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Abstract In recent years, High Performance Computing (HPC) systems have been
shifting from expensive massively parallel architectures to clusters of commodity PCs
to take advantage of cost and performance benefits. Fault tolerance in such systems is
a growing concern for long-running applications. In this paper, we briefly review the
failure rates of HPC systems and also survey the fault tolerance approaches for HPC
systems and issues with these approaches. Rollback-recovery techniques which are
most often used for long-running applications on HPC clusters are discussed because
they are widely used for long-running applications on HPC systems. Specifically, the
feature requirements of rollback-recovery are discussed and a taxonomy is developed
for over twenty popular checkpoint/restart solutions. The intent of this paper is to aid
researchers in the domain as well as to facilitate development of new checkpointing
solutions.
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1 Introduction

HPC systems continue to grow exponentially in scale; currently from petascale com-
puting (1015 floating point operations per second) to exascale computing (1018 float-
ing point operations per second) as well as in complexity due to the growing need
to handle long-running computational problems with effective techniques. However,
HPC systems come with their own technical challenges [67]. The total number of
hardware components, the software complexity and overall system reliability, avail-
ability and serviceability (RAS) are factors to contend with in HPC systems, because
hardware or software failure may occur while long-running parallel applications are
being executed. The need for reliable fault tolerant HPC system has intensified be-
cause failure may result in a possible increase in execution time and cost of running
the applications. Consequently, fault tolerance solutions are being incorporated into
the HPC systems. Fault tolerant systems have the ability to contain failures when they
occur, thereby minimizing the impact of failure. Hence, there is a need for further in-
vestigation of fault tolerance of HPC systems.

1.1 Reliability and MTBF of HPC systems

An analysis of the Top500 [74] HPC systems, it is clear that the number of pro-
cessors/and nodes are steadily increasing. Top500 is a statistical list with ranks and
details of the 500 world’s most powerful supercomputers. The list is compiled by
Hans Meuer (of the University of Mannheim) et al. and published twice a year.
It shows that performance has almost doubled each year. But, at the same time,
the overall system Mean Time Between Failure (MTBF) is reduced to just a few
hours [9]. This suggests that it is useful to review the current state of the art of
the application of fault tolerance techniques in HPC systems. For example, the IBM
Blue Gene/L was built with 131,000 processors. If the MTBF of each processor is
876,000 hours (100 years), a cluster of 131,000 processors has an MTBF of 876,000/

131,000 = 6.68 hours.
MTBF is a primary measure of system reliability which is defined as the proba-

bility that the system performs without deviations from agreed-upon behavior for a
specific period of time [29]. The reliability of a component is given as

Reliability function = n(t)

N
= failure free elements

number of elements at time = 0
(1)

The reliability of elements connected in series

Rs =
m∏

n=1

e−λi t (2)

and the reliability of elements connected in parallel is given as

Rp = 1 −
m∏

n=1

(
1 − e−λi t

)
(3)
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Fig. 1 Reliability levels of two
systems with MTBF of 105 and
106 as a function of the number
of nodes

If we assume that in a system of m components, the MTBF of any component i is
independent of all other components, the reliability R of the system is

R = 1

MTBF1
+ 1

MTBF2
+ · · · + 1

MTBFm

(4)

If MTBF1 = MTBF2 + · · · + MTBFm then,

R = component MTBF

m
(5)

Availability is the degree to which a system or component is operational and able to
perform its designed function [29].

Availability

(MTBF + MTTR)
(6)

where MTTR = Mean Time To Repair.
For example, we can see that following a certain threshold, the MTBF an individ-

ual component’s MTBF may also be high. However, in a system with a large number
of components, the system reliability can decrease, as illustrated in Fig. 1. The di-
agram also shows how the value of the MTBF affects reliability (e.g., MTBFs of
100,000 and 1,000,000 hours).

1.2 Long-running applications and InfiniBand

Most of the long-running applications are Message Passing Interface (MPI) appli-
cations. The Message Passing Interface (MPI) is the common parallel programming
standard with which most parallel applications are written [48]; it provides two modes
of operation running or failed. An example of an MPI application is the Portable Ex-
tensible Toolkit for Scientific Computation (PETSc) [53], which is used for modeling
in scientific applications such as acoustics, brain surgery, medical imaging, ocean dy-
namics, and oil recovery.
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Software or hardware failure prompts the running MPI application to abort or stop,
and it may have to restart from the beginning. This can be a waste of resources (com-
puter resources, human resources, and electrical power) because all the computations
that have already been completed may be lost. Therefore, rollback-recovery tech-
niques are commonly used to provide fault tolerance to parallel applications so that
they can restart from a previously saved state. A good number of rollback-recovery
techniques have been developed so far, such as DMTCP [1] and, BLCR [21]. In this
paper, we provide a survey of such rollback-recovery facilities to facilitate develop-
ment of more robust ones for MPI applications.

Recently, there is also a trend to connect large clusters using high performance
networks, such as InfiniBand (IB) [33]. IB is a switched-fabric communications link
used in HPC because it provides high throughput, low latency, high quality of ser-
vice, and failover. The InfiniBand Architecture (IBA) may be the communication
technology of the next generation HPC systems; as of November 2011, InfiniBand
connected systems represented more than 42 % of the systems in the Top500 list
[33]. It is important for such large scale systems with IB interconnection networks
to have efficient fault tolerance that meet its requirements. Currently, only a small
number of checkpointing facilities support the IB architecture. We will state if the
checkpoint/restart facilities we reviewed provide support for IB sockets.

2 Analysis of failure rates of HPC systems

In order to survey the fault tolerance approaches, we first need to have an overview
of the failure rates of HPC systems. Generally, failures occur as a result of hard-
ware or software faults, human factors, malicious attacks, network congestion, server
overload, and other, possibly unknown causes [30, 44, 49, 50]. These failures may
cause computational errors, which may be transient or intermittent, but can still lead
to permanent failures [37]. A transient failure causes a component to malfunction for
a certain period of time, but then disappears and the functionality of that component
is fully restored. An intermittent failure appears and disappears; it never goes away
completely, unless it is resolved. A permanent failure causes the component to mal-
function until it is replaced. A lot of work has been done on understanding the causes
of failure and we briefly reviewed the major contributors of failure in this section. We
also add our findings to this review.

2.1 Software failure rate

Gray [30] analyzed outage/failure reports of Tandem computer systems between 1985
and 1990, and found that software failure was a major source of outages at about
55 %. Tandem systems were designed to be single fault-tolerant systems, that is,
systems capable of overcoming the failure of a single element (but not simultane-
ous multiple failures). Each Tandem system consisted of 4 to 16 processors, 6 to
100 discs, 100 to 1,000 terminals and their communication gear. Systems with more
than 16 processors were partitioned to form multiple systems and each of the multiple
systems had 10 processors linked together to form an application system.
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Lu [44] studied the failure log of three different architectures at the National Cen-
ter for Supercomputing Applications (NCSA). The systems were: (1) a cluster of 12
SGI Origin 2000 NUMA (Non-Uniform Memory Architecture) distributed shared
memory supercomputers with a total of 1,520 CPUs, (2) Platinum, a PC cluster with
1,040 CPUs and 520 nodes, and (3) Titan, a cluster of 162 two-way SMP 800 MHz
Itanium-1 nodes (324 CPUs). In the study, five types of outages/failures were de-
fined: software halt, hardware halt, scheduled maintenance, network outages, and air
conditioning or power halts. Lu found that software failure was the main contributor
of outage (59–83 %), suggesting that software failure rates are higher than hardware
failure rates.

2.2 Hardware failure rate

A large set of failure data was also released by CFDR [10], comprising the failure
statistics of 22 HPC systems, including a total of 4,750 nodes and 24,101 processors
collected over a period of 9 years at Los Alamos National Laboratory (LANL). The
workloads consisted of large-scale long-running 3D scientific simulations which take
months to complete computation. We have filtered the data in order to reveal the
systems failure rates. Figure 2 shows systems (2 to 24) with different configurations
and architectures, with the number of nodes varying from 1 to 1,024, and the number
of processors varying from 4 to 6,152. System 2 with 6,152 processors recorded the
highest number of hardware failures. Figure 2 also shows the number of failures
recorded over the period, represented by a bar chart. From the bar chart, it can be
clearly seen that the failure rates of HPC systems increase as the number of nodes
and processors increases.

Fig. 2 Number of failures for each system according to CFDR data
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Table 1 Summary of HPC systems studied by Oliner and Stearley [49]

No System name System configuration

1 Blue Gene/L 131,072 CPUs and custom interconnect

2 Thunderbird 9,024 CPUs and an InfiniBand interconnect

3 Red Storm 10,880 CPUs and a custom interconnect

4 Spirit (ICC2) 1,028 CPUs and a GigEthernet (Gigabit Ethernet) interconnect

5 Liberty 512 CPUs and a Myrinet interconnect

Schroeder and Gibson [64, 65] analyzed failure data collected at two large HPC
sites: the data set from LANL RAS [10] and the data set collected over the period
of one year at a large supercomputing system with 20 nodes and more than 10,000
processors. Their analysis suggests that (1) the mean repair time across all failures
(irrespective of their failure types) is about 6 hours, (2) that there is a relationship
between the failure rate of a system and the applications running on it, (3) that as
many as three failures may occur on some systems within 24 hours, and (4) that the
failure rate is almost proportional to the number of processors in a system.

Oliner and Stearley [49] studied system logs from five supercomputers installed at
Sandia National Labs (SNL) as well as Blue Gene/L, which is installed at Lawrence
Livermore National Labs (LLNL). The five systems were ranked in the Top500 super-
computers. The systems were structured as follows: (1) Blue Gene/L with 131,072
CPUs and a custom interconnect, (2) Thunderbird with 9,024 CPUs and an Infini-
Band interconnect, (3) Red Storm with 10,880 CPUs and a custom interconnect,
(4) Spirit (ICC2) with 1,028 CPUs and a GigEthernet (Gigabit Ethernet) intercon-
nect, and (5) Liberty with 512 CPUs and a Myrinet interconnect. The summary of
the system is provided in Table 1 for easy reference. Although the raw data collected
implied that 98 % of the failures were due to hardware, after they filtered the data,
their analysis revealed that 64 % of the failures were due to software.

2.3 Human caused failure rate

Oppenheimer and Patterson [50] in their work on Architecture and Dependability of
Large-Scale Internet Services report that operator error is one of the largest single root
causes of failure. According to the report, the failures occurred when operational staff
made changes to the system, like replacement of hardware, reconfiguration of sys-
tem, deployment, patching, software upgrade, and system maintenance. Their work
attributed 14–30 % of failures to human error.

From the above data, we can conclude that almost all failures of long-running
applications are due to hardware, software, and human cause failures. However, it is
difficult to make conclusions on what the single major cause of failures may be since
these analyses were carried out with: (1) different systems with different applications
running on them, (2) different environmental factors and, (3) different data correlating
periods with diverse methods. Consequently, to be effective, a fault tolerant system
should take care of hardware and software failures as well as human error.
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3 State of the art of fault tolerance techniques

HPC systems depend on hardware and software to function appropriately. “Fault-
tolerance is the property that enables a system (often computer-based) to continue
operating properly in the event of the failure of (or one or more faults within) some
of its components” [25]. Fault tolerance is highly desired in HPC systems because it
may ensure that long running applications are completed in a timely manner. In some
fault tolerant systems, a combination of one or more techniques is used.

In this section, fault tolerance approaches and issues associated with each ap-
proach are briefly reviewed in the context of HPC systems. Figure 3 shows an abstract
view of fault tolerance techniques which are used in the review. We use the feature
modeling technique [20] to model the abstract view of fault tolerance techniques be-
cause of its conceptual simplicity and because it makes it easy to map dependencies
in an abstract representation. The contents on the abstract view are briefly reviewed
in terms of migration methods, redundancy (hardware and software), failure mask-
ing, failure semantics, and rollback-recovery techniques, respectively, because they
are major used fault tolerance techniques [3, 8, 18].

3.1 Migration method

With the recent advancement in visualization technologies, migration can be grouped
into two major groups, namely, process-level migration and Virtual Machine (VM)
migration. Process-level migration is the movement of an executing process from its
node to a new node. The techniques commonly used in process-level migration are
eager, pre-copy, post-copy, flushing and live migration techniques [47]. VM migration
is the movement of a VM from one node/machine to a new node. Stop-and-copy and
live migration of VMs are the commonly used techniques [16].

In the migration approach, the key idea is to avoid an application failure by taking
a preventive action. When a part of an application running on a node that seems
likely to fail (which may lead to failure of the whole application), that part of the
application that is likely to fail is migrated to a safe node and the application can
continue. This technique relies primarily on accurate prediction of the location, time,
and type of failure that will occur. Reliability, availability, and serviceability (RAS)
log files are commonly used to develop the prediction algorithm [42]. RAS log files
contain features that will assist in accomplishing RAS goals—minimal downtime,
minimal unplanned downtime, rapid recovery after a failure, and manageability of
the system (the ease with which diagnosis and repair of problems can be carried).
Error events and warning messages are example of information contained in a RAS
log.

Failure types which have not been recorded in RAS log files will not be correctly
predicted. It is still a challenge to build accurate failure predictors for petascale and
exascale systems with thousands of processors and nodes [9]. A failure predictor may
predict failures that will never occur and may fail to predict failures that do occur.
Therefore, migration method should be used with other fault tolerance techniques
such as checkpoint/restart facilities in order to build robust fault tolerance HPC sys-
tems. However, when migration methods are combined with checkpoint/restart facili-
ties, the rate at which the application should be checkpointed is still an open question.
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3.2 Redundancy

With physical redundancy techniques, redundant components or processes are added
to make it possible for the HPC systems to tolerate failures [2, 3]. The critical compo-
nents are replicated, as for example in the Blue Gene/L and Tandem nonstop systems.
In the event of hardware failure of one component, other components that are in good
working order continue to perform until the failed part is replaced. Hardware redun-
dancy is used to provide fault tolerance to hardware failures. The process of voting
may be employed as proposed in n (n > 2) modular redundancy [45]. Usually, n = 3,
but some systems use n > 3, along with majority voting.

Software redundancy can be grouped into two major approaches, namely process
pairs and Triple Modular Redundancy (TMR). In the process pair technique, there
are two types of processes created, a primary (active) process and a backup (passive)
process. The primary and backup processes are identical, but execute on different
processors and the backup process takes over when the primary process fails.

In the TMR approach, three modules are created, they perform a process and the
result is processed by a voting system to produce a single output. If any one of the
three modules fails, the other two modules can correct and mask the fault. A fault in
a module may not be detected if all the three modules have identical faults because
they will all produce the same erroneous output. For that, N -version programming
[14], and N self-checking [39] have been proposed. There are other methods as well,
such as recovery blocks, reversible computation, range estimation, and post-condition
evaluation [37]. N -version programming is also known as multiple version program-
ming techniques. In N -version programming techniques, different software versions
are developed by independent development teams, but with the same specifications.
The different software versions are then run concurrently to provide fault tolerance
to software design faults that escaped detection. During runtime, the results from
different versions are voted on and a single output is selected. In Recovery block
techniques, N unique versions of the software are developed, but they are subjected
to a common acceptance test. The input data are also checkpointed, before the ex-
ecution of the primary version. If the result passes the acceptance test, the system
will use the primary version, else it will rollback to the previous checkpoint to try
the alternative versions. The system fails if none of versions passes the acceptance
test. In N Self-Checking Programming, N unique versions of the software are also
developed, but each with its own acceptance test. The software version that passes its
own acceptance test is selected through an acceptance voting system.

Software systems usually have a large number of states (upward of 1040) [40],
which implies that only a small part of the software can be verified for correctness.

3.3 Failure masking

Failure masking techniques provide fault tolerance by ensuring that services are avail-
able to clients despite failure of a worker, by means of a group of redundant and
physically independent workers; in the event of failure of one or more members of
the group, the services are still provided to clients by the surviving members of the
group, often without the clients noticing any disruption. There are two masking tech-
niques used to achieve failure masking: hierarchical group masking and flat group
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Fig. 4 Flat group and hierarchical group masking

masking) [18]. Figure 4 illustrates the flat group and the hierarchical group masking
methods.

Flat group masking is symmetrical and does not have a single point of failure;
the individual workers are hidden from the clients, appearing as a single worker.
A voting process is used to select a worker in event of failure. The voting process
may introduce some delays and overhead because a decision is only reached when
inputs from various workers have been received and compared.

In hierarchical group failure masking, a coordinator of the activities of the group
decides within a group which worker may replace a failed worker in event of failure.
This approach has a single point of failure; the ability to effectively mask failures
depends on the semantic specifications implemented [57].

Fault masking may create new errors, hazards and critical operational failures
when operational staff fails to replace already failed components [34]. When fail-
ure masking is used, the system should be regularly inspected. However, there are
costs associated with regular inspections.

3.4 Failure semantics

Failure semantics refers to the different ways that a system designer anticipates the
system can fail, along with failure handling strategies for each failure mode. This
list is then used to decide what kind of fault tolerance mechanisms to provide in the
system. In other words, with failure semantics [18], the anticipated types of system
failure are built within the fault tolerance system and the recovery actions are invoked
upon detection of failures. Some of the different failure semantics are omission failure
semantics, performance semantics, and crash failure semantics.

Crash failure semantics apply if the only failure that the designers anticipate from
a component is for it to stop processing instructions, while behaving correctly prior
to that. Omission failure semantics are used if the designers expect a communication
service to lose messages, with negligible chances that messages are delayed or cor-
rupted. Omission/performance failure semantics apply when the designers expect a
service to lose or delay messages, but with lesser probability that messages can be
corrupted.

The fault tolerant system is built based on foreknowledge of the anticipated fail-
ure patterns and it reacts to them when these patterns are detected; hence, the level
of fault tolerance depends on the likely failure behaviors of the model implemented.
Broad classes of failure modes with associated failure semantics may also be defined
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(rather than specific individual failure types). This technique relies on the ability of
the designer to predict failure modes accurately and to specify the appropriate action
to be taken when a failure scenario is detected. It is not feasible, however, in any sys-
tem of any complexity such as HPC systems, to predict all possible failure modes. For
example, a processor can achieve crash failure semantics with duplicate processors.
Failure semantics may also require hardware modifications [32]. Similarly, some of
the nodes and applications failures which occur in HPC systems may be unknown
to the fault tolerance in place. For example, a new virus may exhibit a new behavior
pattern which would go undetected even though it could crash the system [15].

3.5 Recovery

Generally fault tolerance implies recovering from an error, which otherwise may lead
to computational error or system failure. The main idea is to replace the erroneous
state with a correct and stable state. There are two forms of error recovery mecha-
nisms: forward and backward error recovery.

Forward Error Recovery: With Forward Error Recovery (FER) [68] mechanisms,
an effort is made to bring the system to a new correct state from where it can con-
tinue to execute, without the need to repeat any previous computations. FER, in other
words, implies detailed understanding of the impact of the error on the system, and
a good strategy for later recovery. FER is commonly implemented where continued
service is more important than immediate recovery, and high levels of accuracy in
values may be sacrificed; that is, where it is required to act urgently (in, e.g., mission-
critical environment) to keep the system operational.

FER is commonly used in flight control operation, where future recovery may be
preferable to rollback-recovery. A good example of forward correction is fault mask-
ing, such as voting process employed in triple modular redundancy and in N -version
programming.

As the number of redundant components increases, the overhead cost of FER and
of the CPU increases because recovery is expected to be completed in the degraded
operating states, and the possibility of reconstruction of data may be small in such
states [27]. Software systems typically have large numbers of states and multiple con-
current operations [17], which implies that there may be low probability of recovery
to a valid state. It may be possible in certain scenarios to predict the fault; however, it
may be difficult to design an appropriate solution in the event of unanticipated faults.
FER cannot guarantee that state variables required for the future computation are
correctly re-established following an error; therefore, the result of the computations
following an error occurrence may be erroneous. FER is also more difficult to im-
plement compared to rollback-recovery techniques, because of the number of states
and concurrent operations. In some applications, a combination of both forward and
rollback-recovery may be desirable.

Rollback-recovery: Rollback-recovery consists of checkpoint, failure detection,
and recovery/restart. A checkpoint [37] is a snapshot of the state of the entire pro-
cess at a particular point such that the process could be restarted from that point in
the event that a subsequent failure is detected. Rollback-recovery is one of the most
widely used fault tolerance mechanism for HPC systems, probably because (1) fail-
ures in HPC systems often lead to fail-stop of the MPI application execution, (2)
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almost all MPI implementations of parallel applications have no fault tolerance in
place (running or failed mode) [48], and (3) the rollback-recovery technique uses a
fail-stop model whereby a failed process can be restarted from saved checkpoint data.
In addition, rollback-recovery is used to protect against failures in parallel systems
because of the following major advantages [60]: (1) it allows computational problems
that take days to execute in HPC systems to be checkpointed and restarted in event
of failures; (2) it allows load balancing and for applications to be migrated to another
system where computation can be resumed if an executing node fails; (3) it has lower
implementation cost and lower electrical power consumption compared to hardware
redundancy.

The major disadvantage is that rollback-recovery does not protect against design
faults. After rollback, the system continues processing as it did previously. This will
recover from a transient fault, but if the fault was caused by a design error, then
the system will fail and recover endlessly, unless an alternate computational path is
provided during the recovery phase. Note that some states cannot be recovered, if
all components use checkpointing, an invalidate message can be sent to other appli-
cations, causing them to roll back and then consume fresh, correct results. This is
similar to invalidation protocols in distributed caches [31]. Despite these limitations,
the necessity of ensuring that long-running parallel applications complete success-
fully necessitated its use. There are two major techniques, which are used to imple-
ment rollback-recovery: checkpoint-based rollback-recovery and log-based rollback-
recovery. These techniques will be discussed in Sects. 5 and 5.1, respectively.

A lot of research has been carried out on checkpoint and restart, but some issues
[8] are yet to be addressed: (1) the number of transient errors could increase exponen-
tially because of the exponential increase in the number of transistors in integrated
circuits in HPC systems [67]; (2) some faults may go undetected (e.g., software er-
rors), which would lead to further erroneous computations in long-running appli-
cations, potentially resulting in complete failure of an HPC system; (3) correctable
errors may also lead to software instability due to persistent error recovery activities
and (4) how to reduce the time required to save the execution state, which is one of
the major sources of overhead.

4 Rollback-recovery feature requirements for HPC systems

We define the following rollback-recovery feature requirements, which are important
to HPC fault tolerance systems [1, 22, 46]. We do not claim that these features are
necessary or sufficient, since future technological developments may force additional
requirements or, conversely, eliminate some of them from the list. These feature re-
quirements will be used to evaluate the applicability of different checkpointing/restart
facilities listed in this survey.

– Transparency: A good fault tolerance approach should be transparent; ideally, it
should not require source code or application modifications, nor recompilation and
relinking of user binaries, because new software bugs could be introduced into the
system.
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– Application coverage: The checkpointing solution must have a wide range of ap-
plications coverage, to reduce the likelihood of implementing and using multiple
different of checkpointing/restart solutions, which may lead to software conflicts
and greater performance overhead.

– Platform portability: It must not be tightly coupled to one version of an operating
system or application framework, so that it can be ported to other platforms with
minimal effort.

– Intelligence/Automatic: It should use failure prediction and failure detection mech-
anisms to determine when checkpointing/restart should occur without the users
intervention. Whenever this feature is lacking, users are involved in initializing
checkpointing/restart process. Although system users may be trained to carry out
the checkpoint/restart activities, human error can still be introduced if system users
are allowed to initiate checkpoint or recovery processes [6].

– Low overhead: The time to save checkpoint data should be significantly shorter
compared to the 40 to 60 minutes, which have been recorded on some of the
Top500 HPC systems [8]. The size of the checkpoint should be small.

5 Checkpoint-based rollback-recovery mechanisms

In checkpoint-based rollback-recovery, an application is rolled back to the most re-
cent consistent state using checkpoint data. Due to the global consistency state issue
in distributed systems [23], checkpointing of applications running in this type of en-
vironment is quite difficult to implement compared to uniprocessor systems. This is
because different processors in the HPC system may be at different stages in the par-
allel computation and thus require global coordination, but it is difficult to obtain a
consistent global state for checkpointing. (Due to drift variations in local clocks, it
is generally not practical to use clock-based methods for this purpose.) A consistent
global checkpoint is a collection of local checkpoints, one from every processor, such
that each local checkpoint is synchronized to every other local checkpoint [35]. The
process of establishing a consistent state in distributed systems may force other appli-
cation processes to roll back to their checkpoints even if they did not experience fail-
ure, which, in turn, may cause other processes to roll back to even earlier checkpoints,
this effect is called the domino effect [59]. In the most extreme case, this domino ef-
fect may lead to the only consistent state being the initial state—clearly something
that is not very useful. There are three main approaches to dealing with this prob-
lem in HPC systems: uncoordinated checkpointing, coordinated checkpointing, and
communication-induced checkpointing. We briefly discuss each of them below.

Uncoordinated checkpointing allows different processes to do checkpoints when it
is most convenient for each process thereby reducing overhead [76]. Multiple check-
points are maintained by the processes, which increase the storage overhead [63].
With this approach it might be difficult to find a globally consistent state, rendering
the checkpoint ineffective. Therefore, uncoordinated checkpointing is vulnerable to
the domino effect and may lead to undesirable loss of computational work.

Coordinated checkpointing guarantees consistent global states by enforcing each
of the processes to synchronize their checkpoints. Coordinated checkpointing has the
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advantages that it makes recovery from failed states simpler and is not prone to the
domino effect. Storage overhead is also reduced compared to uncoordinated check-
pointing, because each process maintains only one checkpoint on stable permanent
storage. However, it adds overhead because a global checkpoint needs internal syn-
chronization to occur prior to checkpointing. A number of checkpoint protocols have
been proposed to ensure global coordination: a nonblocking checkpointing coordi-
nation protocol was proposed [11] to ensure that applications that would make coor-
dinated checkpointing inconsistent are prevented from running. Checkpointing with
synchronized clocks [19] has also been proposed. The DMTCP [1] checkpointing
facility is an example that implements a coordinated checkpointing mechanism.

Communication-induced checkpointing (CIC) (also called message induced check-
pointing) protocols do not require that all checkpoints be consistent, and still avoids
the domino effect. With this technique, processes perform two types of checkpoints:
local and forced checkpoints. A local checkpoint is a snapshot of the local state of
a process, saved on persistent storage. Local checkpoints are taken independently of
the global state. Forced checkpoints are taken when the protocol forces the processes
to make an additional checkpoint. The main advantage of CIC protocols is that they
allow independence in detecting when to checkpoint. The overhead in saving is re-
duced because a process can take local checkpoints when the process state is small.
CIC, however, has two major disadvantages: (1) it generates large numbers of forced
checkpoints with resulting storage overhead and (2) the data piggybacked on the mes-
sages generates considerable communications overhead.

5.1 Log-based rollback-recovery mechanisms

Log-based rollback-recovery mechanisms have similarities with checkpoint-based
rollback-recovery except that messages sent and received by each process are
recorded in a log. The recorded information in the message log is called a deter-
minant. In the event of failure, the process can be recovered using the checkpoint and
reapplying the logged determinants to replay its associated non-determinants events
and to reconstruct its previous state. There are three main mechanisms: pessimistic,
optimistic, and casual message logging mechanisms. A complete review of these
techniques can be found in [23]. Pessimistic message logging protocols record the
determinant of each event to stable storage before it is allowed to trigger the execu-
tion of the application. The main advantages of this method are (a) that the recovery
of the failed application is simplified by allowing each process of the failed appli-
cations to recover to the known state in relationship with other applications, and (b)
that only the latest checkpoint is stored, while older ones are discarded. However,
the process is blocked while the event determinant is logged to a stable state, which
incurs an overhead.

In optimistic logging protocols, the determinant of each process is logged to
volatile storage; events are allowed to trigger the execution of application before log-
ging of the determinant is concluded. This method is good as long as the fault did not
occur between the nondeterminant event and subsequent logging of the determinant
event. Consequently, overhead is reduced because volatile storage is used; however,
the recovery process may not be possible if the volatile store loses its content due to
power failure.
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Casual message logging protocols utilize the advantages of both pessimistic and
optimistic message logging protocols. Here, the messages logs are stored in stable
storage when it is most convenient for the process to do so. In casual message logging
protocols, processes piggyback the non determinant messages on the local storage.
Therefore, only the most recent message log is required for restarting and multiple
copies are kept, making the logs available in event of multiple machine failure. In-
terested readers of the piggyback concept on casual message logging protocols are
referred to [23, 38]. The main disadvantage of the casual message logging protocol
is that it requires a more complex recovery protocol.

6 Taxonomy of checkpoint implementation

In this section, three major approaches to implementing checkpoint/restart systems
are described: application-level implementation, user-level implementation and sys-
tem level implementation. The implementation level refers to how it integrates with
the application and platform. Figure 5 shows the taxonomy of checkpoint implemen-
tation.

In application-level implementations, the programmer or some automated pre-
processor injects the checkpointing code directly into the application code. The
checkpointing activities are carried out by the application. Basically, it involves in-
serting checkpointing code where the amount of state that needs to be saved is small,
saving the checkpoint in persistent storage, and restarting from the checkpoint if a
failure had occurred [75]. Application-level checkpointing accommodates heteroge-
neous systems, but lacks transparency, which is usually available with a kernel-level
or a user-level approach. The major challenge in this approach is that it requires the
programmer to have a good understanding of the applications to be checkpointed.
(Note that programmers (users) may not always have access to the application source
code.) The Cornell Checkpoint(pre) Compiler (C3) [66] is an excellent implementa-
tion of application-level checkpointing.

Fig. 5 Taxonomy of checkpoint implementation
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With user-level implementations, a user-level library is used to do the checkpoint-
ing and the application programs are linked to the library. Some typical library im-
plementations are Esky [28], Condo [72], and libckpt [56]. This approach is usually
not transparent to users because applications are modified, recompiled and relinked
to the checkpoint library before the checkpoint facility is used. The major disadvan-
tages of these implementations are that they impose limitations on which system calls
applications can make. Some shell scripts and parallel applications may not be check-
pointed even though they should be because the library may not have access to the
system files [62].

Checkpoint/restart may also be implemented at the system level, either in the OS
kernel or in hardware. When implemented at the system level, it is always transparent
to the user and usually no modification of application program code is required. Ap-
plications can be checkpointed at any time under control of a system parameter that
defines the checkpoint interval. Examples of system-level implementations include
CRAK [79], Zap [51], and BLCR [21]. These offer a choice of periodic and non-
periodic mechanisms. It may be challenging to checkpoint at this level because not
all operating system vendors make the kernel source code available for modification,
but if a package for a particular OS exists, then it is very easy to use, as the user does
not have to do anything once the package is installed. One drawback, however, is that
a kernel level implementation is not portable to other platforms [66].

Hardware-level checkpointing uses digital hardware to customize a cluster of com-
modity hardware for checkpointing. It is transparent to users. Different hardware
checkpointing approaches have been proposed, including SWICH [73]. Hardware
checkpointing could be implemented with FPGAs [36]. Additional hardware is re-
quired and there is the overhead cost of building specialized hardware if this approach
is selected.

7 Reducing the time for saving the checkpoint in persistent storage

There are techniques that are designed to reduce the overhead cost in saving the
checkpoint data when writing the state of a process to persistent storage. This is,
of course, one of the major sources of increased performance overhead. We briefly
discuss here some of these techniques.

Concurrent checkpointing implementations [41] rely on the memory protection ar-
chitecture. Disk writing is done concurrently with execution of the targeted program;
that is, it allows the execution of the process while the process is being saved to a
separate buffer. The data is later transferred to a stable storage system.

In incremental checkpointing, only the portion of the program that has changed
since the last saved process [56] is saved. The unchanged portion can be restored
from previous checkpoints. The overhead of checkpointing is reduced in this process.
However, the recovery could be complex because the multiple incremental saved files
are kept and grow as the applications to be checkpointed. This can be limited to at
most n increments, after which a full checkpoint is saved.

Flash-based Solid State Disk (SSD) memory may also be used as a persistent store
for the checkpoint data. SSD is based on semiconductor chips rather than magnetic
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media technology such as hard drives to store persistent data. SSD has lower access
times and latency compare to hard disks, however, it has limited read/write cycles of
about 100,000 times and data cannot be used after wearing out [13]. Wear leveling is
used to minimize this problem [43].

The Fusion-io ioDrive card may also be used to reduce write times. This is a
memory tier of NAND flash-based solid state technology, which increases bandwidth.
It is expected that such technology will scale up to the performance levels expected
of HPC systems [26]. Research on scalability of fusion-io in HPC may be highly
profitable.

Copy-on-write [56] techniques reduce the checkpoint time by allowing the parent
process to fork a child process at each checkpoint. The parent process continues ex-
ecution while the child process carries out checkpointing activities. The technique is
useful in reducing checkpoint time when the checkpoint data is small. However, there
is a performance degradation if the size of the checkpoint data is large because the
child and parent processes are competing for computer resources (e.g., memories and
network bandwidth).

Data compression reduces the size of checkpoint data to be saved on the storage’ it
also reduces the time to save the checkpoint data. However, it takes time and computer
resources to carry out the compression. Plank [55] showed that checkpointing can
benefit from data compression techniques. However, data compression depends on
the compression ratio and application state. If the amount of data to compress is
large, it consumes more memory, which will result in performance degradation of the
executing application. When data is compressed, it will require more time to restart
the application due to decompression time.

8 Survey of checkpoint/restart facilities

A number of surveys of checkpoint/restart facilities have been carried out, such as
checkpoint.org [12], Kalaiselvi and Rajaraman [35], Byoung-Jip [7], Roman [60],
Elnozahy et al. [23], and Maloney and Goscinski [46]. None of them present sum-
marized information of currently available facilities that would easily aid research
in this area. Hence, we summarize and tabulate our findings in Table 2. It shows a
general summary of existing checkpoint/restart facilities that have been proposed by
researchers for different computing platforms (the website addresses of the check-
point facilities surveyed are also included in the table). The criteria used in this
survey were based on the rollback-recovery feature requirements for HPC systems
discussed above. Table 2 is concise and includes information that provides the HPC
checkpointing research community with a good overview of the systems that have
been proposed. The selected checkpoint/restart facilities covered include recent work
that is currently widely used.

9 Summary

We presented reliability and MTBF of HPC systems. Based on the analysis and pub-
lished papers, we presented that reliability and MTBF of HPC systems with large
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number of components decreases as the number of components increases. We gave
an overview of failure rates of HPC systems. Although it is difficult to determine the
single root cause of failure, however, we presented that long-running applications are
most frequently interrupted by human errors, hardware failures, or software failures.
We conclude that a good fault tolerance mechanism should be able to handle all of
these causes of failure.

We have surveyed fault tolerance mechanisms (redundancy, migration, failure
making, and recovery) for HPC and identified the pros and cons of each technique.
Recovery techniques are discussed in detail, with over twenty checkpoint/restart fa-
cilities surveyed. The rollback feature requirements identified are used to evaluate
them and the results are provided in a tabular format to aid researches on this area.
The web site of each surveyed checkpoint/restart facility is also provided for further
investigation.
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