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Abstract The paper investigates how the mathematical languages used to describe
and to observe automatic computations influence the accuracy of the obtained results.
In particular, we focus our attention on single and multi-tape Turing machines, which
are described and observed through the lens of a new mathematical language, which
is strongly based on three methodological ideas borrowed from physics and applied
to mathematics, namely: the distinction between the object (we speak here about a
mathematical object) of an observation and the instrument used for this observation;
interrelations holding between the object and the tool used for the observation; the ac-
curacy of the observation determined by the tool. Results of the observation executed
by the traditional and new languages are compared and discussed.

Keywords Theory of automatic computations · Observability of Turing machines ·
Relativity of mathematical languages · Infinite sequences · Infinite sets

1 Introduction

Since the beginning of the last century, the fundamental nature of the concept of au-
tomatic computations attracted a great attention of mathematicians and computer sci-
entists (see [5, 15–17, 23, 24, 28, 43]). The first studies had as their reference context

Y.D. Sergeyev (�) · A. Garro
Dipartimento di Elettronica, Informatica e Sistemistica, Università della Calabria, Rende (CS), Italy
e-mail: yaro@si.deis.unical.it

A. Garro
e-mail: alfredo.garro@unical.it

Y.D. Sergeyev
N.I. Lobatchevsky State University, Nizhni Novgorod, Russia

Y.D. Sergeyev
Istituto di Calcolo e Reti ad Alte Prestazioni, C.N.R., Rende (CS), Italy

mailto:yaro@si.deis.unical.it
mailto:alfredo.garro@unical.it


646 Y.D. Sergeyev, A. Garro

the David Hilbert program, and as their reference language that was introduced by
Georg Cantor [4]. These approaches lead to different mathematical models of com-
puting machines (see [2, 7, 10]) that, surprisingly, were discovered to be equivalent
(e.g., anything computable in the λ-calculus is computable by a Turing machine).
Moreover, these results, and especially those obtained by Alonzo Church, Alan Tur-
ing [5, 11, 43], and Kurt Gödel, gave fundamental contributions to demonstrate that
David Hilbert program, which was based on the idea that all of the mathematics could
be precisely axiomatized, cannot be realized.

In spite of this fact, the idea of finding an adequate set of axioms for one or another
field of mathematics continues to be among the most attractive goals for contempo-
rary mathematicians. Usually, when it is necessary to define a concept or an object,
logicians try to introduce a number of axioms describing the object in the absolutely
best way. However, it is not clear how to reach this absoluteness; indeed, when we
describe a mathematical object or a concept we are limited by the expressive capac-
ity of the language we use to make this description. A richer language allows us to
say more about the object and a weaker language—less. Thus, the continuous devel-
opment of the mathematical (and not only mathematical) languages leads to a con-
tinuous necessity of a transcription and specification of axiomatic systems. Second,
there is no guarantee that the chosen axiomatic system defines “sufficiently well” the
required concept and a continuous comparison with practice is required in order to
check the goodness of the accepted set of axioms. However, there cannot be again any
guarantee that the new version will be the last and definitive one. Finally, the third
limitation already mentioned above has been discovered by Gödel in his two famous
incompleteness theorems (see [11]).

Starting from these considerations, in this paper, we study the relativity of math-
ematical languages in situations where they are used to observe and to describe au-
tomatic computations. We consider the traditional computational paradigm mainly
following results of Turing (see [43]) whereas emerging computational paradigms
(see, e.g., [1, 26, 45, 47]) are not considered here. In particular, we focus our atten-
tion on different kinds of Turing machines by enriching and extending the results
presented in [42].

The point of view presented in this paper strongly uses three methodological ideas
borrowed from physics and applied to mathematics, namely: the distinction between
the object (we speak here about a mathematical object) of an observation and the
instrument used for this observation; interrelations holding between the object and
the tool used for this observation; the accuracy of the observation determined by the
tool.

The main attention is dedicated to numeral systems1 that we use to write down
numbers, functions, models, etc. and that are among our tools of investigation of
mathematical and physical objects. It is shown that numeral systems strongly influ-
ence our capabilities to describe both the mathematical and physical worlds. A new

1We are reminded that a numeral is a symbol or group of symbols that represents a number. The difference
between numerals and numbers is the same as the difference between words and the things they refer
to. A number is a concept that a numeral expresses. The same number can be represented by different
numerals. For example, the symbols “7,” “seven,” and “VII” are different numerals, but they all represent
the same number.
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numeral system introduced in [31, 33, 38]) for performing computations with infinite
and infinitesimal quantities is used for the observation of mathematical objects and
studying Turing machines. The new methodology is based on the principle “the part
is less than the whole” introduced by Ancient Greeks and observed in practice. It is
applied to all sets and processes (finite and infinite) and all numbers (finite, infinite,
and infinitesimal).

In order to see the place of the new approach in the historical panorama of ideas
dealing with infinite and infinitesimal, see [20, 21, 36, 37, 42]. The new methodology
has been successfully applied for studying a number of applications: percolation (see
[14, 44]), Euclidean and hyperbolic geometry (see [22, 30]), fractals (see [32, 34, 41,
44]), numerical differentiation and optimization (see [8, 35, 39, 49]), infinite series
(see [36, 40, 48]), the first Hilbert problem (see [37]), and cellular automata (see [9]).

The rest of the paper is structured as follows. In Sect. 2, single and multi-tape
Turing machines are introduced along with “classical” results concerning their com-
putational power and related equivalences; in Sect. 3, a brief introduction to the new
language and methodology is given whereas their exploitation for analyzing and ob-
serving the different types of Turing machines is discussed in Sect. 4. It shows that the
new approach allows us to observe Turing machines with a higher accuracy giving so
the possibility to better characterize and distinguish machines, which are equivalent
when observed within the classical framework. Finally, Sect. 5 concludes the paper.

2 Single and multi-tape Turing machines

The Turing machine is one of the simple abstract computational devices that can be
used to model computational processes and investigate the limits of computability. In
the following Sects. 2.1 and 2.2, single and multi-tape Turing machines will be de-
scribed along with important classical results concerning their computational power
and related equivalences.

2.1 Single tape Turing machines

A Turing machine (see, e.g., [13, 43]) can be defined as a 7-tuple

M = 〈Q,Γ, b̄,Σ,q0,F, δ〉, (1)

where Q is a finite and not empty set of states; Γ is a finite set of symbols; b̄ ∈ Γ is
a symbol called blank; Σ ⊆ {Γ − b̄} is the set of input/output symbols; q0 ∈ Q is the
initial state; F ⊆ Q is the set of final states; δ : {Q − F } × Γ �→ Q × Γ × {R,L,N}
is a partial function called the transition function, where L means left, R means right,
and N means no move.

Specifically, the machine is supplied with: (i) a tape running through it which is
divided into cells each capable of containing a symbol γ ∈ Γ , where Γ is called the
tape alphabet, and b̄ ∈ Γ is the only symbol allowed to occur on the tape infinitely
often; (ii) a head that can read and write symbols on the tape and move the tape left
and right one and only one cell at a time. The behavior of the machine is specified
by its transition function δ and consists of a sequence of computational steps; in each
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step the machine reads the symbol under the head and applies the transition function
that, given the current state of the machine and the symbol it is reading on the tape,
specifies (if it is defined for these inputs): (i) the symbol γ ∈ Γ to write on the cell of
the tape under the head; (ii) the move of the tape (L for one cell left, R for one cell
right, N for no move); (iii) the next state q ∈ Q of the machine.

Starting from the definition of Turing machine introduced above, classical results
(see, e.g., [2]) aim at showing that different machines in terms of provided tape and
alphabet have the same computational power, i.e., they are able to execute the same
computations. In particular, two main results are reported below in an informal way.

Given a Turing machine M = {Q,Γ, b̄,Σ,q0,F, δ}, which is supplied with an in-
finite tape, it is always possible to define a Turing machine M′ = {Q′,Γ ′, b̄,Σ ′, q ′

0,

F ′, δ′} which is supplied with a semi-infinite tape (e.g., a tape with a left boundary)
and is equivalent to M, i.e., is able to execute all the computations of M.

Given a Turing machine M = {Q,Γ, b̄,Σ,q0,F, δ}, it is always possible to define
a Turing Machine M′ = {Q′,Γ ′, b̄,Σ ′, q ′

0,F
′, δ′} with |Σ ′| = 1 and Γ ′ = Σ ′ ∪ {b̄},

which is equivalent to M, i.e., is able to execute all the computations of M.
It should be mentioned that these results, together with the usual conclusion re-

garding the equivalences of Turing machines, can be interpreted in the following,
less obvious, way: they show that when we observe Turing machines by exploiting
the classical framework we are not able to distinguish, from the computational point
of view, Turing machines which are provided with alphabets having different num-
ber of symbols and/or different kind of tapes (infinite or semi-infinite) (see [42] for a
detailed discussion).

2.2 Multi-tape Turing machines

Let us consider a variant of the Turing machine defined in (1) where a machine
is equipped with multiple tapes that can be simultaneously accessed and updated
through multiple heads (one per tape). These machines can be used for a more direct
and intuitive resolution of different kind of computational problems. As an example,
in checking if a string is palindrome it can be useful to have two tapes on which rep-
resent the input string so that the verification can be efficiently performed by reading
a tape from left to right and the other one from right to left.

Moving toward a more formal definition, a k-tapes, k ≥ 2, Turing machine
(see [13]) can be defined (cf. (1)) as a 7-tuple

MK = 〈
Q,Γ, b̄,Σ,q0,F, δ(k)

〉
, (2)

where Σ = ⋃k
i=1 Σi is given by the union of the symbols in the k input/output al-

phabets Σ1, . . . ,Σk ; Γ = Σ ∪ {b̄} where b̄ is a symbol called blank; Q is a finite and
not empty set of states; q0 ∈ Q is the initial state; F ⊆ Q is the set of final states;
δ(k) : {Q − F } × Γ1 × · · · × Γk �→ Q × Γ1 × · · · × Γk × {R,L,N}k is a partial func-
tion called the transition function, where Γi = Σi ∪ {b̄}, i = 1, . . . , k, L means left,
R means right, and N means no move.

This definition of δ(k) means that the machine executes a transition starting from
an internal state qi and with the k heads (one for each tape) above the characters
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ai1, . . . , aik , i.e., if δ(k)(q1, ai1, . . . , aik) = (qj , aj 1, . . . , aj k
, zj 1, . . . , zj k

) the ma-
chine goes in the new state qj , write on the k tapes the characters aj 1, . . . , aj k

, re-
spectively, and moves each of its k heads left, right or no move, as specified by the
zj l

∈ {R,L,N}, l = 1, . . . , k.
A machine can adopt for each tape a different alphabet, in any case, for each tape,

as for the Single-tape Turing machines, the minimum portion containing characters
distinct from b̄ is usually represented. In general, a typical configuration of a multi-
tape machine consists of a read-only input tape, several read and write work tapes,
and a write-only output tape, with the input and output tapes accessible only in one
direction. In the case of a k-tapes machine, the instant configuration of the machine,
as for the single-tape case, must describe the internal state, the contents of the tapes
and the positions of the heads of the machine.

More formally, for a k-tapes Turing machine MK = 〈Q,Γ, b̄,Σ,q0,F, δ(k)〉 with
Σ = ⋃k

i=1 Σi (see (2)) a configuration of the machine is given by

q#α1 ↑ β1#α2 ↑ β2# . . .#αk ↑ βk, (3)

where q ∈ Q; αi ∈ ΣiΓ
∗
i ∪{ε} and βi ∈ Γ ∗

i Σi ∪{b̄}. A configuration is final if q ∈ F .
The starting configuration usually requires the input string x on a tape, e.g., the

first tape so that x ∈ Σ∗
1 , and only b̄ symbols on all the other tapes. However, it can be

useful to assume that, at the beginning of a computation, these tapes have a starting
symbol Z0 /∈ Γ = ⋃k

i=1 Γi . Therefore, in the initial configuration the head on the
first tape will be on the first character of the input string x, whereas the heads on
the other tapes will observe the symbol Z0, more formally, by re-placing Γi = Σi ∪
{b̄,Z0} in all the previous definition, a configuration q#α1 ↑ β1#α2 ↑ β2# . . .#αk ↑ βk

is an initial configuration if αi = ε, i = 1, . . . , k, β1 ∈ Σ∗
1 , βi = Z0, i = 2, . . . , k and

q = q0.
The application of the transition function δ(k) at a machine configuration (c.f. (3))

defines a computational step of a multi-tape Turing machine. The set of computa-
tional steps which bring the machine from the initial configuration into a final config-
uration defines the computation executed by the machine. As an example, the com-
putation of a multi-tape Turing machine MK, which computes the function fMK

(x)

can be represented as follows:

q0# ↑ x# ↑ Z0# . . .# ↑ Z0
→

MK q# ↑ x# ↑ fMK
(x)# ↑ b̄# . . .# ↑ b̄ (4)

where q ∈ F and
→

MK indicates the transition among machine configurations.
It is worth noting that, although the k-tapes Turing Machine can be used for a more

direct resolution of different kind of computational problems, in the classical frame-
work it has the same computational power of the single-tape Turing machine. More
formally, given a multi-tape Turing machine it is always possible to define a single-
tape Turing machine, which is able to fully simulate its behavior and, therefore, to
completely execute its computations. In particular, the single-tape Turing machines
adopted for the simulation use a particular kind of the tape, which is divided into
tracks (multi-track tape). In this way, if the tape has m tracks, the head is able to
access (for reading and/or writing) all the m characters on the tracks during a single
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operation. If for the m tracks the alphabets Γ1, . . . Γm are adopted respectively, the
machine alphabet Γ is such that |Γ | = |Γ1 × · · · × Γm| and can be defined by an
injective function from the set Γ1 × · · · × Γm to the set Γ ; this function will asso-
ciate the symbol b̄ in Γ to the tuple (b̄, b̄, . . . , b̄) in Γ1 × · · · × Γm. In general, the
elements of Γ which correspond to the elements in Γ1 × · · · × Γm can be indicated
by [ai1, ai2, . . . , aim] where aij ∈ Γj .

By adopting this notation, it is possible to demonstrate that given a k-tapes Turing
Machine MK = {Q,Γ, b̄,Σ,q0,F, δ(k)} it is always possible to define a single-tape
Turing machine which is able to simulate t computational steps of MK = in O(t2)

transitions by using an alphabet with O((2|Γ |)k) symbols (see [2]).
The proof is based on the definition of a machine M′ = {Q′,Γ ′, b̄,Σ ′, q ′

0,F
′, δ′}

with a single-tape divided into 2k tracks (see [2]); k tracks for storing the characters
in the k tapes of MK and k tracks for signing through the marker ↓ the positions
of the k heads on the k tapes of Mk . As an example, this kind of tape can represent
the content of each tapes of Mk and the position of each machine heads in its even
and odd tracks respectively. As discussed above, for obtaining a single-tape machine
able to represent these 2k tracks, it is sufficient to adopt an alphabet with the required
cardinality and define an injective function which associates a 2k-ple characters of a
cell of the multi-track tape to a symbols in this alphabet.

The transition function δ(k) of the k-tapes machine is given by δ(k)(q1, ai1, . . . , aik)

= (qj , aj 1, . . . , aj k
, zj 1, . . . , zj k

), with zj 1, . . . , zj k
∈ {R,L,N}; as a consequence

the corresponding transition function δ′ of the single-tape machine, for each transi-
tion specified by δ(k) must individuate the current state and the position of the marker
for each track and then write on the tracks the required symbols, move the markers
and go in another internal state. For each computational step of MK , the machine
M′ must execute a sequence of steps for covering the portion of tapes between the
two most distant markers. As in each computational step, a marker can move at most
of one cell and then two markers can move away each other at most of two cells, after
t steps of MK the markers can be at most 2t cells distant, thus if MK executes t

steps, M′ executes at most: 2
∑t

i=1 i = t2 + t = O(t2) steps.
Moving to the cost of the simulation in terms of the number of required characters

for the alphabet of the single-tape machine, we recall that |Γ1| = |Σ1| + 1 and that
|Γi | = |Σi | + 2 for 2 ≤ i ≤ k. So, by multiplying the cardinalities of these alphabets,
we obtain that: |Γ ′| = 2k(|Σ1| + 1)

∏k
i=2(|Σi | + 2) = O((2 max1≤i≤k |Γi |)k).

3 The Grossone methodology

In this section, we give just a brief introduction to the methodology of the new ap-
proach [31, 33] dwelling only on the issues directly related to the subject of the pa-
per. This methodology will be used in Sect. 4 to study Turing machines and to obtain
some more accurate results with respect to those obtainable by using the traditional
framework [5, 43].

In order to start, let us remind that numerous trials have been done during the
centuries to evolve existing numeral systems in such a way that numerals representing
infinite and infinitesimal numbers could be included in them (see [3, 4, 6, 18, 19, 25,
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29, 46]). Since new numeral systems appear very rarely, in each concrete historical
period their significance for mathematics is very often underestimated (especially by
pure mathematicians). In order to illustrate their importance, let us remind the Roman
numeral system that does not allow one to express zero and negative numbers. In this
system, the expression III-X is an indeterminate form. As a result, before appearing
the positional numeral system and inventing zero mathematicians were not able to
create theorems involving zero and negative numbers and to execute computations
with them.

There exist numeral systems that are even weaker than the Roman one. They se-
riously limit their users in executing computations. Let us recall a study published
recently in Science (see [12]). It describes a primitive tribe living in Amazonia (Pi-
rahã). These people use a very simple numeral system for counting: one, two, many.
For Pirahã, all quantities larger than two are just “many” and such operations as 2+2
and 2+1 give the same result, i.e., “many.” Using their weak numeral system, Pirahã
are not able to see, for instance, numbers 3, 4, 5, and 6, to execute arithmetical op-
erations with them, and, in general, to say anything about these numbers because in
their language there are neither words nor concepts for that.

In the context of the present paper, it is very important that the weakness of Pi-
rahã’s numeral system leads them to such results as

‘many’ + 1 = ‘many’, ‘many’ + 2 = ‘many’, (5)

which are very familiar to us in the context of views on infinity used in the traditional
calculus

∞ + 1 = ∞, ∞ + 2 = ∞. (6)

The arithmetic of Pirahã involving the numeral ‘many’ has also a clear similarity with
the arithmetic proposed by Cantor for his Alephs2:

ℵ0 + 1 = ℵ0, ℵ0 + 2 = ℵ0, ℵ1 + 1 = ℵ1, ℵ1 + 2 = ℵ1. (7)

Thus, the modern mathematical numeral systems allow us to distinguish a larger
quantity of finite numbers with respect to Pirahã but give results that are similar to
those of Pirahã when we speak about infinite quantities. This observation leads us to
the following idea:

Probably our difficulties in working with infinity is not connected to the nature
of infinity itself but is a result of inadequate numeral systems that we use to
work with infinity, more precisely, to express infinite numbers.

The approach developed in [31, 33, 38] proposes a numeral system that uses the
same numerals for several different purposes for dealing with infinities and infinitesi-
mals: in Analysis for working with functions that can assume different infinite, finite,

2This similarity becomes even more pronounced if one considers another Amazonian tribe—Mundurukú
(see [27])—who fail in exact arithmetic with numbers larger than 5 but are able to compare and add large
approximate numbers that are far beyond their naming range. Particularly, they use the words ‘some, not
many’ and ‘many, really many’ to distinguish two types of large numbers using the rules that are very
similar to ones used by Cantor to operate with ℵ0 and ℵ1, respectively.
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and infinitesimal values (functions can also have derivatives assuming different in-
finite or infinitesimal values); for measuring infinite sets; for indicating positions of
elements in ordered infinite sequences; in probability theory, etc. (see [8, 9, 14, 22,
30, 32, 34–37, 39–41, 44, 48, 49]). It is important to emphasize that the new nu-
meral system avoids situations of the type (5)–(7) providing results ensuring that if
a is a numeral written in this system then for any a (i.e., a can be finite, infinite, or
infinitesimal) it follows a + 1 > a.

The new numeral system works as follows. A new infinite unit of measure ex-
pressed by the numeral ① called Grossone is introduced as the number of elements
of the set, N, of natural numbers. Concurrently with the introduction of Grossone in
the mathematical language all other symbols (like ∞, Cantor’s ω, ℵ0,ℵ1, . . . , etc.)
traditionally used to deal with infinities and infinitesimals are excluded from the lan-
guage because Grossone and other numbers constructed with its help not only can
be used instead of all of them, but can be used with a higher accuracy.3 Grossone
is introduced by describing its properties postulated by the Infinite Unit Axiom (see
[33, 38]) added to axioms for real numbers (similarly, in order to pass from the set,
N, of natural numbers to the set, Z, of integers a new element—zero expressed by the
numeral 0—is introduced by describing its properties).

The new numeral ① allows us to construct different numerals expressing different
infinite and infinitesimal numbers and to execute computations with them. Let us give
some examples. For instance, in Analysis, indeterminate forms are not present and,
for example, the following relations hold for ① and ①−1 (that is infinitesimal), as
for any other (finite, infinite, or infinitesimal) number expressible in the new numeral
system

0 · ① = ① · 0 = 0, ① − ① = 0,
①

①
= 1, ①0 = 1, 1① = 1, 0① = 0, (8)

0 · ①−1 = ①−1 · 0 = 0, ①−1 > 0, ①−2 > 0, ①−1 − ①−1 = 0, (9)

①−1

①−1
= 1,

①−2

①−2
= 1,

(
①−1)0 = 1, ① · ①−1 = 1, ① · ①−2 = ①−1. (10)

The new approach gives the possibility to develop a new Analysis (see [36]) where
functions assuming not only finite values but also infinite and infinitesimal ones can
be studied. For all of them, it becomes possible to introduce a new notion of conti-
nuity that is closer to our modern physical knowledge. Functions assuming finite and
infinite values can be differentiated and integrated.

By using the new numeral system it becomes possible to measure certain infinite
sets and to see, e.g., that the sets of even and odd numbers have ①/2 elements each.
The set, Z, of integers has 2①+1 elements (① positive elements, ① negative elements,
and zero). Within the countable sets and sets having cardinality of the continuum (see
[20, 37, 38]) it becomes possible to distinguish infinite sets having different number
of elements expressible in the numeral system using Grossone and to see that, for

3Analogously, when the switch from Roman numerals to the Arabic ones has been done, numerals X, V,
I, etc. have been excluded from records using Arabic numerals.
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instance,

①

2
< ① − 1 < ① < ① + 1 < 2① + 1 < 2①2 − 1 < 2①2 < 2①2 + 1

< 2①2 + 2 < 2① − 1 < 2① < 2① + 1 < 10① < ①① − 1 < ①① < ①① + 1.

(11)

Another key notion for our study of Turing machines is that of infinite sequence.
Thus, before considering the notion of the Turing machine from the point of view of
the new methodology, let us explain how the notion of the infinite sequence can be
viewed from the new positions.

Traditionally, an infinite sequence {an}, an ∈ A, n ∈ N, is defined as a function
having the set of natural numbers, N, as the domain and a set A as the codomain.
A subsequence {bn} is defined as a sequence {an} from which some of its elements
have been removed. In spite of the fact that the removal of the elements from {an}
can be directly observed, the traditional approach does not allow one to register, in
the case where the obtained subsequence {bn} is infinite, the fact that {bn} has less
elements than the original infinite sequence {an}.

Let us study what happens when the new approach is used. From the point of
view of the new methodology, an infinite sequence can be considered in a dual way:
either as an object of a mathematical study or as a mathematical instrument developed
by human beings to observe other objects and processes. First, let us consider it as a
mathematical object and show that the definition of infinite sequences should be done
more precise within the new methodology. In the finite case, a sequence a1, a2, . . . , an

has n elements and we extend this definition directly to the infinite case saying that
an infinite sequence a1, a2, . . . , an has n elements where n is expressed by an infinite
numeral such that the operations with it satisfy the methodological Postulate 3. Then
the following result (see [31, 33]) holds. We reproduce here its proof for the sake of
completeness.

Theorem 1 The number of elements of any infinite sequence is less or equal to ①.

Proof The new numeral system allows us to express the number of elements of the
set N as ①. Thus, due to the sequence definition given above, any sequence having N

as the domain has ① elements.
The notion of subsequence is introduced as a sequence from which some of its

elements have been removed. This means that the resulting subsequence will have
less elements than the original sequence. Thus, we obtain infinite sequences having
the number of members less than Grossone. �

It becomes appropriate now to define the complete sequence as an infinite se-
quence containing ① elements. For example, the sequence of natural numbers is com-
plete, the sequences of even and odd natural numbers are not complete because they

have ①
2 elements each (see [31, 33]). Thus, the new approach imposes a more precise

description of infinite sequences than the traditional one: to define a sequence {an} in
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the new language, it is not sufficient just to give a formula for an, we should deter-
mine (as it happens for sequences having a finite number of elements) its number of
elements and/or the first and the last elements of the sequence. If the number of the
first element is equal to one, we can use the record {an : k} where an is, as usual, the
general element of the sequence and k is the number (that can be finite or infinite) of
members of the sequence; the following example clarifies these concepts.

Example 1 Let us consider the following three sequences:

{an : ①} = {
4,8, . . . ,4(① − 1),4①

}; (12)
{
bn : ①

2
− 1

}
=

{
4,8, . . . ,4

(
①

2
− 2

)
,4

(
①

2
− 1

)}
; (13)

{
cn : 2①

3

}
=

{
4,8, . . . ,4

(
2①

3
− 1

)
,4

2①

3

}
. (14)

The three sequences have an = bn = cn = 4n, but they are different because they
have different number of members. Sequence {an} has ① elements and, therefore, is

complete, {bn} has ①
2 − 1, and {cn} has 2①

3 elements.

Let us consider now infinite sequences as one of the instruments used by mathe-
maticians to study the world around us and other mathematical objects and processes.
The first immediate consequence of Theorem 1 is that any sequential process can
have at maximum ① elements. This means that a process of sequential observations
of any object cannot contain more than ① steps.4 We are not able to execute any in-
finite process physically, but we assume the existence of such a process; moreover,
only a finite number of observations of elements of the considered infinite sequence
can be executed by a human who is limited by the numeral system used for the ob-
servation. Indeed, we can observe only those members of a sequence for which there
exist the corresponding numerals in the chosen numeral system; to better clarify this
point, the following example is discussed.

Example 2 Let us consider the numeral system, P , of Pirahã able to express only
numbers 1 and 2. If we add to P the new numeral ①, we obtain a new numeral
system (we call it P̂ ). Let us consider now a sequence of natural numbers {n : ①}. It
goes from 1 to ① (note that both numbers, 1 and ①, can be expressed by numerals
from P̂ ). However, the numeral system P̂ is very weak and it allows us to observe

4It is worthy to notice a deep relation of this observation to the Axiom of Choice. Since Theorem 1 states
that any sequence can have at maximum ① elements, so this fact holds for the process of a sequential
choice, as well. As a consequence, it is not possible to choose sequentially more than ① elements from
a set. This observation also emphasizes the fact that the parallel computational paradigm is significantly
different with respect to the sequential one because p parallel processes can choose p · ① elements from a
set.
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only ten numbers from the sequence {n : ①} represented by the following numerals:

1,2︸︷︷︸
finite

, . . . ,
①

2
− 2,

①

2
− 1,

①

2
,

①

2
+ 1,

①

2
+ 2

︸ ︷︷ ︸
infinite

, . . . , ① − 2,① − 1,①︸ ︷︷ ︸
infinite

.

(15)
The first two numerals in (15) represent finite numbers, the remaining eight numer-
als express infinite numbers, and dots represent members of the sequence of natural
numbers that are not expressible in P̂ and, therefore, cannot be observed if one uses
only this numeral system for this purpose.

In the light of the limitations concerning the process of sequential observations,
the researcher can choose how to organize the required sequence of observations and
which numeral system to use for it, defining so which elements of the object he/she
can observe. This situation is exactly the same as in natural sciences: before starting
to study a physical object, a scientist chooses an instrument and its accuracy for the
study.

Example 3 Let us consider the set A = {1,2,3, . . . ,2①−1,2①} as an object of our
observation. Suppose that we want to organize the process of the sequential counting
of its elements. Then, due to Theorem 1, starting from the number 1 this process can
arrive at maximum to ①. If we consider the complete counting sequence {n : ①}, then
we obtain

1,2,3,4, . . . ,①−2,①−1,①,①+1,①+2,①+3, . . . ,2①−1,2①

���� � � �

︸ ︷︷ ︸
① steps

(16)

Analogously, if we start the process of the sequential counting from 5, the process
arrives at maximum to ① + 4:

1,2,3,4,5, . . . ,①−1,①,①+1,①+2,①+3,①+4,①+5, . . . ,2①−1,2①

� � �� ���

︸ ︷︷ ︸
① steps

(17)

The corresponding complete sequence used in this case is {n + 4 : ①}. We can also
change the length of the step in the counting sequence and consider, for instance, the
complete sequence {2n − 1 : ①}:

1,2,3,4, . . . ,①−1,①,①+1,①+2, . . . ,2①−3,2①−2,2①−1,2①�� � � �� �

︸ ︷︷ ︸
① steps

(18)

If we use again the numeral system P̂ , then among finite numbers it allows us to see
only number 1 because already the next number in the sequence, 3, is not expressible
in P̂ . The last element of the sequence is 2① − 1 and P̂ allows us to observe it. �
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The introduced definition of the sequence allows us to work not only with the first
but with any element of any sequence if the element of our interest is expressible in
the chosen numeral system independently whether the sequence under our study has
a finite or an infinite number of elements. Let us use this new definition for studying
infinite sets of numerals, in particular, for calculating the number of points at the in-
terval [0,1) (see [31, 33]). To do this, we need a definition of the term “point” and
mathematical tools to indicate a point. If we accept (as is usually done in modern
Mathematics) that a point A belonging to the interval [0,1) is determined by a nu-
meral x, x ∈ S, called coordinate of the point A where S is a set of numerals, then we
can indicate the point A by its coordinate x and we are able to execute the required
calculations.

It is worthwhile to emphasize that giving this definition we have not used the usual
formulation “x belongs to the set, R, of real numbers.” This has been done because
we can express coordinates only by numerals and different choices of numeral sys-
tems lead to different sets of numerals and, as a result, to different sets of numbers
observable through the chosen numerals. In fact, we can express coordinates only
after we have fixed a numeral system (our instrument of the observation) and this
choice defines which points we can observe, namely, points having coordinates ex-
pressible by the chosen numerals. This situation is typical for natural sciences where
it is well known that instruments influence the results of observations. Remind the
work with a microscope: we decide the level of the precision we need and obtain a
result which is dependent on the chosen level of accuracy. If we need a more precise
or a more rough answer, we change the lens of our microscope.

We should decide now which numerals we shall use to express coordinates of the
points. After this choice, we can calculate the number of numerals expressible in the
chosen numeral system and, as a result, we obtain the number of points at the interval
[0,1). Different variants (see [31, 33]) can be chosen depending on the precision level
we want to obtain. For instance, we can choose a positional numeral system with a
finite radix b that allows us to work with numerals

(0.a1a2 . . . a(①−1)a①)b, ai ∈ {0,1, . . . , b − 2, b − 1}, 1 ≤ i ≤ ①. (19)

Then the number of numerals (19) gives us the number of points within the interval
[0,1) that can be expressed by these numerals. Note that a number using the posi-
tional numeral system (19) cannot have more than Grossone digits (contrarily to sets
discussed in Example 3) because a numeral having g > ① digits would not be observ-
able in a sequence. In this case (g > ①), such a record becomes useless in sequential
computations because it does not allow one to identify numbers entirely since g − ①
numerals remain nonobserved.

Theorem 2 If coordinates of points x ∈ [0,1) are expressed by numerals (19), then
the number of the points x over [0,1) is equal to b①.

Proof In the numerals (19), there is a sequence of digits, a1a2 . . . a(①−1)a①, used to
express the fractional part of the number. Due to the definition of the sequence and
Theorem 1, any infinite sequence can have at maximum ① elements. As a result,
there is ① positions on the right of the dot that can be filled in by one of the b digits
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from the alphabet {0,1, . . . , b − 1} that leads to b① possible combinations. Hence,
the positional numeral system using the numerals of the form (19) can express b①

numbers. �

Corollary 1 The number of numerals

(a1a2a3 . . . a①−2a①−1a①)b, ai ∈ {0,1, . . . , b − 2, b − 1}, 1 ≤ i ≤ ①, (20)

expressing integers in the positional system with a finite radix b in the alphabet
{0,1, . . . , b − 2, b − 1} is equal to b①.

Proof The proof is a straightforward consequence of Theorem 2 and is so omitted. �

Corollary 2 If coordinates of points x ∈ (0,1) are expressed by numerals (19), then
the number of the points x over (0,1) is equal to b① − 1.

Proof The proof follows immediately from Theorem 2. �

Note that Corollary 2 shows that it becomes possible now to observe and to register
the difference of the number of elements of two infinite sets (the interval [0,1) and the
interval (0,1), respectively) even when only one element (the point 0, expressed by
the numeral 0.00 . . .0 with ① zero digits after the decimal point) has been excluded
from the first set in order to obtain the second one.

4 The Turing machines observed through the lens of the Grossone methodology

In this section, the different types of Turing machines introduced in Sect. 2 are ana-
lyzed and observed by using as instruments of the observation the Grossone language
and methodology presented in Sect. 3. In particular, new results for multi-tape Turing
machines are presented and discussed.

Before starting the discussion, it is useful to recall the main results from the pre-
vious Section: (i) any infinite sequence can have maximum ① elements; (ii) the ele-
ments which we are able to observe in this sequence depend on the adopted numeral
system.

Then, in order to be able to read and to understand the output of a Turing machine,
writing its output on the tape using an alphabet Σ containing b symbols {0,1, . . . ,

b − 2, b − 1} where b is a finite number, the researcher (the user) should know a
positional numeral system U with an alphabet {0,1, . . . , u − 2, u − 1} where u ≥ b,
otherwise the output cannot be decoded by the user. Moreover, the researcher must
be able to observe a number of symbols at least equal to the maximal length of the
output sequence that can be computed by machine, otherwise the user is not able to
interpret the obtained result (see [42] for a detailed discussion).

In this section, a first set of results aims to specify, with higher accuracy with re-
spect to that provided by the mathematical language developed by Cantor and adopted
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by Turing, how and when the computations performed by a multi-tape Turing ma-
chine can be observed in a sequence. Moreover, it is shown that the Grossone lan-
guage and methodology will allow us to perform a more accurate investigation of
situations interpreted traditionally like equivalences among different multi-tape ma-
chines and among multi- and single-tape machines.

4.1 Observing computations performed by a multi-tape Turing machine

Before starting to analyze the computations performed by a k-tapes Turing ma-
chine (with k ≥ 2) MK = 〈Q,Γ, b̄,Σ,q0,F, δ(k)〉 (see (1), Sect. 2.2), it is worth
to make some considerations about the process of observation itself in the light of
the Grossone methodology. As discussed above, if we want to observe the process
of computation performed by a Turing machine while it executes an algorithm, then
we have to execute observations of the machine in a sequence of moments. In fact, it
is not possible to organize a continuous observation of the machine. Any instrument
used for an observation has its accuracy and there always be a minimal period of time
related to this instrument allowing one to distinguish two different moments of time
and, as a consequence, to observe (and to register) the states of the object in these
two moments. In the period of time passing between these two moments, the object
remains unobservable.

Since our observations are made in a sequence, the process of observations can
have at maximum ① elements. This means that inside a computational process it is
possible to fix more than Grossone steps (defined in a way) but it is not possible to
count them one by one in a sequence containing more than Grossone elements. For
instance, in a time interval [0,1), up to b① numerals of the type (19) can be used
to identify moments of time but not more than Grossone of them can be observed
in a sequence. Moreover, it is important to stress that any process itself, considered
independently on the researcher, is not subdivided in iterations, intermediate results,
moments of observations, etc. The structure of the language we use to describe the
process imposes what we can say about the process (see [42] for a detailed discus-
sion).

On the basis of the considerations made above, we should choose the accuracy
(granularity) of the process of the observation of a Turing machine; for instance, we
can choose a single operation of the machine such as reading a symbol from the
tape, or moving the tape, etc. However, in order to be close as much as possible to
the traditional results, we consider an application of the transition function of the
machine as our observation granularity (see Sect. 2).

Moreover, concerning the output of the machine, we consider the symbols written
on all the k tapes of the machine by using, on each tape i, with 1 ≤ i ≤ k, the alphabet
Σi of the tape, containing bi symbols, plus the blank symbol (b̄). Due to the definition
of complete sequence (see Sect. 3) on each tape at least ① symbols can be produced
and observed. This means that on a tape i, after the last symbols belonging to the tape
alphabet Σi , if the sequence is not complete (i.e., if it has less than ① symbols) we
can consider a number of blank symbols (b̄) necessary to complete the sequence. We
say that we are considering a complete output of a k-tapes Turing machine when on
each tape of the machine we consider a complete sequence of symbols belonging to
Σi ∪ {b̄}.
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Theorem 3 Let MK = 〈Q,Γ, b̄,Σ,q0,F, δ(k)〉 be a k-tapes, k ≥ 2, Turing machine.
Then, a complete output of the machine will results in k① symbols.

Proof Due to the definition of the complete sequence, on each tape at maximum ①
symbols can be produced and observed and thus by considering a complete sequence
on each of the k tapes of the machine the complete output of the machine will result
in k① symbols. �

Having proved that a complete output that can be produced by a k-tapes Turing
machine results in k① symbols, it is interesting to investigate what part of the com-
plete output produced by the machine can be observed in a sequence taking into
account that it is not possible to observe in a sequence more than ① symbols (see
Sect. 3). As examples, we can decide to make in a sequence one of the following ob-

servations: (i) ① symbols on one among the k-tapes of the machine, (ii) ①
k

symbols

on each of the k-tapes of the machine; (iii) ①
2 symbols on 2 among the k-tapes of the

machine, an so on.

Theorem 4 Let MK = 〈Q,Γ, b̄,Σ,q0,F, δ(k)〉 be a k-tapes, k ≥ 2, Turing machine.
Let M be the number of all possible complete outputs that can be produced by MK .
Then it follows M = ∏k

i=1 (bi + 1)①.

Proof Due to the definition of the complete sequence, on each tape i, with 1 ≤ i ≤ k,
at maximum ① symbols can be produced and observed by using the bi symbols of
the alphabet Σi of the tape plus the blank symbol (b̄); as a consequence, the num-
ber of all the possible complete sequences that can be produced and observed on a
tape i is (bi + 1)①. A complete output of the machine is obtained by considering a
complete sequence on each of the k-tapes of the machine, thus by considering all
the possible complete sequences that can be produced and observed on each of the k

tapes of the machine, the number M of all the possible complete outputs will results
in

∏k
i=1 (bi + 1)①. �

As the number M = ∏k
i=1 (bi + 1)① of complete outputs that can be produced

by MK is larger than Grossone, then there can be different sequential enumerating
processes that enumerate complete outputs in different ways, in any case, each of
these enumerating sequential processes cannot contain more than Grossone members
(see Sect. 3).

4.2 Equivalences among different multi-tape machines and among multi- and
single-tape machines

In the classical framework, k-tape Turing machines have the same computational
power of single-tape Turing machines and given a multi-tape Turing Machine MK it
is always possible to define a Single-tape Turing Machine which is able to fully sim-
ulate its behavior and, therefore, to completely execute its computations. As shown
for the single-tape Turing machine (see [42]), the Grossone methodology allows us
to give a more accurate definition of the equivalence among different machines as
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it provides the possibility not only to separate different classes of infinite sets with
respect to their cardinalities, but also to measure the number of elements of some
of them. With reference to multi-tape Turing machines, the single-tape Turing ma-
chines adopted for their simulation use a particular kind of tape, which is divided
into tracks (multi-track tape). In this way, if the tape has m tracks, the head is
able to access (for reading and/or writing) all the m characters on the tracks dur-
ing a single operation. This tape organization leads to a straightforward definition of
the behavior of a single-tape Turing machine able to completely execute the com-
putations of a given multi-tape Turing machine (see Sect. 2.2). However, the so-
defined single-tape Turing machine M, to simulate t computational steps of MK ,
needs to execute O(t2) transitions (t2 + t in the worst case) and to use an alphabet
with 2k(|Σ1| + 1)

∏k
i=2(|Σi | + 2) symbols (again see Sect. 2.2). By exploiting the

Grossone methodology, is possible to obtain the following result that has a higher
accuracy with respect to that provided by the traditional framework.

Theorem 5 Let us consider MK = 〈Q,Γ, b̄,Σ,q0,F, δ(k)〉,a k-tapes, k ≥ 2, Turing
machine, where Σ = ⋃k

i=1 Σi is given by the union of the symbols in the k tape
alphabets Σ1, . . . ,Σk and Γ = Σ ∪ {b̄}. If this machine performs t computational
steps such that

t � 1

2

(√
4① + 1 − 1

)
, (21)

then there exists M′ = {Q′,Γ ′, b̄,Σ ′, q ′
0,F

′, δ′}, an equivalent single-tape Turing

machine with |Γ ′| = 2k(|Σ1| + 1)
∏k

i=2(|Σi | + 2), which is able to simulate MK

and can be observed in a sequence.

Proof Let us recall that the definition of M′ requires for a single-tape to be di-
vided into 2k tracks; k tracks for storing the characters in the k tapes of MK and
k tracks for signing through the marker ↓ the positions of the k heads on the k

tapes of Mk (see Sect. 2.2). The transition function δ(k) of the k-tapes machine is
given by δ(k)(q1, ai1, . . . , aik) = (qj , aj 1, . . . , aj k

, zj 1, . . . , zj k
), with zj 1, . . . , zj k

∈
{R,L,N}; as a consequence the corresponding transition function δ′ of the Single-
tape machine, for each transition specified by δ(k) must individuate the current state
and the position of the marker for each track and then write on the tracks the required
symbols, move the markers and go in another internal state. For each computational
step of MK , M′ must execute a sequence of steps for covering the portion of tapes
between the two most distant markers. As in each computational step a marker can
move at most of one cell and then two markers can move away each other at most
of two cells, after t steps of MK the markers can be at most 2t cells distant, thus if
MK executes t steps, M′ executes at most: 2

∑t
i=1 i = t2 + t steps. In order to be

observable in a sequence the number t2 + t of steps, performed by M′ to simulate t

steps of MK , must be less than or equal to ①. Namely, it should be t2 + t �①. The
fact that this inequality is satisfied for t � 1

2 (
√

4① + 1 − 1) completes the proof. �
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5 Concluding Remarks

In the paper, single- and multi-tape Turing machines have been described and
observed through the lens of the Grossone language and methodology. This new lan-
guage, differently from the traditional one, makes it possible to distinguish among in-
finite sequences of different length so enabling a more accurate description of single-
and multi-tape Turing machines. The possibility to express the length of an infinite
sequence explicitly gives the possibility to establish more accurate results regarding
the equivalence of machines in comparison with the observations that can be done by
using the traditional language.

It is worth noting that the traditional results and those presented in the paper do
not contradict one another. They are just written by using different mathematical
languages having different accuracies. Both mathematical languages observe and de-
scribe the same objects—Turing machines—but with different accuracies. As a re-
sult, both traditional and new results are correct with respect to the mathematical
languages used to express them and correspond to different accuracies of the obser-
vation. This fact is one of the manifestations of the relativity of mathematical results
formulated by using different mathematical languages in the same way as the usage of
a stronger lens in a microscope gives a possibility to distinguish more objects within
an object that seems to be unique when viewed by a weaker lens.

Specifically, the Grossone language has allowed us to give the definition of com-
plete output of a Turing machine, to establish when and how the output of a machine
can be observed, and to establish a more accurate relationship between a multi-tape
Turing machine and a single-tape one which simulates its computations. Future re-
search efforts will be geared to apply the Grossone language and methodology to the
description and observation of new and emerging computational paradigms.
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