
J Supercomput (2013) 64:638–659
DOI 10.1007/s11227-012-0863-x

Restructuring Fortran legacy applications for parallel
computing in multiprocessors

Fernando G. Tinetti · Mariano Méndez ·
Armando De Giusti

Published online: 23 January 2013
© Springer Science+Business Media New York 2013

Abstract As it is widely known, multi-core computers are broadly used these days,
and automatic parallelization of sequential programs is still a challenge. In this con-
text, we propose a set of code transformations to be applied automatically by a tool
in order to transform sequential legacy systems into their parallel version. We im-
plement these transformations by applying a lightweight source code analysis based
on rewritable AST (Abstract Syntax Tree). Since it is not always possible to auto-
matically parallelize the code, we also implemented some specific analyses in order
to report possible changes that would allow specific parallelization. Additionally, we
present some examples in which these transformations were conducted and the cor-
responding performance experiments.

Keywords High performance computing · Parallel computing · Legacy
applications · Software restructuring · Fortran

1 Introduction

Change and complexity are deeply rooted in the essence of software [10]. As a conse-
quence, software has to undergo, almost continuously, redesign and evolution. These

F.G. Tinetti (�) · M. Méndez · A. De Giusti
III-LIDI, Facultad de Informática, UNLP, La Plata, Argentina
e-mail: fernando@info.unlp.edu.ar

M. Méndez
e-mail: marianomendez@gmail.com

A. De Giusti
e-mail: degiusti@lidi.info.unlp.edu.ar

F.G. Tinetti
Comisión de Inv. Científicas de la Prov., Buenos Aires, Argentina

mailto:fernando@info.unlp.edu.ar
mailto:marianomendez@gmail.com
mailto:degiusti@lidi.info.unlp.edu.ar

Restructuring Fortran legacy applications for parallel computing 639

Fig. 1 Five-step process for
applying changes to a legacy
system

two essential software characteristics make the maintenance process an achievement
in itself. This process involves different types of tasks during its instance such as
enhancements, corrections, adaptations and preventions [9]. And it is also the most
resource-consuming stage of the software development process. Under that point of
view, there seems to be more effort being put into the building process of a brand
new product than in the maintenance process of an old one. There are programming
languages that have been used for more than 30, 40, or 50 years, gathering thousands
of lines of source code that are still being used.

Fortran is one of the most representative long-lived programming languages [23]
and, also, Fortran is being widely used by scientists these days, with a very large
amount of source code being produced ever since it came into existence [13, 26]. Just
as an example, in Ref. [22] six climate models have been analyzed, involving more
than 1.1M SLOC (source lines of code). Fortran has its own evolutionary process
that has been taking place over the last fifty years. Both, programming languages
and programs, have overcome diverse stages of computer science evolution such
as structured programming, object oriented programming, and so forth. Nowadays,
multi/many-core processors are the new challenge that legacy systems must face, at
least specifically in the field of HPC (High Performance Computing) [27]. Moreover,
the process of how sequential programs are transformed into a parallel version has a
preponderant impact in the maintenance stage.

In a previous work, a Legacy Change Process was presented in order to keep com-
plexity under control in the maintenance process [22, 28]. We propose a five-step
iterative and incremental process in order to manage, in a controlled way, changes
to be applied in an already working program as shown in Fig. 1. This paper focuses
specifically on the Change step, but taking into account the other steps in the whole
process. Furthermore, every step is going to be carried out with a “parallelization
point of view,” and the Change step in particular is the step specifically related to
source code transformation. Only changes to be performed in a sequential program
in order to transform it automatically in a parallel program for shared memory parallel
computers (multiprocessors) will be analyzed. These software changes are proposed
as restructuring on the Fortran legacy source code.

640 F.G. Tinetti et al.

Restructuring can be defined as a field of Software Engineering focused on im-
proving existent source code by applying source code transformation. The origins
of Restructuring rest on “the modification of software to make it easier to under-
stand and to change, or less susceptible to error when future changes are made” [4].
It is worth mentioning that this definition excludes restructuring for any other pur-
pose, like the improvement of the source code with the aim of performance optimiza-
tion, the transformation of the code for parallel processing, and so forth. Instead, we
specifically propose to include performance improvement by parallel processing via
restructuring. Restructuring can be seen as a methodology that can assist in solving
the significant problems that arise during the maintenance stage within the life cycle
of the software development process.

Software restructuring was born as a necessary tool to be implemented in the main-
tenance processes because of the essential features of software so as to reduce devel-
opment costs. It also can serve as a tool to introduce new software functionality. The
restructuring objective mainly consists in preserving or increasing software value.
Source code restructuring reduces cost of maintenance, as well as increases software
re-usability and extends system’s life cycle. In this way, internal software value is
being increased, too [4]. Another definition of software restructuring can be found
in the literature [11]: “Restructuring is the transformation from one representation
to another at the same relative abstraction levels, while preserving subject system’s
external behavior (functionality and semantics).” A restructuring transformation is
basically applied on the source code for enhancing some source code’s specific fea-
ture/property; restructuring is not used to introduce new functionality.

Based on Fig. 1, we propose an iterative process, where transformations are ap-
plied by using restructuring as the main technique. We have selected the OpenMP
specification [24] to parallelize Fortran legacy source code since it is directly ori-
ented to shared memory parallel computers, which can be considered the standard
computing facility since the advent of multi-core multiprocessor computers (even at
the desktop). A detailed list of transformations for parallelizing sequential source
code will be included. Finally, a set of open source tools are included in an IDE (In-
tegrated Development Environment) to make this process easy to apply. One of the
most remarkable aspects about this tool is automation. Nowadays, it is very difficult
to find a single-tool integrating source code versioning, development environment
(compiler, debugger, etc.), source code transformation automation facilities, and test-
ing capabilities. We will concentrate on Fortran legacy code gathered in the world
wide web, in order to perform and/or verify the proposed methodology.

The organization of the rest of the paper is as follows. In Sect. 2 we explain some
important issues on Fortran legacy source code, its parallelization, and related work,
including those implemented in well-known compilers. Section 3 includes the con-
ceptual (i.e., independent of the implementation) ideas underlying the source code
changes we propose. The contents of Sect. 4 can be seen as the detailed implemen-
tation of concepts explained in Sect. 3 (from the point of view of augmenting an
existing IDE). Section 5 shows the experiments we carried out, explaining actual
legacy Fortran code transformation as well as the performance obtained by running
the restructured code in multiprocessors hardware. Finally, the conclusions and fur-
ther work are given in Sect. 6.

Restructuring Fortran legacy applications for parallel computing 641

2 Fortran legacy applications

Numerical/Scientific/HPC legacy applications are programmed mostly in Fortran for
several reasons. Fortran has been and still is one of the most appropriate languages
for numerical processing, mostly because numerical processing was about the only
one application field by the time Fortran was created [5, 6]. Fortran is one of the first
high level programming languages, it is in use and it has been reviewed/updated over
the last decades [20, 23], unlike most of the current programming languages, includ-
ing the most popular ones. Fortran has been the first standardized language and, also,
it has several standards reflecting its evolution [1–3, 17–19]. Legacy software/appli-
cations and the environments in which they are used have several features that make
it difficult to change and/or update them:

– Either the software documentation is outdated, or lost, or does not exist at all.
– Current standard software development methodologies and/or tools have not been

used to reach the current version of the software or even the initial version.
– The current version is in fact the result of several not always well documented

maintenance/adaptation changes.
– Several developers have been involved, some of them at the initial stages of the

development process and others as time and environment progressed. Also, each
developer used his/her own coding style.

Numerical applications have several drawbacks which are combined with the previ-
ous ones on legacy code:

– Physical/mathematical models are usually coded in large and hard to read pro-
grams, due in part to the combination of the low-level programming language ab-
stractions and numerical method/s properties. Most of the numerical problems/
properties involved are, in turn, a combination of discrete number representation
and numerical method/s used to compute a solution [20].

– The software developers usually have not been trained in software development
tools/processes. Thus, the initial software version contains structures and/or cod-
ing specifically oriented towards using a specific computer or computing facility
instead of solving a numerical problem. Also, hardware dependent code sections
are undocumented and difficult to identify in the whole application.

2.1 From sequential to parallel

For transforming sequential programs into a parallel version we must focus on some
central aspects of the process:

– What part of the (sequential) code should be changed?
– What changes should be applied?
– How to apply changes?

In order to obtain answers for these questions, we propose two tasks, and both of
them are focused on those portions of the source code in which most of the process-
ing time is spent. Our first proposed task entails using a profiler to collect data to
find out how the runtime is spent by the program and its function calls. The profile

642 F.G. Tinetti et al.

information can be very useful regarding runtime and at the same time it shows those
functions in which transformation could be applied in order to focus the effort and at-
tention on parallelizing the source code. In some way, we are combining the standard
HPC approach, which is in some way “profiling dependent” with the restructuring
approach of changing portions of code in order to enhance some aspect of the system
(specifically performance, in our context). Our second proposed task is a composite
approximation to a process for legacy software. It is composed of a profiling stage in
which the best candidate functions to be parallelized are gathered. After this initial
stage, a well defined process is performed in order to manage source code transfor-
mation as explained above.

2.2 Related work

Since many years ago, there has been much work on legacy code as well as on ap-
plications parallelization. Some new approaches are directly designed for grid envi-
ronments [7, 14] with different implementation and performance strategies, and most
of them use wrappers as a way to hide and maintain integrity/correctness constraints,
such as in Ref. [30] for information systems (with examples involving COBOL and
INFORMIX). The work in Ref. [16] proposes or, at least, suggests a similar approach
for updating Legacy Fortran code to Fortran 90/95. While our approach is similar
to that in Ref. [15] (based on a coordination language), since we want to produce
parallelized code from legacy code, we have several important differences:

– Our transformation is based on rewriting program AST; we do not transform the
code in processes + communications.

– We do not add a library or new subroutines/processes for handling processes/
threads. At least at this stage, parallelization is defined in terms of the well-known
and widely used OpenMP specification.

– We do not use Fortran + C language, our approach handles and generates only
Fortran code.

– Our approach is considered as part of a complete process for handling legacy code
as suggested in Fig. 1 and, as such, our first implementation is already part of an
integrated development environment.

Much of the previous work on parallelization has been included in current compilers,
mostly as “auto-parallel” or “automatic parallelization” options according to specific
compilers terminology. We have experimented with three well-known specific com-
pilers: the PGI (The Portland Group), Intel, and GNU compilers [35–37]. While being
successful in parallelizing code, none of the compilers produce/generates new Fortran
code, just binaries including some processing in threads. The PGI compiler produces
some interesting reports not only on parallelized Fortran Do loops but also on prob-
lems by which some loops are not possible to be distributed in threads. The Intel
compiler generates similar parallelized code, but reports only those Do loops actually
being parallelized. The GNU approach includes the gfortran front-end, plus some gcc
parallelization options (available for/in gfortran), plus, eventually, Graphite, as ex-
plained in [35]. The GNU approach is the only one that requires an explicit number
of threads to be specified at compile time. None of the compilers generates parallel
source code, which is one of our main goals; compilers generate only binary parallel
code.

Restructuring Fortran legacy applications for parallel computing 643

.... !$OMP PARALLEL DO PRIVATE (I)

.... !$OMP&SHARED(FX,FY,FZ)
DO 10 I = 1, N DO I = 1, N DO I = 1, N
FX(I) = 0.0 FX(I) = 0.0 FX(I) = 0.0
FY(I) = 0.0 FY(I) = 0.0 FY(I) = 0.0
FZ(I) = 0.0 FZ(I) = 0.0 FZ(I) = 0.0

10 CONTINUE END DO END DO
.... !$OMP END PARALLEL DO

Version I Version II Version III

Fig. 2 Three versions of a Do loop

3 Legacy source code parallelization for multiprocessors

In this section we describe a set of source code transformations in order to parallelize
sequential Fortran source code with the so-called OpenMP work-sharing directives.
Even though this process could be completely performed by hand, it would be highly
time consuming and error prone. This set of source code transformations are focused
mainly on Fortran Do loop statements and are intended to be applied automatically
by a tool. In previous work, we developed and performed a number of automated
source code transformations in order to upgrade old Fortran source code features or
coding practices found in legacy applications, as a previous step to parallelization
[28]. Specifically focused in Do loops, we expect to have three versions of code, as
shown in Fig. 2, where the Version I is the legacy code, almost always in Fortran
fixed source form, Version II would be an actual Fortran 90/95 code, and Version III
is expected to be the parallel version using OpenMP according to the work presented
in this paper. Versions II and III would correspond to two full cycles of those shown
above in Fig. 1. The most important task to be carried out, however, is finding out the
conditions under which an OpenMP directive can be used successfully in terms of:

– Numerical Results: the resulting program should produce the same result as the
original one. It should be taken into account that when dealing specifically with
numerical programs it is likely that some difference could be produced in results
due to floating point representation (e.g. different rounding on different order of
operations).

– Performance: the resulting program performance should be better than the orig-
inal one. It is worth noting that including OpenMP directives by itself does not
guarantee performance improvements, and the resulting parallelized code has to
be analyzed from the point of view of performance.

The rest of the section is devoted to describe specific requirements that Do loops
should fulfill in order to be considered eligible for OpenMP parallelization, as well
as the characteristics of data accesses that have to be taken into account.

3.1 Do loops selectable for parallelization

We start from very restrictive conditions under which Do loops are taken into account
for parallel analysis, depending on the statements enclosed in the loop (referred to as
do-block in [18]):

644 F.G. Tinetti et al.

DO 130 I = 2, M
Z(I) = Z(I-1) - Z(I)
FZ(I) = (ZB(I) - Z(I)) / (Z(I-1) - Z(I))

130 CONTINUE

Fig. 3 Do loop with data dependencies

DO 130 I = M/2, M
Z(I) = Z(I-M/2) - Z(I)
FZ(I) = (ZB(I) - Z(I)) / (Z(I-M/2) - Z(I))

130 CONTINUE

Fig. 4 Discarded Do loop without data dependencies (Case I)

DO 130 I = 1,M1
DBZ(I) = Z(I+1) - Z(I)
FZ(I) = (ZB(I) - Z(I)) / (Z(I+1) - Z(I))

130 CONTINUE

Fig. 5 Discarded Do loop without data dependencies (Case II)

– Assignment statements, which of course may involve complex expressions on the
right-hand side of the “=”.

– Nested Do loops, which in turn may include other Do loops and/or assignments.

Thus, we have excluded Do loops difficult to parallelize or for which the paralleliza-
tion analysis could become too complex. Furthermore, we have “labeled” Do loop
statements as not parallelizable if they possess data dependencies. Data dependen-
cies are identified using a simple syntactic parsing rule: array accesses have to be
made only using the loop control variable (do variable in terms of the Fortran stan-
dard terminology, e.g. [18]) as index, and the loop control variable should not appear
in arithmetic expressions with other scalar or values used as index(es) in array ac-
cess(es). Figure 3 shows array accesses preventing Do loop parallelization where, in
fact, there are data dependencies in the Do loop. More specifically, the assignment to
Z(I) is identified as having a data dependency since array variable Z appears to the
left and to the right of the assignment and the loop control variable is used at the right
side in an expression for obtaining the index at which the same variable Z is accessed.
This way of identifying data dependencies is over-restrictive, since it provides sev-
eral “false positives” (or, in fact, false negatives for parallelization, since it leads to
discard Do loop parallelization analysis) as that in Fig. 4, where the assignment to
Z(I) does not include any data dependency. Furthermore, this over-restrictive pars-
ing rule leads to even more undesirable false positives, such as that in Fig. 5. Even
when this parsing rule could be considered too restrictive (i.e. discarding Do loop
parallelization when the index expression for accessing arrays is other than a single
scalar variable), we are still interested in the most simple cases for parallelization as
a proof of concept, in terms of:

– Syntactic analysis: simple cases are easy to identify syntactically, using (stati-
cally) the program AST representation, and avoiding complex analysis. One of
the complex cases this rule excludes is that of aliased variables using the so-called

Restructuring Fortran legacy applications for parallel computing 645

....
DO I =1,30 DO I=1,30 DO I=1,30

M(I,J)=0 DO J=1,30 DO J=1,30
END DO M(I,J)=0 DO K=1,30
.... END DO M(I,J,K)=0
.... END DO END DO
.... END DO
.... END DO
....

Fig. 6 Simple parallelization loops

Equivalence statement, where two variables share storage units as defined in
the standard, e.g. [18].

– AST editing: we expect that simple cases are also simple for automatic code/AST
transformation, so we can implement the necessary transformations in a software
tool (expected to be included into some IDE).

– Preliminary experimentation for performance gain: since performance is the real
objective of parallel processing, we expect to obtain good performance results in
order to move forward to more complex cases for analysis and parallelization.

The first two items above let us to exclude more complex and time-consuming anal-
ysis, such as that of classical data dependency analysis [8, 12, 21]. The next subsec-
tions will show that even in the most simple Do loops it is possible to find different
data accesses/usage that have to be taken into account for parallel processing with
OpenMP.

3.2 Do loops with only shared and loop control variables

The most simple (at least from the parallelization point of view) Do loop statements
have only shared variables (arrays) and loop control variable(s). Since the loop is
considered as parallelizable, each assignment statement involves only arrays indexed
with loop control variables, as shown in Fig. 6 for three parallelizable Do loops. In
each case, (a) the most external Do loop is parallelizable, (b) array M is shared and
(c) loop control variables (either I, or I and J, or I, J, and K, respectively) should
be made private to each thread in a parallel version with OpenMP. Figure 7 shows the
third case as expected to be parallelized automatically, where every variable has been
explicitly included in either one of the PARALLEL DO clauses: PRIVATE or SHARED.
We have chosen to include explicitly every variable referenced in the Do loop in one
clause for several reasons:

– Readability: every data is referenced at the beginning of the parallelized Do loop
with its corresponding so-called data-sharing attribute [24]. Even when OpenMP
has a set of rules for variables referenced in a parallel construct and a parallel
region (both of which—regions—are defined in the OpenMP specification), we do
not force the programmer to remember every definition and specification.

– Further parallelization analysis and performance tuning: parallelization always re-
quires to identify clearly every data access either for shared or distributed memory

646 F.G. Tinetti et al.

Fig. 7 Simple loop parallelized !$OMP PARALLEL DO PRIVATE (I, J, K)
!$OMP&SHARED(M)
DO I=1,30

DO J=1,30
DO K=1,30

M(I,J,K)=0
END DO

END DO
END DO
!$OMP END PARALLEL DO

!$OMP PARALLEL DO PRIVATE (I, sometmp, ...)
!$OMP&SHARED(M, N, ...)

DO I =1, N DO I =1, N
sometmp = <expr> sometmp = <expr>
M(I) = sometmp M(I) = sometmp

END DO END DO
!$OMP END PARALLEL DO

(a) (b)

Fig. 8 Loop with private variable other than the loop control variable

parallel computers. If some further parallelization (or optimization) analysis is re-
quired, having every data explicitly defined as private or shared will save much of
the time and work required.

Obviously, these simple Do loops are not the only ones found in legacy code, and the
next subsections will describe some other parallelizable loops.

3.3 Do loops with only shared and private variables

Taking into account the previous Do loops characteristics, the next level of com-
plexity in the analysis of Do loop parallelization is found when there are variables
used in the do-block which are necessary mainly for temporary calculations. More
specifically, some Do loops include variables which are assigned with completely
new values in every Do iteration, such as that shown in Fig. 8a. Even when variable
sometmp is as private as the loop control variable I, the analysis required for its
identification is different (either automatically or by a programmer): private variables
are those scalars or array variables accessed using a constant (inside the loop) along
every iteration of the Do loop. Clearly, the parallel version requires that sometmp
is used as private in each OpenMP thread, as explicitly defined in the code shown in
Fig. 8b.

3.4 Do loops with reduction variables

There are some Do loops in which certain forms of recurrence calculations are per-
formed, in these cases the REDUCTION clause is needed, in order to prevent unpre-
dictable results (runtime race conditions). The reduction process is described in [24]
as follows, “A private copy of each list item is created, one for each implicit task, as

Restructuring Fortran legacy applications for parallel computing 647

DO 1000 I=1,MOLSA
VELOCX=H(1,1)*X(1,I,1)+H(1,2)*X(2,I,1)+H(1,3)*X(3,I,1)
VELOCY=H(2,1)*X(1,I,1)+H(2,2)*X(2,I,1)+H(2,3)*X(3,I,1)
VELOCZ=H(3,1)*X(1,I,1)+H(3,2)*X(2,I,1)+H(3,3)*X(3,I,1)
SUMPX=SUMPX+VELOCX
SUMPY=SUMPY+VELOCY
SUMPZ=SUMPZ+VELOCZ

1000 CONTINUE

Fig. 9 Parallelizable loop with private, shared, and reduction variables

!$OMP PARALLEL DO
!$OMP&SHARED(H,X,MOLSA)
!$OMP&PRIVATE(I,VELOCX,VELOCY,VELOCZ)
!$OMP&REDUCTION(+:SUMPX,SUMPY,SUMPZ)
DO I=1,MOLSA

VELOCX=H(1,1)*X(1,I,1)+H(1,2)*X(2,I,1)+H(1,3)*X(3,I,1)
VELOCY=H(2,1)*X(1,I,1)+H(2,2)*X(2,I,1)+H(2,3)*X(3,I,1)
VELOCZ=H(3,1)*X(1,I,1)+H(3,2)*X(2,I,1)+H(3,3)*X(3,I,1)
SUMPX=SUMPX+VELOCX
SUMPY=SUMPY+VELOCY
SUMPZ=SUMPZ+VELOCZ

END DO
!$OMP END PARALLEL DO

Fig. 10 Parallelized loop with private, shared, and reduction variables

if the private clause had been used. The private copy is then initialized to the initial-
ization value for the operator, as specified above. At the end of the region for which
the reduction clause was specified, the original list item is updated by combining its
original value with the final value of each of the private copies, using the operator
specified.” This kind of Do loop statement is one of most difficult to transform, either
by hand or automatically, since we need to identify shared variables, private variables,
and reduction variables. Figure 9 shows an actual legacy code which is parallelizable
taking into account shared, private, and reduction variables. The corresponding par-
allel code (using OpenMp) for the Do loop of Fig. 9 is shown in Fig. 10, where every
variable in the Do loop is explicitly identified (included in the corresponding clause)
as private, shared, or reduction variable. Note that having every variable included
in the (PARALLEL DO) directive data clauses provides a single place for analyzing
the amount of data (or, at least, variables) accessed in the Do loop. This information
could be used in further parallelization analysis, since it is related to the amount of
data necessary to be distributed in a distributed memory parallel computer, for exam-
ple.

4 A restructuring tool for parallelization—a proof of concept

We have implemented a software tool so that all of the transformations described in
the previous section are applied automatically as restructuring to legacy software. In

648 F.G. Tinetti et al.

Fig. 11 An example of Photran
AST

this context, automatic means made by a tool, not mandatory or compulsory, i.e., the
user/programmer may select a Do loop and the restructuring tool either applies the
restructuring if the loop is parallelizable or reports it is not possible to parallelize the
loop. The tool is aware of index dependencies, identifies local, shared, and reduction
variables and generates the source code including OpenMP directives. We base our
implementation on AST (Abstract Syntactic Tree) analysis and modification. The
current implementation was made as a proof of concept using Photran, an Eclipse
plug-in based on the Eclipse CDT (C/C++ Development Tooling) [33, 34]. We are
also planning to provide the tool as open source to be easily included in Photran.
However, the concept of restructuring for parallelization can be implemented stand-
alone, it is not dependent on Photran in particular.

Photran implements Fortran restructuring as Eclipse refactoring, and contains two
very important data structures for refactoring implementation. The first one is the
AST, which maintains the entire representation of a Fortran program, as in Fig. 11
(a partial example). The AST structure is filled with AST nodes, a set of classes that
represent each possible element of the programming language. The second important
structure is the VPG (Virtual Program Graph) which facilitates the handling of the

Restructuring Fortran legacy applications for parallel computing 649

AST and the embedded analysis information, acting as an interface for the AST to
the programmer [25]. Thus, the VPG allows refactoring programmers to acquire or
release ASTs; it also sets off scope and binding analysis; while allowing the user to
obtain variable definitions, and so forth.

Photran divides refactorings into two categories (selectable by the Photran devel-
oper): editor-based refactorings, which require the user to select part of a Fortran pro-
gram in a text editor in order to initiate the source code transformation, and resource
refactorings which apply to entire files. Once selected the kind of code transforma-
tion to create, the developer implements the corresponding subclass and configures
Photran (via XML). The developer then should add

– The necessary check of initial preconditions, e.g., to verify that the user selected
the correct construct in the editor, that the file is not read-only, and so forth.

– User input handling in case it is needed, e.g. for adding a parameter to a sub-
program, the user should supply the new parameter’s name and type. Some extra
preconditions may be added depending on user input, for the transformation to
be performed, and to ensure the resulting code will compile, and it is expected to
maintain the behavior of the original program.

– The code transformation, which determines what files will be changed, and how.

The XML configuration file and Java reflection facilities are used so that Photran
automatically adds the refactoring to the appropriate parts of the Eclipse user inter-
face, and it provides a wizard-style dialog box which allows the user to interact. This
dialog includes a diff -like preview, which allows the user to see what changes will
be made before committing it. This preview can be used as a preliminary aid for the
Check New Version and Accept or Reject steps of the whole legacy code transforma-
tion process.

The Photran engine provides two classes corresponding to the two source code
transformation types (editor-based or resource). A new code transformation is im-
plemented by extending the FortranEditorRefactoring or FortranResourceRefactor-
ing (see Fig. 12). There are some methods that must be implemented in order to
obtain a specific refactoring. Each one of these methods has a precise intent within
the Photran structure:

public String getName()
protected void doCheckInitialConditions(RefactoringStatus

status, IProgressMonitor pm) throws PreconditionFailure
protected void doCreateChange(IProgressMonitor pm) throws

CoreException, OperationCanceledException
protected void doCheckFinalConditions(RefactoringStatus

status, IProgressMonitor pm) throws PreconditionFailure

From the point of view of implementation, code restructuring is carried out in two
basic steps: parallelization preconditions are checked in the first step, and the actual
code change is made in the second step. The parallelization preconditions checked in
the first step include:

1. Loop selection: only Do loop statements are allowed to be transformed in this
transformation. Also, Do loop is allowed to include only other Do loop statements
and assignments in the do-block. Do loop statements must be ended with the END

650 F.G. Tinetti et al.

Fig. 12 Photran refactorings class diagram

p u b l i c c l a s s S t a t e m e n t s A l l o w e d V i s i t o r e x t e n d s ASTVis i torWithLoops {
p r i v a t e b o o l e a n a l l S t a t e m e n s A l l o w e d = t r u e ;
p u b l i c S t a t e m e n t s A l l o w e d V i s i t o r () { . . . }
p u b l i c b o o l e a n a l l S t a t e m e n t s A l l o w e d () { . . . }
@Override p u b l i c vo id v i s i t I E x e c u t i o n P a r t C o n s t r u c t (. . . node) { . . . }
p r i v a t e b o o l e a n a l l o w e d S t a t e m e n t s (. . . node) { . . . }
@Override p u b l i c vo id v i s i t I E x e c u t a b l e C o n s t r u c t (. . . node) { . . . }
@Override p u b l i c vo id v i s i t I A c t i o n S t m t (. . . node) { . . . }
@Override p u b l i c vo id v i s i t I O b s o l e t e A c t i o n S t m t (. . . node) { . . . }

}

Fig. 13 StatementsAllowedVisitor Class

DO statement. In order to detect allowed statements inside Do loop as shown in
Fig. 13: the Do loop node is traversed in order to check if the statements inside the
loop are valid Fortran statements.

Restructuring Fortran legacy applications for parallel computing 651

2. Data dependencies: arithmetic expressions are not allowed as array indexes, as
explained above. If some data dependency is found, the loop is considered as non-
parallelizable and a report is issued to the programmer (no restructuring/change is
made to the source code). Data dependencies where found by using another visitor
pattern called DependencyFinderVisitor. If the index variable used in the loop was
found inside any binary expression i.e.: Op1 {+,-,*,/} Op2, the visitor will
assume that dependencies are present inside the source code.

After these conditions are checked and passed, the transformation/code restructuring
is carried out as follows:

1. Get first and last Do loop statement tokens: the first and last tokens are gathered
in order to get the places where the OpenMp directives will be placed, as well as
the do-block scope (i.e. the specific statements included in the do-block).

2. Get all variables: all variables referenced in the Do loop statement are collected
by visiting the AST Do loop node. It is worth noting that the AST representation
of programs provides full information on variables as well as all the information
needed for compilation.

3. Get possible reduction assignments: in order to recognize reduction variables as-
signments like:

<variable> = <variable> op <exp>

or

<variable> = <exp> op <variable>

are identified, if any.
4. Get private variables: all scalar variables assigned in the Do loop and not identi-

fied as a reduction variable are considered as (OpenMP) private. Scalar variables
inside a Do loop are mostly used for containing auxiliary/temporary results and,
as such, are private/local to each (OpenMP) thread.

5. Get shared variables: array variables and read only variables in the Do loop are
considered as (OpenMP) shared. Clearly, the best scenario for parallel computing
is that which has most of the variables as shared, but we have to be careful (and
conservative, as we have been in the definition of the above rules) in order to avoid
race conditions on data assignments, specifically.

6. Get reduction variables: all the variables in the possible reduction assignments
identified in Step 3 above which are initialized to the proper values depending
on the reduction operation involved [24] are considered as OpenMP reduction
variables.

7. Build OpenMP directives: the OpenMP directives are built according to the previ-
ous analyses on the Do loop. So far, we have been working on Do loop statements
and, thus, a so-called Combined Parallel Work-Sharing Construct, more specifi-
cally a PARALLEL DO is built.

8. Rewrite AST node: the Do loop node is rewritten with the OpenMp directive and
the corresponding data clauses (PRIVATE, SHARED, etc.) built in the previous step.
Taking into account the parallelization analysis (applied only to Do loops) and the
combined PARALLEL DO we build, only a relatively few source code lines related

652 F.G. Tinetti et al.

p r i v a t e vo id makechange (ASTProperLoopConst ructNode node) {
f i n a l Map< S t r i n g , OpenMpWraper> Vars

= new HashMap< S t r i n g , OpenMpWraper > () ;
Token f i r s t T o k e n =node . f i n d F i r s t T o k e n () ;
Token l a s t T o k e n =node . f i n d L a s t T o k e n () ;
ge tOpenMpVar iab les (node , Vars) ;
f i n a l A r r a y L i s t <aSTAssignmentStmtNode > a s s i g n e m e n t s

= new A r r a y L i s t <aSTAssignmentStmtNode > () ;
c o l l e c t P o s i b l e R e d u c t i o n A s s i g n e m e n t s (a s s i g n e m e n t s) ;
g e t R e d u c t i o n V a r i a b l e s (Vars , a s s i g n e m e n t s) ;
/ / o b t a i n s h a r e d v a r i a b l e s
S t r i n g s h a r e d V a r L i s t = m a k e S h a r e d V a r i a b l e L i s t (Vars) ;
/ / o b t a i n p r i v a t e v a r i a b l e s
S t r i n g p r i v a t e V a r L i s t = m a k e P r i v a t e V a r i a b l e L i s t (Vars) ;
/ / o b t a i n r e d u c t i o n v a r i a b l e
S t r i n g R e d u c i o n V a r L i s t = m a k e R e d u c t i o n V a r i a b l e L i s t (Vars) ;
/ / r e w r i t i n g AST
f i r s t T o k e n . s e t W h i t e B e f o r e (" \ n !$OMP PARALLEL DO " +

" \ n"+ s h a r e d V a r L i s t +
" " + p r i v a t e V a r L i s t +
" "+ R e d u c i o n V a r L i s t + "

\ n ") ;
l a s t T o k e n . s e t W h i t e A f t e r (" \ n

!$OMP END PARALLEL DO\ n ") ;
}

Fig. 14 The source code transformation performed in the makechange() method

Fig. 15 Example of Do loop parallelization with OpenMP

to Do loops have to be included in the AST, as shown in the makechange() method
implementation in Fig. 14.

The new code is ready to be compiled with the corresponding OpenMp compiler op-
tion. Figure 15 shows an example of restructuring as it is currently implemented in
Photran. On the left of Fig. 15 is the sequential code, in which a Do loop has been
selected for parallelization. On the right of Fig. 15 the new code (i.e. the code gener-

Restructuring Fortran legacy applications for parallel computing 653

ated with OpenMP directives by the tool) is shown, which is considered as the current
one after it is explicitly accepted by the user. Highlighting source code differences as
shown in Fig. 15 has many advantages, such as: (a) it provides the programmer full
knowledge of the source code transformation/s, (b) it can be considered as part of
or aid to the Check New Version and Accept or Reject source legacy transformation
process steps, (c) it enhances source code understanding to the programmer, which is
also useful/necessary for the Document step of the process.

5 Experiments and results

As part of the proof of concept, it is necessary not only to use and verify the im-
plemented tool, but also to analyze the performance results obtained in real legacy
code. We have selected three applications available to download from Internet, each
one belonging to a different application area. The first program is used in the electro-
magnetic scattering by particles and surfaces area, downloaded from [29], and it will
be referred to as “Refl Code.” The second program belongs to the molecular dynam-
ics area, computing a Lennard–Jones potential, downloaded from [31], which will
be referred to as “L–J Code.” The third program computes a cumulative Maxwell–
Boltzmann distribution function by integrating with the trapezoidal rule, downloaded
from [32] and this program will be referred to as “M–B Code.” We made several
non-parallelization restructuring on this M–B Code, mostly related to data precision,
prior to the restructuring we describe below, which is specifically focused on includ-
ing OpenMP directives and parallelizing the code.

As explained in Sect. 2.1, not all of the source code of each program is selected to
change/restructure, and profiling is used to identify the function on which OpenMP
directives are going to be included. This decision has two main advantages:

– HPC/scientific programmers’ approach to performance optimization almost al-
ways has involved profiling and, thus, profiling is considered as part of the opti-
mization/parallelization process. We can take advantage of the usual programmers’
knowledge of their own programs and profiling tools.

– Profiling usually provides a reduced set of functions/subprograms on which to con-
centrate all the effort from two points of view:
– Parallelization details/complexity is reduced when only a specific function at a

time is approached. Also, the set of subprograms usually selected by profiling is
small as compared with the total number of subprograms in the application.

– Programmers’ control is considered fundamental for understanding and analys-
ing performance, and these tasks are always better accomplished on a reduced
set of functions/subprograms.

We have selected two hardware platforms on which to carry out the performance
experiments: a very small-scale parallel environment, and a medium sized shared
memory parallel environment. The very small parallel platform (e.g. a desktop com-
puter) has been selected because not all legacy software is focused on large-scale
problems and, also, scientists could run scaled down models for preliminary analy-
sis. The medium sized shared memory parallel environment is usually found at the

654 F.G. Tinetti et al.

Table 1 Parallel platforms used
in the experiments Comp1 Comp2

Processor Intel i5 M460 2 × Intel Xeon E5405

Total # Cores 2 8

RAM 4 GB 2 GB

OS Linux 2.6.38 i686 Linux 2.6.31 ×86_64

Compiler gfortran 4.5.2 gfortran 4.4.2

Compiler options -O3 -fopenmp -O3 -fopenmp

Fig. 16 Automated code transformation for parallelization on Refl Code

basis of clusters used for medium- to high-scale parallel computation. Table 1 shows
the main characteristics of the two parallel hardware platforms, referred to as Comp1
for the small-scale and Comp2 for the medium-scale platform, respectively. We have
not made specific efforts for obtaining homogeneous environments (same compiler,
Linux kernel, etc.) since we do not intend to impose specific environments as con-
straints to our approach, i.e. we use the computers as they are currently available to
scientists. The following sections show the specific results of including OpenMP di-
rectives and the performance gains obtained in each of the programs described above.

5.1 Refl Code

Profiling on the Refl Code highlighted that one specific subprogram takes about 77 %
of the runtime, thus making this function the clear objective for parallelization. On
this subprogram, several Do loops were selected for parallelization candidates and,
also, we developed our own handmade source code with OpenMP directives, for com-
parison purposes. Figure 16 shows the suggestion made by the tool on a specific Do

Restructuring Fortran legacy applications for parallel computing 655

Table 2 Refl Code parallel
performance—speedup Comp1 Comp2

2 Cores 2 Cores 4 Cores 8 Cores

1.8 1.89 3.40 5.40

Fig. 17 Example of code not
parallelizable by the tool

do j=i+1,n
xx=x(j)-x(i)
...
call mic(xx,yy,zz,aLx,aLx2)
dR=xx**2+yy**2+zz**2
if(dR.lt.cut2) then

r=dsqrt(dR)
...
if(ir.gt.ngr) stop ’ir>ngr’
ig(ir)=ig(ir)+1

end if
end do

loop (where the original source code is at the right and the suggested change is at the
left of the figure), for which the user should accept or discard the proposed change.
The parallel code made by our tool is equivalent to the handmade parallel code ver-
sion and, also, the source code provided by our tool has every variable accessed in
the Do loop identified either as PRIVATE or SHARED data.

Table 2 shows the performance measurements in terms of speedup in the two par-
allel platforms described above. Parallel performance is slightly reduced taking into
account the theoretical maximum speedup for each number of cores, as more cores
are involved in the computation. This reduction can be explained as a combination of
(a) the usual speedup performance reduction as more processors are used, and (b) the
parallelized subroutine becoming less time-consuming and other subroutines taking a
greater fraction of the total runtime. The second reason leads to a natural task to fol-
low the parallelization process: profile the parallel program in order to select the next
subroutine/s to parallelize. It can be considered that performance (including scalabil-
ity) is an important factor for the final decision in the Accept or Reject step of the
legacy source code transformation process, and this is why we want to specifically
show the performance obtained by the new version of the code (it will be also shown
in the next examples).

5.2 L–J code

The main program as well as one of the subroutines were clearly identified via pro-
filing as the ones to be parallelized, since more than 97 % of the runtime was spent
on these two sections of code. Analyzing the code in the subroutine we found one
of the limitations of our own rules for parallelization: Fig. 17 shows that the code in
a Do loop of the subroutine involves IF and CALL statements, thus making the (Do)
subroutine not parallelizable by our tool. Thus, the OpenMP directives on the code
of Fig. 17 where included by hand, but on the main program, the tool provided an

656 F.G. Tinetti et al.

Fig. 18 Automated parallelization transformation on L–J Code

Table 3 L–J code parallel
performance—speedup Comp1 Comp2

2 Cores 2 Cores 4 Cores 8 Cores

1.21 1.29 2.20 4.05

automated parallelization, as shown in Fig. 18. Thus, for this code, parallelization
is partially made by a programmer and partially made by our tool. Even when not
all the parallelization could be implemented automatically (by our tool), there was a
clear advantage in using an automated approach: the programmer should focus only
on those sections of code that could not be solved/approached automatically by the
tool. Table 3 shows the performance measurements in terms of speedup in the two
parallel platforms described above. Even when performance is not as good as in the
previous case, using the tool provides too important results: (1) a parallel version of
the legacy code, and (2) information on sections of code on which the programmer
should concentrate the efforts for parallelization.

5.3 M–B code

The profile of this code has shown that only one subroutine requires more than 92 %
of the runtime, so all the parallelization efforts have been made on this specific sub-
routine. However, we have found that the code in the subroutine does not fulfill the
rules we have defined for automatic parallelization. Since code in this subroutine
is basically the only one on which parallelization could be successful, we have im-
plemented a little extension on our tool: information on the reason/s why the au-
tomatic parallelization could not be done is provided to the programmer. Thus, the
programmer receives two important results: (a) an indication that automatic paral-
lelization is not possible, and (b) the explicit information regarding the rule by which
the automatic parallelization has not been made. Specifically the latter information

Restructuring Fortran legacy applications for parallel computing 657

Fig. 19 Non-parallelizable Do loop and tool suggestion/report

Table 4 M–B code parallel
performance—speedup Comp1 Comp2

2 Cores 2 Cores 4 Cores 8 Cores

1.83 1.97 3.87 7.67

is expected to be useful to the programmer in order to modify the code so that the
automatic parallelization could be successfully applied.

Figure 19 shows how the tool provides the information about the reason why it is
not possible to parallelize the code. More specifically, the programmer receives the
report indicating that variable Aux is likely to be defined as an OpenMP reduction
variable, but the initial value does not correspond to the specific reduction operation.
Once the variable is initialized to the proper value, the parallelization is automatically
made by the tool, thus resulting in a parallelization guided by our tool and explicitly
made by a programmer. The resulting program is analyzed from the point of view
of performance, and Table 4 shows the results in speedup in the parallel platforms
described above. Performance results for this specific case are amongst the best ob-
tained and, also, have the characteristics that every scientific programmer hopes for:
good performance as well as scalability.

6 Conclusions and further work

Transforming sequential programs into parallel programs is a very arduous task in
which different skills are required. There is a vast amount of old sequential (legacy)
software being currently used, in most of the cases this software being critical for their
owner organizations. We propose a set of automated transformations to be applied
in those programs in order to update and take advantage of parallel processing in
multiple processors multi-core architectures. Since it is not always possible to provide
an automatic parallelization from legacy code, we have implemented several analyses
in order to provide the programmer with useful suggestions for parallelization and/or
to fulfill the requirements imposed by our tool to parallelize the code.

We have presented three complete examples on which our tool has been tested.
As explained in the first section, we have focused the Change step defined for trans-
forming legacy code, but several details are useful for other steps, specifically for the

658 F.G. Tinetti et al.

Check New Version (or just Check), Accept or Reject, and Document. As expected,
most of the description in this paper has been devoted to explain the Change step,
since it provides the rationale for the other two steps under consideration. The Check
step has been successful in all the changes, since the rules by which we decided to
change the code are extremely conservative, as explained above. The Accept or Reject
step has been guided mostly by performance and, eventually, by taking into account
that the implemented changes provide a performance enhancement with minimum
cost for the programmer without making the code extremely complex. In this con-
text, every change to the code can be considered as restructuring since it affects a
relatively small fraction of the source code and does not force the programmer to
redesign the whole software project.

We are doing preliminary work on many extensions to the tool, taking into account
some parallelization rules’ relaxation. In one of the extensions, the tool suggests/im-
plements a parallelization even in the presence of statements other than assignments
and Do loops. More specifically, we are studying real code in which there are IF,
CALL, and function calls, which involve complex analysis and checking rules. A pri-
ori, we are experimenting the results of just letting the tool to parallelize the code and
issuing warning to the user about the specific “non-safe” parallelization. Thus, the
programmer could run some specific testing for these “non-safe” parallel versions
in order to find out if the resulting program provides incorrect results. We are also
intensively working on the data analysis of the code (e.g. COMMON areas, subrou-
tine dummy arguments, etc.), since they are amongst the most important analyses for
shared memory as well as distributed memory parallelization tasks.

References

1. American National Standards Institute, X3. 9-1966 (1996) American National Standards Institute
Incorporated, New York

2. American National Standards Institute, X3. 9-1978 (1978) American National Standards Institute,
New York

3. American National Standards Institute (1992) American national standard for programming language,
FORTRAN—extended: ANSI X3.198-1992: ISO/IEC 1539: 1991. American National Standards In-
stitute

4. Arnold RS (1989) Software restructuring. Proc IEEE 77(4):607–617
5. Backus J (1954) The IBM 701 speedcoding system. J ACM 1(1)
6. Backus J (1978) The history of Fortran I, II, and III. ACM SIGPLAN Not 13(8)
7. Baliś B, Bubak MT, Wegiel M (2008) LGF: a flexible framework for exposing legacy codes as ser-

vices. Future Gener Comput Syst 24(7)
8. Banerjee U (1997) Dependence analysis. Kluwer Academic, Dordrecht
9. Bennett KH, Rajlich VT (2000) Software maintenance and evolution: a roadmap. In: Proceedings of

the conference on the future of software engineering, Limerick, Ireland. June 2000
10. Brooks FP (1987) No silver bullet: essence and accidents of software engineering. IEEE Comput

20(4):10–19
11. Chikofsky EJ, Cross JH II (1990) Reverse engineering and design recovery: a taxonomy. IEEE Softw

7(1):13–17
12. Cooper KD, Torczon L (2005) Engineering a compiler. Morgan Kaufmann, San Mateo
13. Decyk VK, Norton CD, Gardner HJ (2007) Why Fortran? Comput Sci Eng 9(4)
14. Deng Y, Wang F (2011) LAG: achieving transparent access to legacy data by leveraging grid environ-

ment. Future Gener Comput Syst 27(1)

Restructuring Fortran legacy applications for parallel computing 659

15. Everaars CTH, Arbab F, Burger FJ (1996) Restructuring sequential Fortran code into a parallel/dis-
tributed application. In: Proc of the 1996 international conference on software maintenance. IEEE
Comp Society, Los Alamitos

16. Greenough C, Worth D (2004) The transformation of legacy software: some tools and a process. RAL
technical report TR-2003 012

17. ISO, ANSI/ISO/IEC 1539-1:1997 (1997) Information technology–programming languages—Fortran.
Part 1. Base language. American National Standards Institute

18. ISO, ANSI/ISO/IEC 1539-1:2004 (2004) Information technology—programming languages—
Fortran. Part 1. Base language. International Organization for Standardization

19. ISO, ISO/IEC JTC 1/SC 22/WG 5/N1830 (2010) International Standard ISO/IEC DIS 1539-1, Infor-
mation technology—programming languages—Fortran. Part 1. Base language, 3rd edn

20. Loh E (2010) The ideal HPC programming language. Maybe it’s Fortran. Or maybe it just doesn’t
matter. Queue 8(6)

21. Maydan DE, Amarasinghe SP, Lam MS (1993) Array-data flow analysis and its use in array
privatization. In: Proceedings of the 20th ACM SIGPLAN-SIGACT symp on principles of pro-
gramming languages, Charleston, South Carolina, USA, March 1993, pp 2–15. https://www.ideals.
illinois.edu/handle/2142/16950

22. Méndez M, Tinetti FG (2011) First steps towards a tool for legacy systems. In: XVII congreso
Argentino de ciencias de la computación, UNLP, La Plata, Argentina, Oct. 2011. Available at
https://lidi.info.unlp.edu.ar/fernando/publis/082.pdf

23. Metcalf M (2011) The seven ages of Fortran. J Comput Sci Technol 11(1):1–8. http://
journal.info.unlp.edu.ar/journal/journal30/papers.html

24. OpenMP Architecture Review Board (2011) OpenMP application program Interface—version 3.1.
Available at http://openmp.org/wp/

25. Overbey JL, Chen N (2009) Photran 6.0 developer’s guide, December
26. Sanders R, Kelly D (2008) Dealing with risk in scientific software development. Software, IEEE

Press, New York 25(4)
27. Sutter H (2005) The free lunch is over: a fundamental turn toward concurrency in software. Dr Dobb’s

J 30(3). http://www.gotw.ca/publications/concurrency-ddj.htm
28. Tinetti FG, Méndez M, Lopez MA, Labraga JC, Cajaraville PG (2011) Update and restructure legacy

code for (or before) parallel processing. In: Proceedings of the 2011 international conf on parallel and
distributed processing techniques and applications, vol 1, Las Vegas, USA, July 2011. CSREA Press,
Las Vegas, pp 652–658 ISBN:1-60132-193-7

29. Mishchenko MI, Zakharova NT FORTRAN codes for the computation of the bidirectional reflection
function for flat particulate layers and rough surfaces. Goddard Space Flight Center Sciences and
Exploration Directorate, NASA. http://www.giss.nasa.gov/staff/mmishchenko/brf/

30. Thiran P, Hainaut J, Houben G, Benslimane D (2006) Wrapper-based evolution of legacy information
systems. ACM Trans Softw Eng Methodol 16(4)

31. Velasco E Prácticas de métodos computacionales en física de materia condensada. II. Facul-
tad de Ciencias, Univ Autónoma de Madrid, Spain. http://www.uam.es/departamentos/ciencias/
fisicateoricamateria/especifica/hojas/kike/docto/ejer3/

32. Computer methods in chemical engineering, Maxwell–Boltzmann distribution function. http://
terpconnect.umd.edu/~nsw/ench250/boltzman.htm

33. Eclipse—the eclipse foundation open source comm. Website. http://www.eclipse.org/
34. PHORTRAN—an integrated development environment and refactoring tool for Fortran. http://www.

eclipse.org/photran/
35. GCC Wiki Automatic parallelization in GCC. http://gcc.gnu.org/wiki/AutoParInGCC
36. Intel Corporation Automatic parallelization with Intel compilers. http://software.intel.com/en-us/

articles/automatic-parallelization-with-intel-compilers
37. The Portland Group PGI | products | PGI workstation. http://www.pgroup.com/products/

pgiworkstation.htm

https://www.ideals.illinois.edu/handle/2142/16950
https://www.ideals.illinois.edu/handle/2142/16950
https://lidi.info.unlp.edu.ar/fernando/publis/082.pdf
http://journal.info.unlp.edu.ar/journal/journal30/papers.html
http://journal.info.unlp.edu.ar/journal/journal30/papers.html
http://openmp.org/wp/
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.giss.nasa.gov/staff/mmishchenko/brf/
http://www.uam.es/departamentos/ciencias/fisicateoricamateria/especifica/hojas/kike/docto/ejer3/
http://www.uam.es/departamentos/ciencias/fisicateoricamateria/especifica/hojas/kike/docto/ejer3/
http://terpconnect.umd.edu/~nsw/ench250/boltzman.htm
http://terpconnect.umd.edu/~nsw/ench250/boltzman.htm
http://www.eclipse.org/
http://www.eclipse.org/photran/
http://www.eclipse.org/photran/
http://gcc.gnu.org/wiki/AutoParInGCC
http://software.intel.com/en-us/articles/automatic-parallelization-with-intel-compilers
http://software.intel.com/en-us/articles/automatic-parallelization-with-intel-compilers
http://www.pgroup.com/products/pgiworkstation.htm
http://www.pgroup.com/products/pgiworkstation.htm

	Restructuring Fortran legacy applications for parallel computing in multiprocessors
	Abstract
	Introduction
	Fortran legacy applications
	From sequential to parallel
	Related work

	Legacy source code parallelization for multiprocessors
	Do loops selectable for parallelization
	Do loops with only shared and loop control variables
	Do loops with only shared and private variables
	Do loops with reduction variables

	A restructuring tool for parallelization-a proof of concept
	Experiments and results
	Refl Code
	L-J code
	M-B code

	Conclusions and further work
	References

