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Abstract As the next generation of supercomputers reaches the exascale, the domi-
nant design parameter governing performance will shift from hardware to software.
Intelligent usage of memory access, vectorization, and intranode threading will be-
come critical to the performance of scientific applications and numerical calculations
on exascale supercomputers. Although challenges remain in effectively programming
the heterogeneous devices likely to be utilized in future supercomputers, new lan-
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guages and tools are providing a pathway for application developers to tackle this
new frontier. These languages include open programming standards such as OpenCL
and OpenACC, as well as widely-adopted languages such as CUDA; also of impor-
tance are high-quality libraries such as CUDPP and Thrust. This article surveys a pur-
posely diverse set of proof-of-concept applications developed at Los Alamos National
Laboratory. We find that the capability level of the accelerator computing hardware
and languages has moved beyond the regular grid finite difference calculations and
molecular dynamics codes. More advanced applications requiring dynamic memory
allocation, such as cell-based adaptive mesh refinement, can now be addressed—and
with more effort even unstructured mesh codes can be moved to the GPU.

Keywords Exascale computing · Heterogeneous architecture · GPGPU · Cell-based
adaptive mesh refinement · Molecular dynamics

1 Introduction

Having passed the petaflop marker, the next major milestone in supercomputing is
the design and construction of an exascale machine, following the 2008 Department
of Energy (DOE) study [19] definition of an exascale machine as one which has
“one or more key attributes [(functional performance, physical attributes, and appli-
cation performance) with] 1,000 times the value of what an attribute of a ‘petascale’
system of 2010 [would have].” The United States DOE has set this as a target for
American research and development to achieve by 2018 [28], and other authors have
acknowledged the necessity and challenge of achieving this level of supercomputer
performance (Snir [29]; Dongarra [10]).

The thorough 2008 DOE study [19] identifies four major challenges on the path
to exascale: energy and power; memory and storage; concurrency and locality; and
resiliency. From this and other studies, it is apparent that current trends in power con-
sumption and memory hierarchy management, if extrapolated directly, will be inade-
quate for the architecture and operation of such a machine. The demand for increased
processing power elicits a comparable demand for decreased power consumption per
operation: for the exascale computing paradigm, at least a hundredfold reduction of
power consumption will be required. As the primary power demand comes from the
memory hierarchy and associated memory transfers, graphics processing unit (GPU)-
based computing can hide intranode memory latency with increased throughput, and
thus provides one of the most promising paths to exascale computing.

However, introduction of a much larger number of compute nodes meeting mem-
ory bandwidth and power consumption requirements, as well as the wide-scale sci-
entific deployment of heterogeneous architectures, will not lead to exascale super-
computing in and of itself. That achievement will require advances in the software
paradigm governing the production of scientific program codes and require that paral-
lelism in control and data be exploited at all possible levels. In this article, we present
the backdrop of the supercomputing development to give context to a discussion of
exascale challenges. We then focus on the software changes required to implement a
GPGPU-based paradigm as first steps toward an exascale heterogenenous program-
ming paradigm across a wide range of applications in test problems developed at the
DOE’s Los Alamos National Laboratory (LANL).
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2 Historical supercomputing paradigms

There has been a practical, if not theoretical, gulf between early vectorized or
massively-multiprocessor (MMP) machines (supercomputers) and more modest
thread-based approaches (microcomputers). Much of the early literature ignored this
distinction (as true threading on microcomputers was virtually nonexistent until mul-
tiple central processing units (CPUs) became available), and so parallel computing
as a discipline developed in many directions largely separate from contemporary mi-
crocomputer hardware. The basic approaches possible may be partitioned on their
execution and memory models, which govern how independent portions of the pro-
cess (if any) must interact.

2.1 Vector approach

One of the earliest methods for optimizing machines for large-scale scientific com-
puting was vectorization of memory accesses and operations. Vectorization was in-
troduced in the 1960s (Westinghouse’s Solomon; University of Illinois’s ILLIAC IV)
and rose to prominence in 1976 with the Cray-1, which utilized vector operations to
achieve a peak performance of 80 MFLOPS per chain (Mills and Wood [22]; Oy-
anagi [24]). Vector operations are a major contribution to microcomputer data-level
parallelization and are present on most modern CPUs, an approach classified as single
instruction, multiple data (SIMD).

With the introduction of the Pentium microprocessor architecture by Intel in 1995,
microcomputer CPUs began to support MMX SIMD vector operations, which soon
evolved into the short Streaming SIMD Extensions (SSE) instruction set extension
and its successors and competitors. SSE provides operations for 128-bit wide data
types, allowing for vector operations on 1–16 numbers or characters. These parallel
operations allow a significant decrease in run-time when implemented correctly; in
some cases the speed increase is analogous to an upgrade from a single-core to a
quad-core CPU (Klimovitski [18]). The ongoing development and implementation
of vector extensions reflect the continued relevance of vectorizable linear algebraic
operations to both the scientific computing community and general-purpose applica-
tion developers. Combined with the graphics processing unit (GPU) discussed below,
these operations constitute the modern legacy of vectorization.

2.2 Massively-multiprocessor approach

Due to a combination of restrictions on bandwidth and growing demand for larger
calculations, in the late 1980s supercomputer vendors began shifting to a distributed-
processing, distributed-memory model known as multiple instruction, multiple data
(MIMD), which achieved absolute dominance in supercomputing by the 1990s due
to phenomenal performance increases (Boillat et al. [3]). Although MIMD had been
around in some form since the 1960s (Casaglia and Olivetti [6]), there was still,
by 1991, a demand for then-modern operating systems and programming paradigms
suitable for MIMD supercomputing. As the paradigm developed, multiple communi-
cating copies of a program are executed simultaneously across many compute nodes,
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as in the Message Passing Interface (MPI) standard (Message Passing Interface Fo-
rum [21]; Gropp et al. [13]). The design goal of MPI is to provide a portable pro-
gramming environment with internode communications between processes. (How-
ever, nothing is said about the structure of the node or the types of operations which
may be performed on it. We will return to this point below.)

The internode-communicating MIMD paradigm has governed supercomputing
thought from the late 1980s through the early 2010s, and, despite the challenge of
programming for a distributed environment, it has proven adequate for scientific
computing and numerical applications on systems as varied as small heterogeneous
research clusters and large-scale supercomputing facilities. Internode communication
schemes will surely continue to be an integral part of future approaches to supercom-
puting, regardless of the changes in architecture.

2.3 Local threading approach

With the introduction in 1963 of J. Lyons and Co.’s LEO III, a multitasking operating
system became a reality. Batch programs stored in memory were switched out as pe-
ripheral switches were reached, allowing the “concurrent” serial execution of several
logical command queues. Later single-processor machines continued to use versions
of this approach, including in-program interrupts and forced context-switching by the
operating system. This approach has been termed “threading”, although it does not
allow for truly parallel execution of the threads. True parallel execution required the
introduction of multiple processing units, the path followed by supercomputers. Thus,
earlier approaches used threading as a paradigm for context switching or pipelining
in multiplexing operating systems, while true threading allowed for completely inde-
pendent execution strands.

True threading first became accessible to commercial microcomputer program-
mers with the 2001 introduction by IBM of the POWER4 microprocessor (Tendler et
al. [32]). As multicore microcomputers became available, new or existing shared-
memory models such as POSIX Threads (1995) and OpenMP (1997) were devel-
oped to exploit the natural parallelism in many common applications, such as matrix
multiplication or image processing.

Thread-based microcomputing can be effective for data-parallel or command-
parallel processes. For many applications, however, data-parallelism is easier to ex-
ploit, and thus more often encountered in practice. Hardware features such as the
GPU extend the capacity of the contemporary multicore microcomputer to execute
parallel programs. The GPU utilizes SIMD processing to achieve speedup on data-
parallel linear algebraic operations (such as vector or matrix operations) relevant to
graphics processing. Utilization of the GPU can decrease run-time for certain types
of calculations due to the high number of arithmetic logic units (ALUs) and the im-
pressive memory bandwidth (up to 40 Gb/s) available on-chip. Separate execution
threads can be launched at each ALU with near zero context switching, limited in
principle only by the amount of available memory.

Languages such as Brook were introduced to exploit this data-level parallelism,
essentially casting common numerical methods as graphics routines which were then
executed on the GPU. The manufacturers of GPUs, among others, soon realized the
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potential for nongraphics programming, and general-purpose GPU (GPGPU) com-
puting was born. Numerically heavy data-parallel applications can be executed on the
GPU while concurrent execution of order-dependent code is performed on the CPU.
Today NVIDIA’s CUDA language and the industry standard OpenCL represent the
state-of-the-art in GPGPU languages.

Of course, many other approaches have been explored academically; our intent in
this section has been to examine those which were commercially implemented and
have become influential paradigms for the next generation of supercomputers.

3 Motivations for a new paradigm

The Department of Energy has recently published target specifications [17] for the
next generation of supercomputers, the first of which will hopefully become available
around 2018. The stated targets include exaflop computational power (1018 floating-
point operations per second, FLOPS), energy efficiency, and improved hardware per-
formance and design, all of which are undoubtedly necessary to exascale supercom-
puting. However, the coordination of heterogeneous processing elements will present
new challenges for typical programmers designing scientific and numerical applica-
tions for an exascale machine.

Indeed, some recent observers (Young [35]) have suggested that the primary
benchmark of computational prowess is rapidly becoming software, not hardware—
if a state-of-the-art supercomputer is not running appropriate and well-designed soft-
ware, scaling computational power alone will no longer be sufficient to solve some
of the complex problems now contemplated by researchers. The driving factor for
new supercomputers will be primarily (but not exclusively) software-based, rather
than hardware-based, meaning that the users rather than the vendors will dominate
the performance characteristics of an exascale machine. Although clearly the statu-
tory number of FLOPS available will continue to grow, exploitation of the available
computational power will require better algorithm design and problem decomposi-
tion into data-parallel and command-parallel units. Furthermore, much of the con-
trol of the memory hierarchy must transfer to the application or library developer as
automatic hardware techniques such as cache management are not efficient enough
alone in the context of HPC GPGPU computing. Thus, software will be challenged
to change more in response to this paradigm shift than at any previous time in the
high-performance computing progression.

We are going to first look at the drivers for exascale hardware in the next sections.
These include the issues of the so-called power wall and the memory wall. This pro-
vides the needed context for the direction of the software development. Then we will
return to the subject of the parallelization approach for the next generation hardware.
We expect this hardware to evolve to be some combination of the current GPU hard-
ware and the soon-to-be released Intel Many Integrated Core (MIC) processor.

3.1 Power consumption

Computational efficiency for the most efficient supercomputers has increased by an
order of magnitude in the past 4 years (see Fig. 1). Nevertheless, the historical hard-
ware approach will be inadequate for future machines: the power consumption per
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Fig. 1 Computations per power consumption for the 500 most efficient supercomputers, November 2007
through June 2011. From data available at http://www.green500.org/, Feng and Cameron [11]

FLOP of a supercomputer has risen steadily as error-correction, cache-fetching, and
out-of-order execution methods have become standard on CPU-based compute nodes
([19], p. 202). Naïve scaling of the power requirements for a petaflop machine to an
exaflop machine indicate that more than a gigawatt will be required for execution,
along with the concomitant cooling demand. Contrast this with the DOE-specified
practical power limit for an exascale data center of 20 MW as layed out in the DOE
study led by Khaleel [17] and separately in Feng [11].

Power-intensive operations such as out-of-order execution methods and multiple-
level cache hierarchies will also need to be jettisoned to some extent for an exas-
cale machine, even as features such as error-correcting codes become more common.
(Without error-correcting codes, it is possible that simulations would have to be run
multiple times in order to deal with nondeterministic results, ultimately perhaps in-
creasing the net power usage.) The hardware demand for devices with low power
consumption will tend to favor heterogeneous supercomputing environments, such
as using GPUs on compute nodes to increase data-parallel operations, and thus de-
crease the total demand on more power-intensive portions of the machine if possible.

3.2 Memory

As memory will not scale proportionally to processing power, more intelligent mem-
ory management will also be critical to successful software performance. Explicit
cache management (by the application programmer or library developer), allowing
in-cache accesses to be optimized by utilizing organized local data without pushing
data out of the cache by a call to global RAM, will become critical as machines
continue to grow in size and complexity, both in order to reduce the relative power
consumption of the hierarchical cache system common on microcomputers today and
to decrease the latency of the processor due to memory bandwidth. In addition, the
amount of memory available on an exascale machine is not projected to be one thou-
sand times that available on a petaflop machine, so memory structure economy will
be necessary. (Additional challenges to memory power consumption, bandwidth, and
scaling are discussed in the 2008 DOE study led by Kogge [19], pp. 113–122, 221–
223).

http://www.green500.org/
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Beyond memory bandwidth issues, internode communications are expensive, and
any parallelization which can be performed on the compute node is therefore valu-
able. Bowers et al. [5], suggested that, in terms of processor cycles for LANL’s Road-
runner supercomputer, an internode communication was two thousand times as ex-
pensive as moving memory between the CPU and the GPU. Clearly, intranode com-
munications are preferable when possible for an algorithm.

In summary, the internode communications approach which has dominated su-
percomputing for about three decades will continue to be relevant, but alone it will
be inadequate to meet the increasing level of sophistication which will be exacted
of software. The power consumption per calculation should also greatly decrease to
reach target specifications. Explicit memory management and reduction of reliance
on certain power-intensive hardware operations will help with this process, and com-
pute node optimizations which minimize internode data transfer will be required.
Ultimately, however, a new approach is necessary which synthesizes these consider-
ations with the broader lessons of parallel computing.

4 Parallelization for tomorrow

It is clear that the massively-multiprocessor (MMP) approach is a macrocosm of the
multicore microcomputer approach—load division for many processors on a super-
computer is directly analogous to application threading on a multicore microcom-
puter. In MMP computing, data units are broken into several groups, one for each
processor, which are simultaneously handled serially at each compute node by a con-
ventional CPU-type processor. The lack of machine-global (not node-global) shared
memory for an MMP supercomputer will continue to dominate internode interac-
tions, although the hardware composition of a local node has been reexamined in
recent years to encourage utilization of threading and vector operations on a single
node. For example, consider the TianHe-1A supercomputer at the Chinese National
University of Defense Technology, a machine with 7,168 NVIDIA Tesla M2050
GPGPUs in conjunction with 14,336 Intel Xeon X5670 CPUs and 2,048 FT-1000
CPUs which utilizes a unique parallel programming infrastructure to encourage users
to develop applications which exploit local as well as distributed parallelism using
OpenCL and CUDA (Yang et al. [34]).

The next generation of supercomputers targeting sustained exascale operation will
clearly be based on hardware which has relatively low power consumption yet can
handle sophisticated parallelism and execution: CPU compute nodes coupled with
some sort of accelerators, such as GPUs, Intel MICs, or a similar not-yet-announced
technology. (The GPU has certain attractive characteristics, but given its relatively
low cache memory in comparison to the CPU and the ability to scale only data-
parallel algorithms, the CPU continues to provide the best compute node platform
for memory- or execution order-reliant sections of code.) This model cleanly unites
the three major paradigms of parallel computing: vectorization, massively multipro-
cessor parallelization, and process threading. Extension of problem decomposition
to its logical extreme suggests a scenario in which intranode communications and
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cache management are managed explicitly by OpenCL or another GPU/heteroge-
neous device programming language and internode communications are handled by
a message-passing interface such as MPI.

While we argue for a scenario in which GPUs are either the primary compute
nodes or are tightly coupled with conventional CPUs at the compute nodes, the ad-
vantage of an open standard, heterogeneous device-based approach is that it allows
any type of device at the compute node to be exploited without major changes to
the compute kernel. For instance, if IBM’s Blue Gene architecture, FPGAs, or an
as-yet-unproposed exotic chip architecture becomes the dominant hardware for su-
percomputers instead of CPUs and GPUs, no obstacle arises to utilizing OpenCL as
the primary language for interacting with the device hardware.

4.1 Software requirements

Perhaps the biggest change which users of supercomputers with heterogeneous or
GPU-based architectures will perceive is that the effective utilization of such a ma-
chine will make new demands on authors and maintainers of scientific applications
and numerical software. Fortunately, open industry standards such as OpenCL should
decrease the amount of device-specific work required to within reasonable limits
(e.g., querying the hardware to check for double-precision floating-point variable
support). Vendor-specific languages such as CUDA C can gain portability to other
hardware through the emergence of tools such as Swan, which can convert CUDA C
code to OpenCL (Harvey [14]).

The treatment of numerical algorithms will finally have to unify the three logical
strands of parallelization discussed above. An algorithm will be required to be able
to be decomposed into logical units on at least two levels: one for the node level (uti-
lizing internode communications schemes) and one for the intranode level (based on
data-parallel threading and vector operations). Parallelization of an algorithm at mul-
tiple levels portends respectable increases in computing power at a relatively mod-
est cost in electrical power. In connection with this, Dongarra [10] suggests that the
driving model for high-performance software design could become data parallelism
instead of control parallelism.

The logical combination of context-switching threading and parallel execution
threading opens up the possibility that, within a node at least, the number of threads
is not limited to the physical number of processors. Unshackling the number of ex-
ecution threads on a node from the number of physical processors means that the
problem can be decomposed intranode at the lowest possible data-parallel level. (It
is not apparent that this argument extends to the nodes as in MPI there is no master
coordination of execution and memory management without privileging a specific
node.)

For large machines using MPI, recall that internode communication is an ex-
tremely cycle-intensive operation (Bowers et al. [5]). In short, software develop-
ment and algorithm choice will be driven by considerations of multilevel data par-
allelism and minimization both of memory transfer to and from the GPU device and
of internode communications, requiring creative domain decompositions and numer-
ical methods to be discovered and implemented.
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Some improvements in the MPI layers and GPU scheduling are also needed to
improve performance. Interesting research in this area includes topology aware pro-
cess placement for MPI (Bhatele [2]) which is being tested on our applications. Pro-
cess placement leverages the work of processor affinity (Yuan [36]) that is already in
OpenMPI and has been in use at LANL for a couple of years with typically a 5–10 %
boost in performance and occasionally more. Research on GPU scheduling (Kato [15,
16]) demonstrates better control over the management of work in the GPU queue and
will be crucial to enforcing priorities to GPU tasks and avoiding conflicts.

4.2 Code complexity

Many scientists and engineers who write parallel codes are not hardware program-
ming specialists. For a GPU-parallel and ultimately a hybrid GPU/MPI-parallel ap-
proach to be palatable to them, the programmability and code complexity should not
increase significantly just because an exascale computer is being used. A thousand-
fold increase in processing power should not require a concomitant thousand-fold
increase in the number of lines of code to exploit! A modest increase in the number
of lines of code necessary to use a GPU or other device on a node will no doubt be
necessary. We demonstrate below in the applications section that much of the cost
incurred is due to the device and kernel setup and termination and thus fixed rather
than proportional to the calculation size or number of threads or nodes necessary.

The OpenCL 1.1 specification is still an early standard and many of the hardware
drivers are not fully developed. A runtime-level application programming interface
(API), such as that available in CUDA, is also desirable and would further reduce the
requisite code complexity. Array bounds checking or other memory protection would
also ease implementation difficulties and help isolate errors.

On any GPGPU device, some additional setup will be required for algorithms;
for instance, an intranode reduction must be performed prior to a global reduction
operation. This is analogous to the lines-of-code overhead incurred by using MPI or
a similar system for internode communications which is already familiar to users of
HPC machines.

5 Numerical applications with GPGPU

Although some authors have examined the potential of heterogeneous devices such as
IBM’s Cell BE, IBM’s Blue Gene, or the GPU for certain types of numerical calcula-
tions, even large-scale applications (Bowers et al. [4, 5]; Papadrakakis, Stavroulakis,
and Karatarakis [26]; Wolfe [33]), there will be a demand for demonstration projects
integrating multiple CPUs and GPUs with optimized numerical applications in an
HPC environment. Accordingly, we highlight four applications developed at Los
Alamos National Laboratory which utilize several standard features of scientific ap-
plications which are not currently well-supported or amenable to straightforward im-
plementation on the GPU. These codes serve as proofs-of-concept that existing nu-
merical algorithms can be successfully implemented on the GPU without extensive
restructuring of the basic logic, and are conducted with an eye toward demonstrating
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the types of adaptations of existing codes and algorithms which will be necessary
for heterogeneous-device-based high-performance computing. We adopt as a metric
of complexity the number of lines of code, which although unsatisfactory in some
respects, approximately reflects the required effort spent in programming. All oper-
ating statistics have been gathered on the Darwin cluster operated by the Computer
& Computational Sciences (CCS) division at Los Alamos National Laboratory using
the AMD Opteron Processor 6168 for the CPU with the NVIDIA GF100 Tesla C2050
for the GPU.

5.1 Regular grid in OpenCL

The first application ported to OpenCL is a two-dimensional code implementing the
shallow water equations on a regular discretized grid. The regular grid data struc-
tures are easier to adapt to the GPU data model (which is optimized for rectangular
domains as often encountered in computer graphics applications) and in this appli-
cation, the data is maintained on the GPU and only brought back for visualization.
The finite difference stencil operations map to the GPU in a straightforward way and
the maximum operation in the time-step calculation is done with a complex GPU
reduction algorithm.

The algorithm has the three state variables: height H and momentum in the x and
y directions U and V , representing the values of the state variables at the cell centers.
A Lax–Wendroff predictor-corrector technique is used to interpolate the values a half-
step in space and time. These predictor values are then used to estimate the new values
at cell centers for the next time-step. A total variation diminishing (TVD) corrector
term is used to damp out second-order oscillations in the solution. The method is
similar to the centered TVD scheme described by Davis [8].

The OpenCL parallel code is very similar to the C code; it essentially is the main
program loop with the two for loops over the mesh elements removed as shown in
Listing 1. The state variables are copied to a local 16 × 8 memory tile which acts
like a programmable cache with fast access times. Minor restructuring of the code
was done to get some additional speedup. This restructuring consisted of changing
the order of operations to reduce GPU memory bank conflicts and was done by track-
ing performance while code streamlining was done and keeping the fastest version.
Recent GPU hardware has reduced the penalities for memory bank conflicts, so this
type of work should become less important. Throughout this process, the code re-
mains recognizable as the implementation of the original numerical equations.

The original C/MPI code consists of about two thousand lines including the graph-
ics routine. After being ported to OpenCL, the code has a 75 % increase in the line
count. But this is almost entirely accounted for in a support library, ezcl, written to
handle the OpenCL calls. The ezcl library is designed to handle administration of
the compute device, including initialization of the compute device and checking the
error codes returned from the OpenCL calls. This demonstrates what we conjecture
will happen with most application ports: the straightforward port will increase the
line count by 50–75 %, but when a support library is developed with a higher level
of abstraction, the increase in line count will become much more modest. After sub-
tracting out the number of lines in the ezcl library, the GPU version line count is
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Listing 1 Removing the for loops and using the thread identifiers in OpenCL

/ / C Wave code
f o r ( j = 0 ; j < mysize ; j ++) {

f o r ( i = 0 ; i <=imax ; i ++) {
/ / d e n s i t y c a l c u l a t i o n
Hx [ j ] [ i ] = 0 . 5 ∗ (H[ j + 2 ] [ i +2]+H[ j + 2 ] [ i + 1 ] ) − C x h a l f ∗ ( HXFLUX( j , i )−

HXFLUX( j , i −1) ) ;
. . .

}
}

/ / OpenCL Wave k e r n e l
c o n s t u i n t t i X = g e t _ l o c a l _ i d ( 0 ) ;
c o n s t u i n t t i Y = g e t _ l o c a l _ i d ( 1 ) ;
c o n s t u i n t ntX = g e t _ l o c a l _ s i z e ( 0 ) ;
c o n s t u i n t s t r i d e t Y = ntX +4;
c o n s t u i n t i c = ( t i X +2) +( t i Y +2)∗ s t r i d e t Y ; / / C u r r e n t t i l e i n d e x
c o n s t u i n t i l = ic −1; / / I n d e x one c e l l t o t h e l e f t
c o n s t u i n t i r = i c +1; / / I n d e x one c e l l t o t h e r i g h t

/ / Code f o r copy from H_array t o H_val t i l e o m i t t e d

HxPanel ( 0 ) = HALF∗ ( Hval ( i c ) + Hval ( i l ) ) − C x h a l f ∗ ( HXFLUX( i c ) −
HXFLUX( i l ) ) ;

. . .

Table 1 Average time spent in seconds on each function for a regular grid code with a mesh of 1280 ×
1280 cells for 10,000 time-steps

Function 1 CPU 16 CPU 48 CPU 144 CPU CPU + GPU

Finite difference method 8105 539 175 56 127

Reduction 428 156 91 74 0.01

Write to device 0 0 0 0 0

Read to device 0 0 0 0 4.6

Total 8533 692 266 130 131

almost the same as the C/MPI version. We infer from this that the increase in code
complexity for the GPU version is about the same order of magnitude as for the MPI
parallelization (which was removed in the GPU implementation).

As a payoff for the increase in code complexity, there is a 45× performance im-
provement of the GPU as shown in Table 1. There are small differences in the GPU
and CPU versions that may affect some of the detailed speedups. The relative level
of optimization is fairly standard for both the CPU and GPU codes. More significant
factors, such as both versions utilizing double precision, make the comparison, nev-
ertheless, valid. Also shown in Table 1, the MPI version requires 144 processors to
equal the speed of 1 GPU node in the GPU version.

Two-dimensional and three-dimensional computational fluid dynamics (CFD) ker-
nels were also written and the results were similar but with a smaller speedup for the
3D kernel.
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As a foray into a higher-productivity programming level, a Domain Specific Lan-
guage (DSL), ForOpenCL, is being developed by Sottile [30]. DSLs are usually com-
posed of part library and part compiler. ForOpenCL targets regular grid and adaptive
mesh refinement (AMR) types of problems, similar to how the Liszt DSL targets Eu-
lerian unstructured grid problems. (Liszt is discussed in the unstructured grid appli-
cation section.) The ForOpenCL DSL utilizes the Rose open source compiler infras-
tructure and parts of the hand-written support code for a library. A Fortran kernel was
developed for the shallow water equations and the ForOpenCL DSL generated the
OpenCL code for the shallow water kernel with the goal of trying to match the hand-
written kernel performance. The results are encouraging enough (Sottile et al. [30];
Sottile et al. [31]) that we are now attempting a similar effort to match the adaptive
mesh refinement (AMR) discussed in the next section. The productivity savings for
the regular grid are modest given that the OpenCL kernel is relatively easy to write.
But a big advantage for using the DSL for regular grids is when we are generating
multiple hardware specific codes such as an OpenCL kernel, a CUDA kernel, an MPI
kernel and a hybrid implementation using a GPU language and MPI. For the AMR
code, the greater complexity will mean much larger productivity gains for a DSL, but
also more development challenges.

The results with the regular grid problems are encouraging, but most numerical ap-
plications now use some sort of dynamic-memory-based simulation such as adaptive
mesh refinement (AMR) or an unstructured mesh. How do these types of applications
fare on the current GPU architecture? The next category of applications examines this
question.

5.2 Adaptive mesh refinement in OpenCL

CLAMR is a cell-based AMR code modeling the shallow water equations. A classic
AMR program relies heavily on features of modern programming languages such as
dynamic memory allocation and either a globally-available memory addressing space
(on a microcomputer) or a distributed communicating message-passing interface (on
a supercomputer). Neither dynamic memory allocation nor inter-thread communica-
tions are currently available on a GPU, and so the development of a numerical AMR
code for the GPU requires methods for implementing or working around the lack of
such common features as dynamic memory allocation.

The basic data-parallel unit for CLAMR is a cell, consisting of state variables
and position information. Thus each cell’s calculations can be launched as a sepa-
rate thread in the GPU. Additionally, initialization of the mesh, calculation of the
time-step, evolution of the state variables, and mesh refinement dictated by gradient
calculations, are all performed natively on the GPU. Control flow is returned back to
the CPU only to reallocate GPU global memory as all state information is transferred
to the updated refined mesh. Neighbor calculations are resident on the GPU as well.
The full architecture of CLAMR is discussed in more detail in Nicholaeff et al. [23].

For the regular grid code, the addition of a global reduction call and a basic itera-
tive loop did not significantly impact the number of lines of code. In contrast, there is
a nontrivial amount of code necessary for the dynamic memory management found in
CLAMR as shown in Table 2. For the serial AMR code from which the parallel ver-
sion was adapted, around 1500 lines of C/C++ code in the main computational loop
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Table 2 Lines of code in each function in CLAMR. (For GPU, lines are shown for host and device as
“host + device” lines. Adjustment made for comment lines

Function CPU CPU + GPU MPI MPI + GPU

Calculate time-step 29 66 + 94 31 68 + 94

Main calculation 545 65 + 758 551 133 + 795

Refine potential 218 106 + 530 226 126 + 530

Mesh refinement 446 117 + 384 508 161 + 384

Calculate neighbors 206 68 + 123 508 628 + 420

Mass sum 34 70 + 117 42 72 + 117

Subtotals 1478 492 + 2006 1866 1188 + 2340

Total 1478 2498 1866 3528

were necessary for the implementation. The MPI version of CLAMR has about 33 %
more lines of code, not including our L7 sparse communication package. The GPU
version of CLAMR requires about 66 % more lines of code in the main computational
loop. The lines in our GPU support library ezcl that perform the device initializa-
tion and error checking are not included in this count. Based on this metric, the level
of effort for the GPU implementation is roughly twice the effort for the MPI imple-
mentation. Per kernel, roughly thirty lines of code are required to set up the on-chip
memory arrays, execute the kernel, and read the data off after the kernel completes.
The ‘subroutine call’ part of the host code for the GPU where every argument in the
call list must be set with an OpenCL call is responsible for a large part of the increase
and is the most error prone part of writing OpenCL code as the arguments must be
manually matched between the host code and the kernel code in separate files. Im-
provements in the OpenCL standard in this area could reduce the effort of writing
an OpenCL implementation. It should be noted that a better subroutine call interface
is available in CUDA with the ‘triple chevron’ syntax. Implementing both MPI and
GPGPU in the code requires a 140 % increase in lines of code and more than the in-
crease due to MPI and GPGPU alone. This is because when doing the complex MPI
sparse communication, the data must first be retrieved from the GPU, the communi-
cation scheduled, and then the data sent back to the GPU. The difficult section of the
code is primarily in the calculate neighbors section of the code where the ghost cells
for the mesh are established. Each step in the hybrid parallelization implementation
is of reasonable effort, but in total, the effort is substantial and adequate manpower
and expertise must be planned to be successful with such an effort. Some reduction
in the difficulty should occur with the maturing of the GPU programming languages,
availability of libraries, and familiarity among programmers.

A key breakthrough in parallel algorithms was made to enable the full GPU port
of the CLAMR code. Neighbor calculation was originally done using a k-D tree al-
gorithm. Tree-based algorithms are challenging to port to a parallel thread model and
would take several months. Instead, we developed an new algorithm based on a hash.
Hash algorithms are O(n) instead of O(n logn) for the k-D tree. The difficulty is
deciding what key to use. A key that would result in a perfect hash is desirable so
that a collision handler is not needed. It was discovered that using the finest level of



1036 N.E. Davis et al.

Table 3 Average time spent on
each function in CLAMR in
seconds for an initial 450 × 450
coarse mesh cells with one level
of refinement run for 5000
cycles. Not all time is listed so
the columns do not add up to the
total time. The scalability of this
problem is considered in
Nicholaeff et al. [23].

Function CPU CPU + GPU Speed-up

Calculate time-step 57.8 0.86 67.2×
Main calculation 1694.9 31.6 53.6×
Refine potential 102.3 4.00 25.6×
Mesh refinement 64.6 1.36 47.5×
Calculate neighbors 145.5 1.68 86.6×
Mass sum 13.0 0.64 20.3×
Write to device 0.0 0.01

Read to device 0.0 0.07

Total 2087.7 40.27 51.8×

the mesh would result in a minimum hash size for a perfect hash. The algorithm has
each cell write its index to all the cells that it contains at the finest level. Each cell
than queries its neighboring cell locations and reads the index off of the hash. This
algorithm turns out to be 350× than the k-D tree on the CPU. Because it is inherently
parallel, the algorithm was ported to the GPU in a single day for a total speedup of
22,000× (Nicholaeff, et al. [23]). Since then, we have demonstrated that hash-based
algorithms can be used for a wide range of spatial operations, yielding speedups from
hundreds to thousands due to the multiplicative effect of the algorithm and the GPU
parallelism (Robey et al. [27]).

Algorithmic breakthroughs—such as that just described—will be necessary to ex-
ploit the full power of the hardware and the parallelism of the algorithm. For the ir-
regular memory structure in CLAMR, a fast GPU scan is critical so that every thread
knows where to store their results independently, thus making the operations paral-
lel. As more numerical libraries (and possibly a runtime-level OpenCL API) become
available, the amount of this code that must be written by a scientist or engineer
utilizing an application code for research purposes should decrease dramatically.

The hash algorithms also demonstrate portable performance for both ATI and
NVIDIA GPU hardware with OpenCL on cutting-edge algorithms using general
coding that yields good perfomance on both architectures (Robey et al. [27]). Sim-
ilar performance portablity has also been demonstrated in a Supercomputing 2010
demonstration code running simultaneously on the IBM Cell processor, IBM Power,
nVIDIA Tesla GPUs, AMD Opteron CPUs and Intel Core i7 CPUs (Bergen et al. [1]).

The speedup of the parallel code versus the serial version is outlined in Table 3. All
of the main computational loop is done on the GPU. The CPU and GPU code were
written in normal physics style with a standard level of compiler optimizations. The
dynamic memory requirements are handled by a double buffering technique similar
to that used for graphics. This technique uses a new and old state buffer with the
new state being reallocated before the mesh refinement and the old afterwards so that
the old data is refined into the larger new mesh array. There are also pointer swaps
along the way to move data arrays from new to old. Thus intelligent management by
the CPU of the GPU memory combined with cache management and thread-based
parallelization yielded over a 50× speedup for CLAMR over the serial mesh code.
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Timing results for the GPU device were sensitive to the tile size chosen, exper-
imentally varied from 32 to 256 threads, presumably due to excessive memory de-
mands. This necessitates careful consideration whether declaration of additional vari-
ables in a compute kernel could be replaced by updating previously existing variables
(at the risk of polluting the variable namespace). But this consideration goes a step
further, as selection of an optimal tile size lessens the number of required reads to
global device memory. Additionally, however, increasing tile size increases memory
pressure in the sense that more threads are pushed onto local memory potentially
causing a memory overflow. Hence, careful testing is required to find the optimal
range for the current kernel. Developing standard libraries which explicitly test ker-
nels with variable tile sizes would therefore be of high value.

As mentioned, reducing the number and size of memory write operations is imper-
ative. Specifically, in the development of the main compute kernel of CLAMR, the
write operation of the arrays containing the information of the width and height of
the cells was removed from the code. Instead, these lengths were computed on the fly
from the level of refinement array (which is passed in anyway for neighbor calcula-
tions to be discussed below). Removing those two arrays reduced the need for global
GPU memory accesses, resulting in a 25 % speedup of the main compute kernel. The
speedup which can be gained by masking memory latency with actual computation is
simply too valuable to overlook, as demonstrated here. The time and effort required
to devise real-time calculations in algorithms to replace storing values in memory is
well worth the work as exascale computing moves to extensive use of GPUs.

Thus far, the techniques mentioned address the shift in thinking required to move
away from multiple-level cache hierarchies. Another major consideration involves
explicit control flow and avoiding out-of-order execution. In particular, perhaps the
greatest source of difficulty encountered by the authors in implementing AMR on
a GPU device stems from neighbor-dependent calculations. Updating state variables
requires knowledge of the state variables of a neighboring cell (and, in some cases, the
neighbor of a neighbor, depending on the relative refinement of a neighboring cell).
While significant speedup arises from the implementation of a local tile, boundary
cells around the tile continue to require access to the device global memory. Aside
from pointing out the slowdown arising from the global memory read operation, there
is a significant penalty stemming from control-flow branching. Conditional branching
between a global or local read operation should be used sparingly, as threads in a
workgroup may execute in lockstep, potentially negating the effective speedup gained
from working on the local tile.

The code for CLAMR and Wave, the regular grid code, are available online under
the open-source New BSD License at http://www.github.com/losalamos. The ezcl
and L7 libraries referred to herein will be available in conjunction with CLAMR.

5.3 Unstructured mesh code in CUDA

To study possible implementations of unstructured meshes on GPUs, a small compute
kernel (an artificial viscosity, or AV, computation) from the FLAG multiphysics code
has been isolated and implemented in CUDA C on the GPU ([20]). The CPU AV
kernel is a strictly serial implementation. (The FLAG code as a whole is typically run

http://www.github.com/losalamos
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Table 4 Average time spent in
seconds on each function for an
unstructured mesh test problem
with 32,400 cells and about
2,000 time-steps

Function CPU CPU + GPU Speed-up

Compute artificial viscosity 134.52 6.10 22.1×
Other calculations + support code 316.52 317.46 1.0×
Total 451.04 323.56 1.4×

in parallel under MPI using domain decomposition; however, the AV computation on
each domain is completely independent of the others, so for purposes of this study it
was treated as a serial code.)

The GPU is intended for graphics computations, which generally can be con-
structed on a regular rectangular grid in two or three dimensions. In contrast, many
numerical applications, such as finite element methods, utilize unstructured meshes
to better optimize the solution for a particular geometry. Unstructured meshes are
particularly challenging to implement on accelerated architectures such as GPUs.
A regular grid can easily be divided into chunks such that the cells and points of each
chunk are contiguous in memory, or at least fall in a regular pattern. This facilitates
the movement of different chunks between GPU and CPU memory and the process-
ing of those chunks in parallel. In an unstructured mesh, however, there is generally
no straightforward way to divide the different mesh entities (cells, points, edges, etc.)
into independent chunks at the same time. A GPU-based implementation must do
some form of extra bookkeeping or data reordering in order to process chunks in
parallel and recombine them when the computation is complete.

The kernel used in this study consists of several loops over “sides” (triangular sub-
regions of a cell), and it uses variables defined over points and cells as well as sides.
Therefore, the problem is conceptually easy to parallelize, using one thread per side.
The complication comes in identifying the cells and the points corresponding to each
side, and in moving the needed cell and point data from the CPU to fast memory on
the GPU. Three different data movement strategies have been identified and imple-
mented. Timing results suggest that an efficient strategy is to have the GPU scatter
point data arrays into side-based arrays at the beginning of each kernel invocation,
and to gather the side-based arrays back to their point-based counterparts as each
kernel finishes. Implementation details are included in Ferenbaugh [12].

The preferred GPU implementation of the kernel contained about 1,100 lines of
CUDA C code, compared to 700 lines of Fortran in the original CPU kernel, an in-
crease of about 55 %. The CUDA compute kernel code on the GPU was very similar
to the corresponding CPU code, while much of the additional CUDA host code per-
formed bookkeeping tasks such as initialization, shutdown, memory management,
and overlapping of data movement with computation. The rest of the FLAG code
(about 550,000 lines) remained unchanged. It is conjectured that if additional CPU
kernels had been moved to the GPU, much of the bookkeeping code could have been
shared between them and the percentage increase would have been smaller.

Results comparing CPU and GPU versions of the code are shown in Table 4. For
this study, only the artificial viscosity kernel was moved to the GPU, so results for the
remainder of the code are not given in detail. Also, reads and writes are overlapped
with computation, so there are no separate timings for communication. The optimized
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GPU kernel ran about 22× faster than the CPU version, yielding roughly a 28 %
speedup for the full code. Presumably, if more of the application code could be moved
to the GPU, a speedup closer to 22× for the full code would be possible.

Another programming model that has proven useful for some unstructured mesh
algorithms is the Liszt DSL [9]. This model allows a code developer to work with gen-
eral unstructured meshes at a fairly high level of abstraction, while the optimization
for specific hardware such as GPUs is done by the Liszt compiler. One of the authors
has worked with Liszt in another context and found the abstraction to be helpful and
easy to use. Unfortunately, this version of Liszt had some limitations (limited support
for moving mesh, no support for subcell entities) which would make it impossible to
implement the particular physics algorithms described in this section.

A freestanding mini-app PENNANT, which implements similar physics to the ker-
nel used here, is under development; it will be used to further explore the ideas from
this study. We anticipate that the code for PENNANT will be made available under
an open-source license at http://www.github.com/losalamos in the near future.

5.4 Molecular dynamics in CUDA

REF-MD is a simple molecular dynamics mini-app developed at LANL for use in
testing different GPU implementation strategies. REF-MD was created as an exercise
in an exascale programming workshop, so its developers have not had the opportunity
to bring it to the maturity level of the other applications described previously. Still, it
is illustrative of another type of application that can be effectively implemented on a
GPU.

Unlike the previous applications, this problem is defined in terms of particles
rather than finite-element meshes. We compute the time evolution of an ensemble of
interacting particles, where the movement of each particle is determined by the forces
exerted on it by its neighbors within a given cutoff distance. To make the neighbor
search more efficient, REF-MD superimposes a regular grid on the problem domain,
with cell size chosen such that a neighbor within the cutoff distance of a particle must
be in the same grid cell or an adjacent one. Using these neighbor lists, a force is com-
puted between a particle and each of its neighbor particles; these are then summed
to provide a total force and acceleration for the particle. A serial CPU version of the
REF-MD code and a CUDA GPU version have been completed. An MPI version was
attempted but not finished.

In the CUDA GPU version of the code, the entire computation was successfully
moved onto the GPU; only initial and final input and output steps remained on the
CPU. This allowed for the elimination of (nearly all) data movement between CPU
and GPU, in addition to making each computational step more efficient. The most
expensive step of the CPU calculation is the force and acceleration update; in this
step, each particle’s update is independent of all others (full data-level parallelism),
so it was particularly efficient to assign one thread per particle. The particle sort step,
though much less expensive on the CPU, was more difficult to move to the GPU,
since sorting contains many data dependencies and is harder to implement on a highly
threaded architecture. Our GPU version used the optimized sorting algorithm from
the CUDA Thrust library, which is probably more general than necessary but proved
to be sufficiently efficient in this context.

http://www.github.com/losalamos
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Table 5 Average time spent in
seconds on each function for a
molecular dynamics code on
256,000 particles for 10
time-steps

Function CPU CPU + GPU Speed-up

Sort particles into cells 1.25 0.0994 12.6×
Generate ghost particles 0.45 0.0313 14.5×
Update position, velocity 0.20 0.0196 10.4×
Update force, acceleration 63.73 0.5561 114.6×
Write to device 0.0075

Read from device 0.0109

Total 65.64 0.7249 90.6×

The CPU code contained roughly 2,000 lines of C++ source and header files; of
these, about half were for the main computational kernel, while the rest were various
kinds of support code (data types, I/O, timing, etc.) The GPU code shared the same
support code, but replaced the kernel code with about 700 lines of CUDA C code
and C++ interface code. In this case, the comparison of lines of code is somewhat
misleading: the CPU code was in fully object-oriented C++, while the GPU code was
almost entirely in CUDA C with very few C++ features.

For the parallelized portion of the application, the GPU code showed a perfor-
mance improvement of 90× over the CPU code (Table 5). This figure is probably
somewhat inflated, since the workshop participants did not have the opportunity to
fully optimize the CPU code. We estimate based on timing data for some of the al-
ternate versions described below that the CPU code could have been rewritten and
made up to 3× faster. This would be done by removing some inefficient uses of the
C++ Standard Template Library (e.g., “map” searches inside of deeply-nested loops)
and replacing them with better-performing alternatives. Even so, the performance
improvement on the GPU would have been a respectable 30×. This is not surprising
since the highly parallel nature of the force calculations, mentioned earlier, makes the
REF-MD code a particularly good candidate for GPU optimization.

The REF-MD code was also used for exploration of other GPU programming
models. These versions were partial implementations which moved only some of the
functions to the GPU, unlike the CUDA version described above which performed
the entire computation on the GPU. So, it is inappropriate to give a detailed compar-
ison between the alternate versions and the CUDA version. We note, however, that
an OpenCL version showed similar performance to an earlier CUDA version with
a comparable set of functions running on the GPU. In addition, two directive-based
programming models were tested: HMPP, and a directive set from PGI. (The PGI
directive set is a predecessor to the new OpenACC standard, which was not yet de-
fined when this work was done.) Run times for these were within a factor of about
1.5–2.5 of a comparable CUDA version. From a code development standpoint, the
directive-based models were conceptually much easier to work with than OpenCL or
CUDA. At the time, both directive-based models had some limitations and bugs to
work around; hopefully, most of these have been resolved in newer releases since this
work was done.
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5.5 Implementation observations, techniques, and lessons learned

Heterogeneous compute architectures composed of CPUs and some form of compute
accelerators, such as GPUs, are one of the most likely hardware architectures to be
present in exascale-class systems. The foregoing applications demonstrate that many
applications common to scientific computing can be successfully implemented on the
GPU or other compute accelerator devices, indicating that exploiting intranode/inter-
node multilevel parallelism in algorithms will be a key strategy for high-performance
computing, although some algorithm adaptation will need to take place. Many soft-
ware applications which are executed on current heterogeneous supercomputers, such
as Roadrunner or TianHe-1A, exploit only the CPU compute node-level parallelism
of the machine, neglecting the data-level parallelism available with the compute ac-
celerator part of the architecture. For an cost comparable to the effort required to im-
plement MPI, OpenCL, or CUDA can be introduced, offering at least a 10× speedup
and possibly much more.

Returning to the regular grid problem, we saw that it took 144 processors with MPI
to match the compute power of 1 GPU. When we added the additional processors
for speeding up the calculation, we also had to add the memory for each processor
even though we did not need it. As a rough figure, the memory consumes about half
the power for a node. This means that our energy efficiency dropped by a factor
of 70 for unneeded memory just to get the processing speedup. For heterogeneous
architectures, the compute accelerator level of the system can provide powerful low-
latency parallelism, and the MPI layer is needed to give memory scalability.

Some further design lessons learned from developing these research codes are
the necessity of conceptually separating processor and memory scaling and dealing
with each programmatically; and the need for a commodity programming stack to
avoid application and hardware dead ends and enable rapid hardware development
iterations.

One of the surprising outcomes for all of the participants in this study was how
much of each application could be implemented on the GPU using OpenCL or
CUDA. Coming into the effort, the goal was to get the main computational kernel
on the GPU for each of the applications. Quickly it became apparent that most of
the compute cycle could be moved to the GPU given enough resources, innovative
algorithm development, and rapid hardware/GPU language improvements. There are
still challenges and research to be done in porting some application parts to the GPU.
These include many aspects of the unstructured computations and code blocks with
large amounts of divergent logic (conditional statements) where the lockstep nature
of the current GPU implementations results in poor parallelization. Our optimism for
improvement in these areas is high given the breakthroughs in porting complex algo-
rithms to the GPU that we thought to be unsuited for such architectures just a short
time ago.

At the outset of the project, there was concern over contention for the GPU while
running these kinds of applications. No contention problems were encountered on
a wide range of hardware, including Mac OS X-based and Unix-based laptops and
desktops with GPUs from both ATI and NVIDIA. On the research cluster with 42
processors and 2 GPUs, we ran 48 MPI ranks driving one or both NVIDIA GPUs
without seeing contention for the devices.
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It is important to note that not all of the participants were GPU programming
experts or even familiar with MPI when they started the study. Yet within a few
months’ time, they were comfortable with the programming languages and imple-
menting complex numerical algorithms with them. The newcomers to both Open-
CL/CUDA and MPI were observed to be more comfortable with the GPU language
after a few months, though this is likely due to the relatively greater time spent on
GPU programming during the project.

6 Conclusion

The unification of the separate strands of parallel computing, namely vectorization,
MMP, and threading, will allow numerical calculations to be performed on larger
scales than ever before, but will make new demands on developers of scientific soft-
ware to exploit the hardware potential. As exascale supercomputers become available
over the next decade, well-designed software libraries and applications that exploit
the hardware in a portable yet efficient way will provide the best speedup for high-
performance scientific computing. Development of standard libraries for testing and
optimizing kernels with various tile sizes would be a priority for workers in the even-
tually adopted industry-wide standard for GPGPU computing. We note that there
have been some substantial steps taken in this direction, such as Intel’s Hierarchy-
Savvy parallel algorithm design (Hi-Spade) approach (Chen, Gibbons, and Nath [7])
and several DOE-based initiatives in exascale codesign work (listed in Pao [25],
among others), although much of the challenge stills lies ahead.

In this article, we have sought to illustrate some of the considerations and advances
for initial test problems in this area using OpenCL and MPI, demonstrating that the
two-level paradigm of intranode/internode communications can be exploited and that
applications requiring dynamic memory allocation and nonregular grids or meshes
are practicable. Although challenges certainly remain, portable and open industry
standards such as MPI and OpenCL will allow scientists and engineers to program
heterogeneous devices without wasting excessive time on porting the code from one
architecture to another. As hardware is pushed to more extreme limits, scientific and
numerical applications will need to exploit the available computing power more ef-
fectively. And as parallel programming becomes more ubiquitous, the demand for
skills to effectively manage data and numerical calculations on high-performance su-
percomputers will only increase.
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