
J Supercomput (2013) 66:262–283
DOI 10.1007/s11227-013-0903-1

QoS based resource provisioning and scheduling
in grids

Rajni Aron · Inderveer Chana

Published online: 14 March 2013
© Springer Science+Business Media New York 2013

Abstract As Grid computing has emerged as a technology for providing the com-
putational resources to industries and scientific projects, new requirements arise.
Nowadays, resource management has become an important research area in the Grid
computing environment. To provision the appropriate resource to a corresponding ap-
plication is a tedious task. So, it is important to check and verify the provisioning of
the resource before the application’s execution. In this paper, a resource provisioning
framework has been presented that offers a resource provisioning policy, which caters
to provisioned resource allocation and resource scheduling. The framework has been
formally specified and verified. Formal specification and verification of the frame-
work helps in predicting possible errors before the scheduling process itself, and thus
results in efficient resource provisioning and scheduling of Grid resources.

Keywords Grid computing · Quality of service · Resource provisioning · Resource
scheduling

1 Introduction

Grid computing has provided the facility of resource sharing in a coordinates fashion
to provide the non-trivial Quality of Service (QoS) [1]. The base of the Grid comput-
ing is the resource. To manage the resources in an efficient manner is not an easy task.
As the Grid scales up, resource management complexity also increases and efficient
resource management techniques are desired. To increase the efficiency of resource
management systems, we have concentrated on resource provisioning and resource

R. Aron (�) · I. Chana
Computer Science & Engineering Department, Thapar University, Patiala, India
e-mail: rajni@thapar.edu

I. Chana
e-mail: inderveer@thapar.edu

mailto:rajni@thapar.edu
mailto:inderveer@thapar.edu


QoS based resource provisioning and scheduling in grids 263

scheduling [2]. Before execution of any application, first of all resource provision-
ing is required. Resource provisioning allows the users and providers to access the
specified resources according to the availability. Resource scheduling can be done
effectively after resource provisioning as the user desires to discover the resources
according to the requirements of the job, does resource provisioning, and then maps
the resources to that job.

This paper addresses the enforcement of resource provisioning framework, QoS
parameter(s) based resource provisioning policies for efficient provisioning of the re-
sources and the resource scheduling algorithm for execution of the user’s application.
Most of the existing Grid models have only a security policy and there is no resource
provisioning policy for efficient resource sharing. QoS parameters based resource
provisioning policies such as a cost based resource provisioning policy is particularly
useful for Grid scheduling because most often, resource providers have different re-
source policies for provisioning, but their main aim is to have maximum profit. If
they use the same policy, then profit would be maximized and cost of resources for
the user will automatically be less. So, the Grid resource provisioning and resource
scheduling play a vital role in building an effective and a well-organized Grid envi-
ronment [3].

The motivation of our work stems from the challenges in managing, sharing, and
efficient utilization of the Grid resources. In real life situations, there are many con-
straints such as: (i) providing the guaranteed quality of service and (ii) minimizing
the cost and time consumption for the verification of the policy before execution of
any application, etc. The main aim of this work is to provision the resources before
scheduling in an efficient manner and then execute the application so as to return
optimal results to the user. This paper presents a resource provisioning framework.
This framework results from common aspects of allocation of those resources for
execution of application, requirements of job execution and QoS requirements for
provisioning.

This paper is structured as follows: Sect. 2 describes the related work. A resource
provisioning framework has been presented in Sect. 3. QoS parameters based re-
source provisioning policies, resource provisioning protocol, and resource scheduling
are discussed. In Sect. 4, we have verified the resource provisioning framework. Sec-
tion 5 discusses the experimental setup and results. We have provided the conclusion
in Sect. 6.

2 Related work

Resource provisioning and scheduling in a Grid environment is challenging due to the
dynamic and heterogeneous resources over geographical area. Most research deals
with resource management systems in a Grid computing environment because the
base of the Grid is the resource. Resource management systems are divided into the
two most important parts, i.e., resource provisioning and resource scheduling.

2.1 Resource provisioning

Resource provisioning is done prior to scheduling. After provisioning of the re-
sources, mapping of resources to jobs, i.e., resources scheduling is done. Resource



264 R. Aron, I. Chana

provisioning can be done in two ways: economic based approaches and noneconomic
based approaches. In economic based approaches, resource provisioning is done on
the basis of cost and time. In the noneconomic based approaches, resource provi-
sioning is done on the basis of load balancing, round robin, first-come first-serve,
etc. QoS-GRAF framework for QoS based Grid allocation with failure provisioning
has been designed by Dasgupta et al. [16]. By considering Service Level Agreement
(SLA) based service differentiation and failure provisioning, a linear relaxation based
algorithm has been designed to improve the revenue. In this framework, only those
jobs can be submitted to the resources that have multiple dependencies and differenti-
ated QoS provisioning, but applications’ execution deadline has not been considered,
whereas our work considers both cost and deadline simultaneously at the time of
implementation of the resource provisioning.

DRAGON [20] and GLARE [21] frameworks provide provisioning in a heteroge-
neous Grid environment. As per the DRAGON framework, network infrastructure is
deployed that allows dynamic provisioning of network resources in order to establish
deterministic paths in direct response to end-user requests. It also allows advanced
e-science applications to dynamically acquire dedicated and deterministic network
resources to link computational clusters, storage arrays, visualization facilities, re-
mote sensors, and other instruments into globally distributed and application-specific
topologies. GLARE provides distributed registries for activity types, activity deploy-
ments, and services that perform registration, provisioning, monitoring, and auto-
matic deployments of new activities on different Grid computers in VO.

Raicu et al. [17] have proposed dynamic resource provisioning architecture using
the existing system falkon. Here, allocation and deallocation policies are presented,
and these policies are evaluated using metrics such as provisioning latency and ac-
cumulated CPU time. They have not considered time, cost, security, and reliability
as QoS parameters for resource provisioning. The design of a gateway that provi-
sions resources to dead-line applications relying on information given by current re-
source management services may be complex. It basically depends upon scheduling
decisions that are far from optimal. So, when providers and brokers use conflicting
policies, the number of migrations can be high [18]. Foster et al. [19] described a
General-purpose Architecture for Reservation and Allocation (GARA) that supports
flow-specific QoS specification, immediate and advance reservation, online monitor-
ing, and control of both individual resources and heterogeneous resource ensembles.
GARA does not support the concept of an agreement protocol and establishing a SLA
for various resources.

2.2 Resource scheduling

Abraham et al. used nature’s heuristics namely the Genetic Algorithm (GA), Simu-
lated Annealing (SA), and Tabu Search (TS) for scheduling of jobs on computational
Grids. They have shown that GA performs better than TS and SA for scheduling of
the jobs to exact resources but hybrid-heuristic algorithms perform better than the
GA approach as it minimizes the time required for scheduling the job [22]. Fidanova
et al. designed ant colony optimization based grid task scheduling. They have used
the concept of the Monte Carlo system to execute the application in the Grid com-
puting environment [23]. Lorpunmanee et al. have developed a general framework



QoS based resource provisioning and scheduling in grids 265

of grid scheduling using dynamic information. They have designed an ant colony
optimization algorithm to improve the decision of scheduling [24]. These scheduling
methods try to minimize the execution time/makespan of the applications and as such
are suitable for Grids. However, in Grids, there is another important parameter other
than execution time, i.e., cost. The meta-heuristic approach has been used in all these
methods, but the hyperheuristic would have performed better in comparison to the
metaheuristic.

Garg et al. presented a linear programming based metascheduling model for util-
ity Grids and a genetic algorithm. This model minimizes the cost for scheduling of
an independent task and considers multiple and concurrent users, which are com-
peting for the resources in a metascheduling environment so as to minimize their
cost [25]. To execute parallel applications on utility Grids, three heuristics have been
proposed by Garg et al. [26]. They evaluated the sensitivity of the proposed heuristics
on the basis of changes in the user’s preference, application’s execution time, and re-
source’s pricing. Kolodziej et al. [27, 28] have presented an approach for independent
task scheduling with security requirements in the Grid computing environment. They
have developed a scheduling model that enables the aggregation of task abortion and
security requirements. They have used game-theoretic and a GA based approach for
optimizing the makespan and flowtime. The major drawback here was that the re-
source scheduling algorithm using the concept of resource provisioning has not been
designed along with consideration of the QoS expectations of the resource providers
and resource consumers. In our paper, we have obtained the provisioned set of re-
sources through resource provisioning policies.

2.3 Our contributions

Our contribution in this paper is twofold. Firstly, a Grid resource provisioning frame-
work for Grid systems has been defined incorporating resource provisioning. Veri-
fication of the QoS parameters based resource provisioning policies is done by the
resource provisioning manager. XML schema has been used to design the resource
provisioning policy, and its implementation has been shown in the resource provi-
sioning framework.

Secondly, to execute the application on the ingredient resource according user’s re-
quirement, the Bacterial Foraging Optimization (BFO) based hyperheuristic resource
scheduling algorithm has been proposed and implemented. This paper then formu-
lated a combinatorial optimization model to produce near-optimal schedules for the
independent parallel scheduling problem described in the Sect. 4. The proposed algo-
rithm is used in the scheduling of independent parallel jobs in the Grid environment
so as to simultaneously minimize the cost and the makespan. Optimization technique
for optimizing the cost and makespan for resource scheduling simultaneously through
a fitness function has been discussed. Finally, we have analyzed empirically the per-
formance of the proposed resource provisioning based scheduling approach using the
Aneka Grid Cloud computing platform.

Our proposed implementation of the resource provisioning based resource
scheduling algorithm minimizes makespan and cost simultaneously, which has not
been done by any of the techniques used earlier for Grid scheduling. None of the



266 R. Aron, I. Chana

techniques which have been used earlier were successful in producing efficient and
effective results to manage the resources.

3 Resource provisioning framework

Resource providers give the facility of resource provisioning to user for optimum
results and better services to avoid the violations of service level guarantees. The
implementation of this framework will enable the user to analyze customer require-
ments and define processes that will contribute to the achievement of a product or
service that is acceptable to their resource consumer.

3.1 Requirements for resource provisioning framework

Firstly, it is important to identify the resource provisioning’s requirement before ac-
cessing and sharing of resources in the Grid environment. The following requirements
have been identified by Dusseau et al. in [4].

– Efficiency: Resource provisioning provides the facility to minimize the Grid over-
heads. So, it requires efficient management of the resources.

– Efficient Resource Usage: It reduces the wastage of the resources. Jobs that are
waiting for events (e.g., disk or user I/O, network latency, CPU usage, processor)
should hand over the processor so that they do not waste any resources.

– Fair Allocation: The amount of resources allocated to each user should be inde-
pendent of the number of jobs and provisioning of the resources should be fair.

– Adaptability and scalability: A smart scheduler adapts as per the resources, i.e., it
manages the jobs’ execution process efficiently even when the resources join or
leave(dynamically).

3.1.1 Mode of operation

Figure 1 illustrates the resource provisioning framework. First of all, authenticated
users will try to access the resource through the Grid portal for execution of the
application. User fills the Service Level Agreement (SLA) form to send the request
of the resources for the execution of the application. Then the Resource Provisioning
Manger (RPM) performs the tasks, i.e., managing the SLAs, maintaining information
about the resources and dynamically updating the resources’ status. RPM checks
the information about policy, which are stored in the policy repository and takes the
information about the available resources from Resource information Center (RIC)
as shown in Fig. 1. RPM checks for availability of the resources according to policy
conditions and then provisions the resources to user’s application [2]. The task of
scheduling will then be performed. After getting the list of provisioned resources, the
mapping of the job/application to the corresponding resource is done and the result
will be again sent back to the user.

The main aim of resource provisioning framework is to provision the resources to
Grid user with Quality of Service. This framework exhibits the way in which resource
provisioning can be done in the Grid environment.



QoS based resource provisioning and scheduling in grids 267

Fig. 1 Resource provisioning framework [2]

3.1.2 Resource provisioning protocol

In this section, a resource provisioning protocol has been described. The detailed re-
quirements have to be gathered for designing a system, which furnish the solution for
the desired problems and fulfills its goals. As these requirements need to be studied
and analyzed from different perspectives, Unified Modeling Language (UML) [5] has
been used.

Use case: user login In the first use case, we have demonstrated the successful
registration of the user. The user will try to login to access the resources, and then he
will be asked to submit the basic information on the registration page and password.
Administrator confirms the registration of the user as shown in Fig. 2.

After the authentication, the user demands the resources for the application’s ex-
ecution. The resource information center will pass information about the availability
of the resources to resource provisioning manager. RPM will provision the resources
to the user and then the user will be able to access the resources as shown in Fig. 3.

Use case: successful execution of resource provisioning In this use case, we have
shown the successful execution of the resource provisioning in Fig. 4. After the login
through the portal, the user will try to access the resources. The user has to fill his



268 R. Aron, I. Chana

Fig. 2 Use case for user
authentication

Fig. 3 Use case of resource
provision

requirements in the form of SLA. After going through the SLA form, the resource
provisioning manager tries to take the information of the available resources from the
resource information unit and simultaneously will check the policy conditions. If the
policy condition matches, then RPP will provision the resources to users.

Use case: resource provisioning manager cancels In this sequence provision model,
we have shown the request of the resources for the execution of application through
resource provisioning. After the login through the portal, the user will try to access
the resources. The user has to fill his requirements in the form of SLA. After going
through the SLA form, the resource provisioning manager tries to take the informa-
tion of available resources from the resource information unit and simultaneously
will check the policy conditions. If policy conditions do not match, then RPP will not
provision the resources to users as shown in Fig. 5.

3.2 QoS based resource provisioning policy

Resource Provisioning framework provisions the resources on the basis of the QoS
based resource provisioning policy. This policy standard is based on ISO:9000-2000,
RFC 4745 [33].

3.2.1 Time based resource provisioning policy (TRPP)

In this policy, resource provisioning has been made on the basis of time, and takes
static information as input. Users will submit their deadlines and the resource man-
ager checks in the resource provider list that who can satisfy the requirements of the



QoS based resource provisioning and scheduling in grids 269

Fig. 4 Successful execution of
resource provisioning

Fig. 5 RPP canceled the
provisioning due to mismatch of
policy

user. Time is calculated as the difference of the start time and deadline time. Then the
resource manager will provision the resources to the user. The main aim of the Time
based Resource provisioning policy (TRPP) is to minimize the time.

<?xmlversion="1.0"encoding="UTF-8"?>
<xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified"
attribute FormDefault="unqualified">
<xs:elementname="Time">
<xs:annotation>
<xs:documentation>
This is Time based Resource Provisioning
Policy
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:elementname="application execution
service">
<xs:complexType>



270 R. Aron, I. Chana

<xs:attributename="resource"type="xs:string"
use="required"/>
<xs:attributename="type"type="xs:string"
use="optional"/>
</xs:complexType>
</xs:element>
<xs:elementname="compute QoS parameter Time"
minOccurs="0">
<xs:complexType>
<xs:attributename="startTime"type="xs:
dateTime"
use="required"/>
<xs:attributename="endTime"type="xs:
dateTime"
use="required"/>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

Similarly, other QoS parameters based resource provisioning policies such as cost,
security, and reliability have been described in [2].

3.3 Grid resource scheduling

Grid scheduling is the core of the Grid resource management systems. It basically
implies mapping jobs to the available ingredient resources. This process includes
searching multiadministrative domains to use available resources from the Grid in-
frastructure in order to satisfy the requirements of the user [6]. Grid scheduling is a
two-step process. In the first step, the required set of resources is identified as per
the user requests and in the second step, the jobs are mapped onto the actual set of
resources, thus further ensuring near optimal satisfaction of QoS parameters [11].
After getting the set of provisioned resources, the task of scheduling is performed in
the resource provisioning framework.

3.3.1 Statement of the problem

To find the best resource to a corresponding job is a tedious task and the problem of
finding the best resource – job pair according to user’s application requirement is a
combinatorial optimization problem. There are many scenarios in which the need of
scheduling of independent jobs arises, so we have considered independent parallel
applications to handle the realistic scenarios. They are also suitable to Grid systems
as the Grid users submit jobs or monolithic applications in an independent manner
to the system. Also, Grid systems are used for massive parallel processing, in which
large amounts of data are processed independently [29]. Both the user’s and resource



QoS based resource provisioning and scheduling in grids 271

provider’s point of view have been kept in mind while considering the scheduling
problem as the user wants to minimize the cost, whereas the resource provider wants
to minimize the makespan.

To consider this problem, we have taken a set of independent jobs {j1, j2, j3, . . . ,

jm} to map on a set of heterogeneous and dynamic resources {r1, r2, r3, . . . , rn}.
R = {rk|1 ≤ k ≤ n} is the collection of resources and n is the total number of

resources. J = {ji |1 ≤ i ≤ m} is the collection of jobs and m is the total number of
jobs.

The estimated time to compute value of each application/job on each resource is
assumed to be supplied by the user. The user gives the information, experimental data,
job profiling, and analytical benchmarking. The performance estimation for resource
services is achieved by using the existing performance estimation techniques such as
analytical modeling [30] and historical information [31, 32]. In this problem formu-
lation, we have considered some constraints such as: (i) each job to be scheduled for
the application’s execution has a unique id, (ii) jobs are independent and indivisible,
and (iii) arrival of jobs for execution of application is random and jobs are placed in
a queue of unscheduled jobs. Execution time for every job on resource is obtained
from the ETC matrix. The number of jobs * number of resources gives the size of
the matrix and its components are defined as ETC(ji, rk). Rows of the ETC matrix
demonstrate the estimated execution time for a job on each resource and the columns
demonstrate the estimated execution time for a particular resource. ETC(ji, rk) is the
expected execution time of job ji and the resource rk .

3.3.2 Objective function

In Grid scheduling, the main goal of the providers is to minimize the makespan where
as the goal of the user is to minimize the cost for Grid application. Fitness value is
thus calculated as:

FitnessFunction = θ cos t + δmakespan (1)

cost = min
(
c(rk, ji)

)
for 1 ≤ k ≤ n, 1 ≤ i ≤ m (2)

makespan = min(Fji
) for ji ∈ J (3)

where 0 ≤ θ < 1 and 0 ≤ δ < 1 are weights to prioritize components of the fitness
function.

The cost and makespan specified in Eqs. (2) and (3) have been used for the defini-
tion of an objective function for the independent parallel job scheduling as defined in
Eq. (1).

c(rk, ji) = ce(rk, ji) (4)

ce(rk, ji) =
∑

ji∈J

completion(ji, rk)/completionm(ji)
× J (5)

whereas

completionm(ji )
= max

ji∈J,rk∈R
completion(ji, rk) (6)



272 R. Aron, I. Chana

Cost c(rk, ji) is the cost of job ji , which executes on resource rk . Equation (5)
denotes ce(rk, ji) user’s application execution cost. In Eq. (6), the completionm(ji)

denotes the maximal completion time of the user’s job. Makespan is the finishing time
Fj of the latest job and can be expressed as Expected Time to Compute (ETC) job ji

on resource rk . The completion time of a machine must be defined before calculating
the makespan. Completion time indicates the time in which the machine/resource can
complete the execution of all the previous assigned jobs in addition to the execution
time of job ji on resource rk , as defined below.

completion(rk) = avail_timerk ± ETC(ji, rk) (7)

The value of completion time has been used to compute the makespan. This map-
ping is done with an objective of minimizing the cost and makespan simultaneously.

3.4 Bacterial foraging based hyperheuristic resource scheduling algorithm

For mapping and execution of the job to the corresponding resource is done by using
the proposed BFO based hyperheuristic resource scheduling algorithm.

3.4.1 Bacterial foraging optimization

The Bacterial Foraging Optimization (BFO) algorithm was proposed by Passino [9,
10]. It is a population based numerical optimization algorithm based on the forag-
ing behavior of Escherichia coli bacteria. In the foraging theory, the objective of the
animal is to search and obtain nutrients in a fashion that energy intake per unit time
(E/T ) is maximized. Foraging is a process in which a group of bacteria moves in
search of food in a region; they decide whether or not to enter into a possible food
region, and then search for a new food region so as to get high quality of nutri-
ents. The bacterial foraging process consists of three main mechanisms: chemotactic,
swarming, reproduction, and elimination-dispersal event. Chemotactic is the process
of simulating the movement of E. coli bacteria, which is carried in a flagella, through
swimming and tumbling. The cell also repels a nearby cell in the sense that it con-
sumes nearby nutrients, and so it is not physically possible to have two cells at the
same location. A bacterium in times of stress releases attractants to signal the bacteria
to swarm together. After chemotactic steps, a reproduction step is taken. Fitness value
of bacteria is sorted in an ascending order. The least healthy bacteria eventually dies
while each of the healthier bacteria (those yielding lower value of the objective func-
tion) asexually splits into two bacteria, which are then placed in the same location.
This keeps the swarm size constant. The elimination event may occur due to sudden
changes like a significant local rise of temperature or a part of them may move to
other regions in the environment that will affect the behavior of bacteria heavily. The
elimination and dispersal event destroys the performance of the chemotactic event,
but dispersal may place bacteria near good sources of food.

3.4.2 Hyperheuristic

A hyperheuristic operates at a higher level of abstraction. It selects a low-level heuris-
tic that should be applied at any given time, depending upon the characteristics of the



QoS based resource provisioning and scheduling in grids 273

region of solution space currently under exploration [7]. The main aim of the hyper-
heuristic is not to compete with the state of the art problem specific approaches, but
to provide a general framework, which is able to deliver solutions of good quality for
a wide range of optimization problems [8].

3.4.3 Scheduling algorithm

In this section, we have presented the flowchart of bacterial foraging based hyper-
heuristic for resource scheduling in the Grid environment. The region of the BFO
search space is the possible combination of low-level heuristics. Each bacterium in
genome is a partial solution and is represented as a heuristic or a sequence of heuris-
tics. A low-level heuristic is operated upon by the hyperheuristic. Low-level heuris-
tics can be simple or complex and can be implemented as follows: (1) First of all,
select the job to be scheduled. The heuristic selects a job from the list of unscheduled
jobs and schedule it to the best available resource that is filtered from the resource
provisioning list. (2) Move job ji from its current resource to some other resource.
(3) Randomly select a job and swap it with some other job. (4) Finally, remove a
randomly selected job from the job pool already scheduled [11].

Figure 6 shows the flowchart of BFO based hyper-heuristic resource scheduling
algorithm. First, all the required parameters like the resource provisioned list, job list,
and number of heuristics, etc., are initialized. Then we choose a low-level heuristic
from the set of low-level heuristics to apply on the scheduling problem. Now, the
task of low-level heuristic selection is performed. BFO can be used as a top level
heuristic to manage the overall performance and quality of all the mechanisms. The
main objective of the BFO is to find the best low-level heuristic that generates the
best solution for the resource scheduling problem. We will apply the chemotactic,
reproduction and elimination-dispersal loop to select the low-level heuristic, and for
this we have calculated the fitness function. After selection of the heuristic, it will
than be applied to the problem. We will perform this process until all the jobs are
allocated. We then get the result.

4 Verification of the framework

For our work, we chose formal specification and verification of our framework has
been done using Z formal specification language and the model checking technique.
The proposed framework has been formally specified and verified using the Z for-
mal specification language and model checking technique. Formal specification of
the resource provisioning framework has been described in [2]. In this paper, we
have formally verified the framework. Model checking is a verification technique
that yields results much more quickly than theorem proving. It is based on the idea of
exhaustive exploration of the reachable state space of a system [12]. Verification of
our framework has been done using a spin model [13] due to the following reasons:

– an intuitive, program-like notation for specifying design choices unambiguously,
without implementation detail.

– a powerful, concise notation for expressing general correctness requirements, and



274 R. Aron, I. Chana

Fig. 6 Flowchart of the BFO
based hyperheuristic resource
scheduling algorithm

– a methodology for establishing the logic consistency of the design choices from (1)
and the matching correctness requirements from (2).

Spin accepts specification in the Promela (a Process Meta Language) and Promela
program consists of processes, messages, and variables, which are exchanges through
FIFO pipelines. The exhaustive verifications performed by SPIN are conclusive. This
makes SPIN a good choice for distributed systems. It accepts correctness claims
specified in the syntax of Linear Temporal Logic (LTL) and converts that formula



QoS based resource provisioning and scheduling in grids 275

Fig. 7 Flowchart of resource
provisioning framework

into Buechli automation [13]. Spin also checks the liveliness and deadlock of the
systems. We have proved several specification properties with regard to the require-
ments of resource consumers. By construction of the protocol, the user can get ap-
propriate resources for the application’s execution by using the resource provisioning
policy and vice versa. In addition, they can use different metrics for the selection
of the resource: cost, time, security, and reliability are currently supported during
the service level agreement. The properties, given as linear temporal logic formu-
lae, can be converted to Buchli-automata automatically. The Buechli-automata are
then evaluated for all states of the model. Usually, the property holds if the negated
form of the corresponding Buechli-automaton does not terminate during the verifica-
tion.

Figure 7 shows the flow and working of the resource provisioning framework.
First of all, the user tries to access the resources through the Grid portal and QoS
parameters based resource provisioning policies represented in the XML format
for data storage. After the selection of the resource provisioning policy, the re-
source provisioning manager formally verifies the policy and we get the list of
provisioned resources. Using the set of provisioned resources, the task of resource
scheduling is performed. Figures 8, 9, 10 show the stages of the resource provi-
sioning framework. In Fig. 8, we have shown the SLA form that is filled by the
user for the application’s execution in the Grid environment. Resource type, applica-
tion type, and type of resource provisioning policy is offered by the resource provi-
sioning manager as shown in Fig. 9. Figure 10 shows the complete overview of the
SLA.



276 R. Aron, I. Chana

Fig. 8 Service level agreement

Fig. 9 Service level agreement
of resource provisioning

Fig. 10 Overview of service
level agreement of resource
provisioning

5 Experimental setup and results

Aneka [14] is a software platform and a framework for the development of distributed
applications in the cloud. It harnesses the computing resources of a heterogeneous
network of workstations, clusters, grids, servers, and data centers, on demand.



QoS based resource provisioning and scheduling in grids 277

Fig. 11 Comparison of the
makespan of RP based
scheduling and without RP
based scheduling

Aneka provides developers with a rich set of APIs for transparently exploiting such
resources and expressing the business logic of applications by using the preferred
programming abstractions. System administrators leverage a collection of tools to
monitor and control the cloud, which can be a public virtual infrastructure available
through the Internet, a network of computing nodes in the premises of an enterprise,
or their combination.

5.1 Performance metrics

In this section, we have defined a performance evaluation criteria to evaluate the
performance of a resource scheduling algorithm. We selected two matrices, namely
makespan and cost for evaluating the performance. The former indicates the total
execution time where as the latter indicates the cost per unit resources that are con-
sumed by the users for the execution of their applications. The makespan and cost are
measured in seconds and Grid dollars (G$), respectively.

5.2 Results

To validate our algorithm, 5000 jobs/applications and 150–250 resources have been
considered. We have presented the result using the Aneka Grid Cloud computing
platform so as to test the performance of the hyper-heuristic based algorithm. We
have used Basic Local Alignment Search Tool (BLAST) [15] application to run our
algorithm. BLAST looks for similarities between a given sequence of genes and those
stored into classified databases. For simplicity, we have used the Parameter Sweep
Model in order to automatically perform multiple BLAST queries against the same
database over a distributed infrastructure.

Testcase 1
In first test case, we have evaluated the makespan and cost of Grid applications in
two scenarios as (i) the same number of applications/jobs are sent and (ii) differ-
ent number of applications are sent. The pricing of resources may or may not be
related to CPU speed. Thus, minimization of both makespan (execution time) and
cost of an application may conflict with each other depending on the price of the
resources. Figures 11 and 12 show the makespan and cost of resource provisioning



278 R. Aron, I. Chana

Fig. 12 Comparison of the cost
of RP based scheduling and
without RP based scheduling

Fig. 13 Effect of change in
number of application submitted
on makespan

based scheduling vs. nonresource provisioning based scheduling, respectively. The
results show that in the case of nonresource provisioning based scheduling, if we
send the same number of applications/jobs to the Grid, makespan and cost increases
where as in the other case, both makespan and cost decreases. This is expected as
the application execution is done using the proposed algorithm which is based on
QoS parameter (s) based resource provisioning policies. After the formal verifica-
tion of the resource provisioning policies, we get filtered resources, which enables
it to take an optimal decision.

Testcase 2
We have also performed experiments to determine the effect of increasing the num-
ber of applications on the cost and makespan. From the experimental results shown
in Fig. 13, we can conclude that the time taken to execute an application reduces by
using the resource provisioning based scheduling approach. Figure 14 shows that
cost per application increases as the number of submitted application increases. The
nonresource provisioning based scheduling approach resulted in a schedule, which
is expensive in comparison to resource provisioning based scheduling approach as
the number of applications increases. The reason is that the nonresource provision-
ing based scheduling approach does not consider the effect of other applications in
the meta-scheduler at the time of job submission but in the resource provisioning



QoS based resource provisioning and scheduling in grids 279

Fig. 14 Effect of change in
number of application submitted
on cost

Fig. 15 Comparison of the cost
for scheduling algorithms

based scheduling approach, it is considered according to both user’s and resource
providers’s perspectives.

Testcase 3
We have also performed experiments to determine the effect of increasing the num-
ber of applications on the cost and makespan. Figure 15 shows that cost per ap-
plication increases as the number of submitted applications increases. The other
scheduling heuristic algorithm resulted in a schedule, which is more expensive in
comparison to the bacterial foraging based hyperheuristic resource scheduling al-
gorithm as the number of applications increases. As the cost variations within the
Grid resources are not significant (i.e., 5G $ with 0.5G $) so the cost benefits of only
7–11 % were noticed. However, more benefits can be anticipated if the variations
are higher. Thus, BFOHH outperforms all the existing scheduling algorithms when
the application execution cost is high, which is an important case for a large-scale
Grid computing environment.

Testcase 4
In this case, the proposed algorithm has been implemented in the Aneka Grid Cloud
computing platform. The proposed algorithm has been compared with the other ex-
isting scheduling algorithms such as ant colony optimization, genetic algorithms,
and GA–SA. In this case, we have varied the number of applications. It shows the
effect of increasing the number of applications. The makespan of application exe-
cution using BFOHH is much less in comparison to the other existing scheduling
algorithms. The reason is that this is because of the high variation in execution time



280 R. Aron, I. Chana

Fig. 16 Comparison of the
makespan for scheduling
algorithms

across various resources as the resource list that is obtained from the resource pro-
visioning unit is already filtered. From the experimental results shown in Fig. 16,
we can conclude that the time taken to execute an application reduces by using the
proposed resource scheduling algorithm.

5.3 Framework validation

In the proposed framework, resource scheduling has been done on the basis of the
QoS parameter(s) based resource provisioning policies, which was not considered
traditionally. Figures (in the experimental results section) show that QoS based provi-
sioned approach generates better results and the resource provisioning based schedul-
ing algorithm is able to schedule the job on the ingredient resources more efficiently.
The resource provisioning framework has been validated against the features of the
existing resource provisioning frameworks and its result has been depicted in Table 1.

6 Conclusion

In this paper, a resource provisioning framework has been implemented. We allow
both users and providers to take benefits from Grid resources and policy. In this paper,
we have presented a resource provisioning framework for Grid computing environ-
ment. The objective is to minimize the complexity of provisioning for job execution
in Grid computing. With the use of a uniform policy, the number of migrations and
complexity of policies can be less, and thus the performance will be high. Specifi-
cation and verification of the formal Grid resource provisioning framework has been
done with the help of the Z specification language and model checking using the
spin tool. After resource provisioning, we get the set of provisioned resources and
after that the mapping of the resources to the corresponding job is done by using
the resource scheduling algorithm. The algorithm has been implemented to run the
Blast application in Aneka Grid Cloud computing platform. The experimental results
shows that the performance of the proposed algorithm outperforms the existing algo-
rithms in terms of cost and time.



QoS based resource provisioning and scheduling in grids 281

Ta
bl

e
1

C
om

pa
ri

so
n

of
R

es
ou

rc
e

Pr
ov

is
io

ni
ng

Fr
am

ew
or

k
w

ith
ex

is
tin

g
fr

am
ew

or
ks

R
PF

/
Fe

at
ur

es
R

PF
D

ra
go

n
G

la
re

G
A

R
A

Q
oS

-G
R

A
F

R
A

A
/F

al
ko

n
In

tr
a

G
ri

d
A

li’
s

Fr
am

ew
or

k

U
sa

ge
R

es
ou

rc
e

pr
ov

is
io

ni
ng

Fr
am

ew
or

k
pr

ov
id

es
th

e
fa

ci
lit

y
of

pr
ov

is
io

ni
ng

of
th

e
re

so
ur

ce
s.

It
di

sc
us

se
d

ab
ou

tt
he

N
w

ar
ch

ite
ct

ur
e

w
hi

ch
ca

n
pr

ov
id

e
dy

na
m

ic
al

ly
pr

ov
is

io
ni

ng
.

It
pr

ov
id

es
th

e
fa

ci
lit

y
of

se
rv

ic
e

pr
ov

is
io

ni
ng

.

It
su

pp
or

ts
flo

w
-s

pe
ci

fic
Q

oS
sp

ec
ifi

ca
tio

n,
im

m
ed

ia
te

an
d

ad
va

nc
e

re
se

rv
at

io
n

an
d

on
lin

e
m

on
ito

ri
ng

an
d

co
nt

ro
lo

f
bo

th
in

di
vi

du
al

re
so

ur
ce

s
an

d
he

te
ro

ge
ne

ou
s

re
so

ur
ce

en
se

m
bl

es
.

It
op

tim
iz

ed
bu

si
ne

ss
m

at
ri

ce
s

ba
se

d
on

SL
A

dr
iv

en
pr

ic
in

g
po

lic
ie

s.

It
is

th
e

co
m

bi
na

tio
n

of
D

R
P

&
fa

lk
on

.

It
en

ab
le

s
th

e
de

pl
oy

m
en

to
f

ap
pl

ic
at

io
ns

ac
ro

ss
m

ul
tip

le
G

ri
ds

.

It
w

or
ke

d
be

fo
re

re
so

ur
ce

pr
ov

is
io

ni
ng

to
di

sc
ov

er
re

so
ur

ce
s.

M
id

dl
ew

ar
e

G
T

4
T

he
m

od
el

an
d

ca
pa

bi
lit

ie
s

ar
e

pl
at

fo
rm

in
de

pe
nd

en
t.

C
an

be
ap

pl
ie

d
to

di
ff

er
en

tm
id

dl
ew

ar
e

lik
e

G
T

G
lo

bu
s

G
R

A
M

T
he

m
od

el
an

d
ca

pa
bi

lit
ie

s
ar

e
pl

at
fo

rm
in

de
pe

nd
en

t.
C

an
be

ap
pl

ie
d

to
di

ff
er

en
t

m
id

dl
ew

ar
e

lik
e

G
T

PB
S

SG
E

G
T

2.
0

R
es

ou
rc

e
Pr

ov
is

io
ni

ng
ba

se
d

Sc
he

du
lin

g

Y
es

N
O

N
o

N
o

N
o

N
o

N
o

N
o

Po
lic

ie
s

C
R

PP
,S

R
PP

,T
R

PP
,

R
R

PP
N

o
Po

lic
ie

s
N

o
Po

lic
ie

s
N

o
Po

lic
ie

s
N

o
Po

lic
ie

s
A

llo
ca

tio
n

&
D

e-
al

lo
ca

tio
n

po
lic

ie
s

C
on

se
rv

at
iv

e
B

ac
kfi

lli
ng

&
M

ul
tip

le
si

te
pa

rt
iti

on
po

lic
ie

s

R
es

er
va

tio
n

Po
lic

y

Q
oS

Pa
ra

m
et

er
s

Su
bm

is
si

on
bu

rs
t,

C
os

t,
T

im
e,

Se
cu

ri
ty

an
d

R
el

ia
bi

lit
y

N
o

pa
ra

m
et

er
s

Se
cu

ri
ty

,
R

el
ia

bi
lit

y
R

es
er

va
tio

n
R

ev
en

ue
T

im
e

R
es

po
ns

e
T

im
e

A
dv

an
ce

R
es

er
va

tio
n

V
al

id
at

io
n

Fo
rm

al
M

et
ho

ds
,Z

fo
rm

al
sp

ec
ifi

ca
tio

n
L

an
gu

ag
e

N
o

N
o

N
o

N
o

fo
rm

al
m

et
ho

d
ve

ri
fic

at
io

n
N

o
N

o
N

o



282 R. Aron, I. Chana

7 Future directions

In the future, the performance of the Grid would be shown by considering the scala-
bility as a metric that is not considered in this framework. The proposed framework
can be further enhanced by introducing dynamic load balancing techniques at the time
of scheduling. The existing solutions have been designed and tested only for resource
provisioning and scheduling challenges. In the future, this can also be extended for
addressing the other resource management challenges such as re-scheduling and re-
source monitoring, etc. It will be interesting to enhance the proposed algorithm to
schedule jobs with different application models such as workflows and bag-of-tasks.

References

1. Foster I, Kesselman C (2004) The grid: blueprint for a future computing infrastructure. Morgan Kauf-
mann, San Mateo

2. Aron R, Chana I (2012) Formal QoS policy based grid resource provisioning framework. J Grid
Comput 10(2):249–264

3. Rajni A, Chana I (2010) Resource provisioning and scheduling in grids: issues, challenges and future
directions. In: International conference on computer and communication technology (ICCCT’10),
MNNIT, Allahabad, 17–19 September 2010, pp 306–310

4. Dusseau ACA (1998) Implicit co scheduling: coordinated scheduling with implicit information in
distributed systems. PhD thesis, University of California at Berkeley

5. Rumbaugh J, Jacobson I, Booch G (2004) The unified modeling language reference manual, 2nd edn.
Addison-Wesley, Pearson Education, Upper Saddle River. PGrady booch, object-oriented analysis and
design

6. Khateeb AA, Abdullah R, Rashid AN (2009) Job type approach for deciding job scheduling in grid
computing systems. J Comput Sci 5(10):745–750

7. Cowling P, Kendall G, Soubeiga E (2001) A hyper-heuristic approach to scheduling a sales summit. In:
Proceedings of the 3rd international conference on the practice and theory of automated timetabling.
Lecture notes in computer science, vol 2079. Springer, Berlin, pp 176–190

8. Gonzalez JA, Serna M, Xhafa F (2007) A hyper-heuristic for schedulingin dependent jobs in compu-
tational grids. In: International conference on software and data technologies (ICSOFT)

9. Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE
Control Syst Mag 22(2):52–67

10. Liu Y, Passino KM (2002) Biomimicry of social foraging bacteria for distributed optimization: mod-
els, principles and emergent behaviors. J Optim Theory Appl 115(3):603–628

11. Aron R, Chana I (2012) Bacterial foraging based hyper-heuristic for resource scheduling in
grid computing. Future generation of computer systems. Elsevier, Amsterdam. doi:10.1016/
j.future.2012.09.005

12. Hesselink WH (2004) Introduction to the model checker spin, 4th October 2004. Online at
http://wenku.baidu.com/view/ed1d002d453610661ed9f446.html

13. Holzmann GJ (1997) The model checker SPIN. IEEE Trans Softw Eng 23:279–295
14. Vecchiola C, Chu X, Buyya R (2009) Aneka: a software platform for .NET-based cloud computing.

In: Gentzsch W, Grandinetti L, Joubert G (eds) High speed and large scale scientific computing. IOS,
Lansdale, pp 267–295

15. Blast. www.ncbi.nlm.nih.gov/BLAST/
16. Dasgupta G, Dasgupta K, Purohit A, Viswanathan B (2006) QoS-GRAF: a framework for QoS based

grid resource allocation with failure provisioning. In: Proceedings of 14th IEEE international work-
shop on QoS (IWQOS’06), 19–21 June, New Heaven, CT, USA, pp 281–283

17. Raicu I, Zhao Y, Dumitrescu C, Foster I, Wilde M (2007) Dynamic resource provisioning in grid
environments. In: TeraGrid conference, June 2007

18. Assuncao MD, Buyya R (2009) Performance analysis of allocation policies for intergrid resource
provisioning. Inf Softw Technol 51(1):42–55

http://dx.doi.org/10.1016/j.future.2012.09.005
http://dx.doi.org/10.1016/j.future.2012.09.005
http://wenku.baidu.com/view/ed1d002d453610661ed9f446.html
http://www.ncbi.nlm.nih.gov/BLAST/


QoS based resource provisioning and scheduling in grids 283

19. Foster I, Fidler M, Royd A, Sander V, Winkler L (2004) End-to-end quality of service for high-end
applications. Comput Commun J 27(14):1375–1388

20. Lehman T, Sobieski J, Jabbari B (2006) DRAGON: a technique for service provisioning in heteroge-
neous grid networks. Communications Magazine, IEEE 44(3):84–90

21. Siddiqui M, Villazon A, Hofer J, Fahringer T (2005) GLARE: A grid activity registration, deployment
and provisioning framework. In: Proceedings of ACM/IEEE conference on supercomputing, 12–18
November 2005

22. Abraham A, Buyya R, Nath B (2000) Nature’s heuristics for scheduling jobs on computational grids.
In: The 8th IEEE conference on advanced computing and communications, Cochin, India

23. Fidanova S, Durchova M (2006) Ant algorithm for grid scheduling problem. Lecture notes in com-
puter science, vol 3743. Springer, Berlin, pp 405–412

24. Lorpunmanee S, Sap MN, Abdullah AH, Chompoo-inwai C (2007) An ant colony optimization for
dynamic job scheduling in grid environment. J Comput Inform Sci Eng 1(4):207–214

25. Garg S, Konugurthi P, Buyya R (2008) A linear programming driven genetic algorithm for meta-
scheduling on utility grids. In: Proceedings of the 16th international conference on advanced comput-
ing and communication (ADCOM 2008), Chennai, India. IEEE Press, New York, pp 14–17

26. Garg SK, Buyya R, Siegel HJ (2010) Time and cost trade-off management for scheduling parallel
applications on utility grids. Future Gener Comput Syst 26(8):1344–1355

27. Kolodziej J, Xhafa F (2012) Integration of task abortion and security requirements in GA-based meta-
heuristics for independent batch grid scheduling. Comput Math Appl 63:350–364

28. Kolodziej J, Xhafa F (2011) Meeting security and user behaviour requirements in grid scheduling,
simulation modelling practice and theory. Int J Fed Eur Simul Soc 19:213–226

29. Kolodziej J, Xhafa F (2011) Enhancing the genetic-based scheduling in computational grids by a
structured hierarchical population. Future Gener Comput Syst 27(8):1035–1046

30. Nudd G, Kerbyson D, Papaefstathiou E, Perry S, Harper J, Wilcox D (2000) Pace—a toolset for
the performance prediction of parallel and distributed systems. Int J High Perform Comput Appl
14(3):228–251

31. Smith W, Foster I, Taylor V (1998) Predicting application run times using historical information.
In: Proceedings of IPPS/SPDP’98 workshop on job scheduling strategies for parallel processing, FL,
USA

32. Hotovy S (1996) Workload evolution on the Cornell theory center IBM SP2. In: Proceeding of job
scheduling strategies for parallel processing workshop, pp 27–40

33. Schulzrinne H, Tschofenig H, Morris J, Cuellar J, Polk J, Rosenberg J (2007) Common policy: a doc-
ument format for expressing privacy preferences. RFC 4745


	QoS based resource provisioning and scheduling in grids
	Abstract
	Introduction
	Related work
	Resource provisioning
	Resource scheduling
	Our contributions

	Resource provisioning framework
	Requirements for resource provisioning framework
	Mode of operation
	Resource provisioning protocol
	Use case: user login
	Use case: successful execution of resource provisioning
	Use case: resource provisioning manager cancels


	QoS based resource provisioning policy
	Time based resource provisioning policy (TRPP)

	Grid resource scheduling
	Statement of the problem
	Objective function

	Bacterial foraging based hyperheuristic resource scheduling algorithm
	Bacterial foraging optimization
	Hyperheuristic
	Scheduling algorithm


	Verification of the framework
	Experimental setup and results
	Performance metrics
	Results
	Framework validation

	Conclusion
	Future directions
	References


