the process functional space to the space of the problem
describing duodecimal vector space.

In the traditional systems, when the HPCS management system is identifying,
describing, and analyzing a process, it considers the process definition based on load
distribution fundamental activity, as well as considers the corresponding role of the
process as the criterion to describe the process, and all the definable activities that are
executed on the process are based on load distribution. In the AMRC model, because
of mapping the functional space of the process to the space of the problem describing
duodecimal vector, the HPCS management system does not consider the processes
based on pivotal load distribution fundamental unit as the criterion for investigation,
identification, and description of it.

If we consider two spaces of the HPCS management system and the process, then
the mapping of the process space in the HPCS management system (to identify the
process) is what resources are being used by the process and on the basis of what
load distribution is the process using that resource, and when resources required by
the process are challenged somehow, how does the load distribution model cope with
the challenges? In fact, the local distribution manager maps the process to its own
space and considers any challenge of load distribution general policy as the process
challenge, and it considers any mechanism of load distribution policy as the mecha-
nism for coping with the challenge.

However, in the AMRC model, the HPCS management system considers each
process as an element through which execution of each instruction results in changes
(weight or direction) in the problem describing duodecimal vectors; therefore, map-
ping the processes to the HPCS management system space is what changes are made
in the sub-problem describing duodecimal vectors by executing each instruction by
the process. This makes the HPCS management system (against using various mech-
anisms for coping with various distortions) use the unique mechanism of generating
space of HPCS based only on two functions of #, � to determine the changes of the
sub-problem describing duodecimal vectors. In order to remove the changes caused
by executing the instructions that cause distortion via processes in the local machines,
the HPCS management system changes the generating spaces of HPCS. The HPCS
management system uses the model of decreasing or increasing the generating spaces
effects on a vector to change the generating spaces of HPCS. Thus, it is necessary to
note that when a new vector (process) is developed based on operators #, �, if the vec-
tor is not in alignment of weight and direction of its equivalent vector in the problem
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describing duodecimal vectors (created in starting machine of global operation), then
the HPCS management system corrects the vector direction and weight by changing
the amount or effect of one or several H , SS, AS, or F generating spaces, so that the
direction and weight of the vector resulted from operators #, �, always align with the
corresponding vector in the problem describing duodecimal vectors.

9 Conclusion

For modeling the reconfiguration of HPCSs at runtime, the paper gives a definition
for dynamism, which may be initiated by the dynamism of the problem itself or the
dynamism of the underlying platform. The AMRC model introduces two operators
for recognizing them by using vector algebra concept based on the situations causing
such processes to be created. The AMRC model uses vector algebra to model the
dynamic process whose direction is not the same as that of the customized configura-
tion of the HPCS based on the vector concept and provides this possibility for HPCS
management system to make a decision about whether the state vector of the process
is in the direction of the configuration of the HPCS or not. Furthermore, by inves-
tigating the angle formed between the state vectors of the problem’s processes and
the general state vector, the needed changes in order to return to the initial customize
state are specified. One of the main features of vector algebra is that it is independent
from time and place. This property of vector algebra allows HPCS experts to achieve
runtime-based HPCS with the ability to expand in the HPCS configuration. The im-
plementation of the AMRC model provides a customized configuration pattern at
design time, a successful pattern in running problems is transferred to runtime, and
dynamic problems in exascale duration utilize an HPCS with maximum customiza-
tion at runtime. If fact, an HPCS based on the AMRC model can reconfigure itself at
runtime due to changes occurring in the system and run the problems in customized
configuration. For future direction, by extending the AMRC model, it will be possible
to design an algebraic model for HPCS in every aspect and have an HPCS algebraic
model.
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