
J Supercomput (2013) 63:773–789
DOI 10.1007/s11227-012-0770-1

Enhancing GPU parallelism in nature-inspired
algorithms

José M. Cecilia · Andy Nisbet · Martyn Amos ·
José M. García · Manuel Ujaldón

Published online: 3 May 2012
© Springer Science+Business Media, LLC 2012

Abstract We present GPU implementations of two different nature-inspired opti-
mization methods for well-known optimization problems. Ant Colony Optimization
(ACO) is a two-stage population-based method modelled on the foraging behaviour
of ants, while P systems provide a high-level computational modelling framework
that combines the structure and dynamic aspects of biological systems (in particular,
their parallel and non-deterministic nature). Our methods focus on exploiting data
parallelism and memory hierarchy to obtain GPU factor gains surpassing 20x for
any of the two stages of the ACO algorithm, and 16x for P systems when compared
to sequential versions running on a single-threaded high-end CPU. Additionally, we

J.M. Cecilia (�)
Departamento de Informática, Escuela politécnica, Universidad Católica San Antonio Murcia,
Campus de los Jerónimos S/N, Guadalupe 30107, Murcia, Spain
e-mail: jmcecilia@ucam.edu

A. Nisbet · M. Amos
School of Computing, Mathematics and Digital Technology, Manchester Metropolitan University,
Chester Street, Manchester M1 5GD, UK

A. Nisbet
e-mail: a.nisbet@mmu.ac.uk

M. Amos
e-mail: m.amos@mmu.ac.uk

J.M. García
Facultad de Informática, Universidad de Murcia, Campus de Espinardo, 30080 Murcia, Spain
e-mail: jmgarcia@ditec.um.es

M. Ujaldón
Computer Architecture Department, ETSI Informática, University of Málaga, Campus Teatinos,
Bulevar Louis Pasteur, s/n, 29071 Málaga, Spain
e-mail: ujaldon@uma.es

mailto:jmcecilia@ucam.edu
mailto:a.nisbet@mmu.ac.uk
mailto:m.amos@mmu.ac.uk
mailto:jmgarcia@ditec.um.es
mailto:ujaldon@uma.es


774 J.M. Cecilia et al.

compare performance between GPU generations to validate hardware enhancements
introduced by Nvidia’s Fermi architecture.

Keywords GPUs · HPC · ACO · P systems · Bioinspired methods

1 Introduction

The use of Graphics Processing Units (GPUs) has become increasingly popular in
high performance computing applications [13], to the extent that GPUs are now a
key resource for parallel applications [12]. The scalable CUDA programming model
(for details, see [19]) has evolved to support the new hardware features progressively
added by NVIDIA to their range of GPUs, with the Fermi architecture [21] being
the most recent milestone in this path. In this article, we evaluate the GPU perfor-
mance optimisation of two commonly-used bio-inspired computational methods; Ant
Colony Optimisation (ACO) [10] and Membrane Systems (or P systems) [22, 23]. We
begin by giving a brief overview of these methods, before describing how each may
be tuned for the GPU. We then describe the results of performance evaluation exper-
iments, and conclude with a brief discussion.

ACO is a population-based search method inspired by the foraging behaviour of
ants. It has been applied to a wide range of problems [1, 6], many of which are graph-
theoretic in nature. It was first applied to the Traveling Salesman Problem (TSP) [17]
by Dorigo et al. [8, 9]. Membrane Computing (of which P systems are a central part)
is a paradigm inspired by living cells, introduced by Paũn [23]. Membrane comput-
ing models the biochemical processes taking place inside living cells. Simulated cells
have several syntactic ingredients: a membrane structure, consisting of a hierarchical
arrangement of membranes embedded in a skin, and delimiting regions (or compart-
ments) where multi-sets of objects and sets of evolution rules are placed. A number
of different models of P systems have been developed, and many of them are compu-
tationally universal [4].

A common computational feature shared by both ACO and P systems, is their
inherent massive parallelism. ACO algorithms are population-based, that is, a collec-
tion of agents “collaborate” to find an optimal (or at least a satisfactory) solution. In a
P system, thousands of “cells” run in parallel to search for a solution. Both approaches
raise new computational challenges, depending on the nature of the particular prob-
lem and the underlying features of a parallel target architecture. In the following
sections, we analyze and optimize the new computational patterns emerging from
these methods on two different GPUs; an ACO algorithm for the Traveling Salesman
Problem (TSP), and a simulation of a recognizer P system with active membranes for
the Satisfiability (SAT) problem.

2 Tuning the ACO algorithm for solving TSP on GPUs

The Travelling Salesman Problem (TSP) [17] involves finding the shortest (or “cheap-
est”) round-trip route that visits each “city” exactly once. The symmetric TSP on n



Enhancing GPU parallelism in nature-inspired algorithms 775

cities is represented as a complete weighted graph, G, of n nodes, with each weighted
edge ei,j representing the inter-city distance di,j = dj,i between cities i and j . TSP
is a well-known NP-hard optimisation problem, and is used as a standard benchmark
for many heuristic algorithms [15].

The ACO TSP solution in [5, 9] uses a number of simulated “ants” (or agents)
to perform distributed search on a graph. Each ant moves through the graph until it
completes a tour, and then offers this tour as its suggested solution. Each ant drops
“pheromone” on the edges that it visits, and the amount of pheromone dropped, if any,
is determined by the quality of an ant’s solution relative to those obtained by other
ants. Each ant probabilistically chooses the next city to visit based on heuristic infor-
mation obtained from inter-city distances and the net pheromone trail. Although such
heuristic information drives ants towards an optimal solution, a process of “evapora-
tion” is also applied in order to prevent the process stalling in a local minimum.

This computation is divided into two main stages: Tour construction and Pheromo-
ne update [10]. In essence, simulated ants construct solutions to the TSP in the form
of tours. Pheromone trails are a fundamental component of the algorithm, since they
facilitate indirect communication between agents via their environment, a process
known as stigmergy [7]. For additional details about these processes, please see [10].

In this section, we discuss several GPU implementations of the Ant System (an
early variant of ACO, first proposed by Dorigo [5]) as applied to the TSP. We propose
different computational patterns, introduce two different design approaches for the
tour construction stage (based on either task or data parallelism), and describe several
GPU techniques for increasing data bandwidth during the pheromone update stage.

2.1 The sequential baseline

Algorithm 1 The sequential AS version for the TSP problem
1: InitializeData()

2: while ¬Convergence() do
3: TourConstruction()

4: PheromoneUpdate()
5: end while

Algorithm 1 shows the sequential pseudo-code of the Ant System. The algorithm
first initializes all data structures, and then proceeds with the two main stages: Tour
construction and Pheromone update, until the convergence criteria are met.

The Tour construction stage is divided into two stages: Initialization and ASDe-
cisionRule. In the former, all data structures are initialized by each ant, and ants are
randomly assigned to a city. Algorithm 2 shows the latter stage, which is divided into
two sub-stages. First, each ant calculates heuristic information, in order to inform the
decision on whether or not to visit city j from city i. As explained in [10], it is com-
putationally expensive to repeatedly calculate those values for each computational
step of each ant, k, and an additional data structure, namely choice_info, is used to
store heuristic values through an adjacency matrix [10] in order to avoid unnecessary
computation. Notice that each entry of this structure can be calculated independently.
Secondly, the probabilistic choice of the next city to visit by each ant is performed by
using roulette wheel selection [10, 14] (see Algorithm 2).



776 J.M. Cecilia et al.

Algorithm 2 ASDecisionRule for the Tour construct stage. m is the number of ants,
and n is the number of cities of the TSP instance

1: sum_prob ← 0.0;
2: curr_city ← ant[k].tour[step − 1];
3: for j = 1 to n do
4: if ant[k].visited[j ] then
5: selection_prob[j ] ← 0.0;
6: else
7: curr_prob ← choice_info[curr_city][j ];
8: selection_prob[j ] ← curr_prob;
9: sum_probs ← sum_probs + curr_prob;

10: end if
11: end for

{Roulette Wheel Selection Process}
12: r ← random(1..sum_probs);
13: j ← 1;
14: p ← selection_prob[j ];
15: while p < r do
16: j ← j + 1;
17: p ← p + selection_prob[j ];
18: end while
19: ant[k].tour[step] ← j ;
20: ant[k].visited[j ] ← true;

Finally the pheromone update stage involves two main tasks: evaporation and
deposition. Evaporation lowers the pheromone value on all edges by a constant factor.
In deposition, each ant adds a quantity of pheromone on the edges that it has crossed
in its tour, the amount being based on the relative quality of the tour.

2.2 Tour construction on GPUs

The “traditional” task parallelism approach to tour construction is based on the ob-
servation that ants run in parallel looking for the best tour [11, 18, 29]. Therefore,
any inherent parallelism exists at the level of individual ants. In CUDA, each ant can
be identified as a thread, and threads are equally distributed amongst thread blocks.
To improve the kernel memory bandwidth, some data structures are placed in on-chip
shared memory. The visited and selection_prob list are the best candidates, as they
are accessed many times with an irregular access pattern. Shared memory is a limited
resource in CUDA [19], which is allocated and shared at CUDA thread block level.
Ants assigned to the same thread block directly share memory.

2.2.1 Strategies to increase data parallelism

The previous task parallelism approach offers several challenges for the GPU. Firstly,
it requires a relatively low number of threads on the GPU (roughly the number of
cities in the TSP instance [10]). Secondly, it presents unpredictable memory access
patterns, due to its execution being guided by a stochastic process. Finally, checking
the list of cities visited contains many warp divergences (threads taking different
control-flow paths), leading to serialisation [19].

To increase parallelism, we calculate the choice_info data structure as a separate
kernel, which is executed prior to tour construction. Here, a CUDA thread is assigned
to compute each entry in the choice_info structure, and threads are evenly grouped
into CUDA thread blocks. We also increase data-parallelism, and avoid warp di-
vergence in the tour construction kernel, by associating a thread-block to each ant,
such that each thread within a block represents a city (or cities) that those ants may
visit. Now, all CUDA threads fully cooperate to obtain a solution, increasing the



Enhancing GPU parallelism in nature-inspired algorithms 777

data-parallelism by a factor of 1:w, where w is the number of CUDA threads per
thread-block.

A thread loads the heuristic value linked with its associated city (or cities), and
checks if the city has been visited. To avoid conditional statements (and, thus, warp
divergences), the tabu list is represented in shared memory as one integer value per
city. A city’s value is 0 if it has been visited, and 1 otherwise. Finally, these val-
ues are multiplied and stored in a shared memory array, which is then prepared for
roulette wheel selection. We note that the shared memory requirements are drastically
reduced, as the tabu and probabilistic lists are now stored once per thread-block, in-
stead of once per thread.

The number of threads per thread-block on CUDA is a hardware limiting factor.
Thus, the cities should be distributed among threads to allow for a flexible implemen-
tation. A tiling technique is proposed to deal with this issue. Cities are divided into
blocks (i.e. tiles). For each tile, a city is selected stochastically from the set of unvis-
ited cities on that tile. When this process is over, we have a set of “partial best” cities.
Finally, the city with the best absolute heuristic value is selected from this partial best
set.

The tabu list can be placed in the register file (as it now represents thread-private
information). However, the tabu list cannot be represented by a single integer register
per thread in the tiled version, because a thread now represents more than one city.
The 32-bit registers may be used on a bitwise basis for managing the list. For exam-
ple, the first city represented by each thread, i.e. on the first tile, is managed by bit
0 on the register that represents the tabu list, and subsequent cities are represented
by subsequent bits. A roulette wheel algorithm is implemented in ACO to provide
a fully sequential stochastic selection process [10]. In CUDA, a particular thread is
identified to proceed sequentially with the selection n − 1 times, where n equals the
number of cities. An alternative approach consists of generating a random number
for each city in the interval [0,1] to feed into the stochastic simulation. Thus, three
values are multiplied and stored in the shared memory array per city, i.e. the heuristic
value associated with a city, a value showing whether the city has been visited or not,
and the random number associated with a city.

2.3 Pheromone update stage: evaporation and deposition

Evaporation is quite straightforward to implement, as a single thread can indepen-
dently lower each entry of the pheromone matrix by a constant factor. Deposition
is more problematic, as each ant generates its own private tour in parallel, and will
eventually visit the same edge as another ant. Consequently, atomic operations are
required (with an associated negative impact on performance) to prevent race condi-
tions when accessing the pheromone matrix. An alternative approach can use scatter
gather transformations [27] in order to avoid expensive atomic operations. The scatter
to gather pattern is implemented by creating as many threads as there are cells in the
pheromone matrix, and then distributing those threads evenly amongst thread blocks.
As each thread represents the coordinates of a single entry in the pheromone matrix,
it is assigned the task of checking whether the cell represented by a pheromone ma-
trix element has been visited by any ant. At this point, we have a tradeoff between the



778 J.M. Cecilia et al.

pressure in device memory for avoiding a design based on atomic operations, and the
number of atomic operations involved. Therefore, this approach allows us to perform
computation removing atomic operations, but at the expense of drastically increasing
the pressure on device memory.

A tiling technique is proposed to increase application bandwidth. All threads coop-
erate to load data from global memory to shared memory, but they still access edges
in an ant’s tour. The number of memory accesses is reduced, although it remains a
similar order of magnitude. An ant’s tour length (n + 1) may, however, be larger than
the maximum number of threads that each block can support. Our algorithm prevents
this situation by setting our empirically demonstrated optimum thread block layout
(θ ), and dividing the tour into tiles of this length. This raises another issue when n+1
is not divisible by θ . We solve this by applying padding to the ants tour array, in order
to avoid warp divergence. Unnecessary loads to device memory can be avoided by
taking advantage of the symmetric version of the TSP; this halves both the number
of threads and the number of device memory accesses.

3 Tuning P systems for solving SAT on GPUs

The Satisfiability SAT problem determines if, for a given Boolean formula in Con-
junctive Normal Form (CNF), there exists an assignment to its variables such that it
evaluates to true. SAT problems occur in areas such as model checking, automatic test
pattern generation for VLSI, theorem proving and software verification. Recognizer
P systems with active membranes are one framework for solving such decision prob-
lems. In [24], a family of recognizer (deterministic) P systems with active membranes
for solving SAT in linear time (but requiring exponential space) is described. From
an algorithmic point of view, the simulation of a given P system may be enhanced
by removing general model constraints concerning communication and global syn-
chronization, which may be not required for a particular design. Moreover, P-system
computation can be adapted to better exploit the underlying architecture. Here, we
show how to enhance P system simulation for solving SAT on GPUs. For details of
the implementation on other parallel architectures, we refer the reader to [3].

3.1 The sequential baseline

The P system simulation to solve the SAT problem is based on the P system compu-
tation described in [24], which can be summarized thus: (1) Generation. Membranes
are structured within a rooted tree with a single branch. The root node is the skin
membrane, and the second node is the internal membrane. All possible truth assign-
ments to variables are generated using division rules encoded in internal membranes
that are executed step by step, as described in [24]. In this way, 2n internal mem-
branes are created, where each one encodes a truth assignment to n CNF formula
variables. (2) Synchronization. The objects encoding a true clause (a partial solution
to the CNF formula) are unified in the membrane. (3) Check out. This step determines
how many (and which) clauses are true in every internal membrane (that is, by the
assignment that they represent). (4) Output. Internal membranes encoding a solution



Enhancing GPU parallelism in nature-inspired algorithms 779

send an object to the skin. If the skin has such an object from some membrane, then
the object Yes is sent to the environment. Otherwise, the object No is sent.

The Generation and Synchronization stages create an exponential workspace of
membranes in a synchronous way, and unify objects that codify a partial solution.
Note that each membrane runs in parallel at each iteration of Generation, but a global
synchronization is required by different iterations. Once the workspace is created, the
Check out and Output stages are performed. They first determine which clauses are
true in every internal membrane, and then check whether there exists a solution for
the SAT problem.

3.2 A generic simulator

We use the generic simulator of recognizer P systems with active membranes from [2]
as a starting point. The tool is applicable to a wide range of recognizer P systems,
but its generality can lead to performance problems. In this simulator, the P system
computation is only known at run-time once rules have been selected. Due to non-
determinism, any rule may be selected and any object in the alphabet O may be
present in a membrane at a given time. Clearly, this represents a worst case scenario,
where all the objects of the alphabet O belong to the multi-set of a membrane, forc-
ing the simulator to pre-allocate in GPU memory all potentially required resources
(the GPU lacks true dynamic memory allocation). However, two levels of parallelism
exist. One level resides in membranes, and is similar to that of CUDA blocks, and the
other exists with the objects within each membrane, comparable to CUDA threads.
The generality provided by this simulator penalizes performance significantly, and
achieves low memory usage. At a given time, many threads are idle, because they
deal with non-existent objects in each membrane. Furthermore, a considerable part
of memory is allocated without being used at all, in order to cover the worst case
scenario explained earlier.

3.3 Baseline simulator: adapting the simulator for the SAT problem

General conditions are removed from our baseline P-system simulator in order to
reduce memory requirements. In this new version, the P system computation for any
given SAT problem is still fully reproduced by the simulation algorithm. The new
simulator is still decomposed into the same four main stages as described in Sect. 3.1.
We use two CUDA kernels and one CPU stage; (1)a kernel that generates membranes
and evolves objects within each membrane; (2), the Synchronization and Check Out
stages are deployed in a single kernel; this determines the membranes that codify a
solution (where all the clauses are true) for an instance of an SAT problem; (3) the
Output stage runs on the CPU for an entire replication of P system behaviour.

To guarantee parallelism amongst membranes, a CUDA thread block is assigned
to each membrane, as in [2]. However, a thread is now assigned to an object of the
input multi-set, instead of each object in the alphabet O . Each object represents a
literal of the CNF formula of the input SAT instance. Thus, a thread is created if and
only if there is a literal of the CNF formula associated with it. The number of objects
considered by each thread block is therefore widely reduced. However, parallelism
is limited by global synchronization amongst thread blocks which update objects
controlling the P system’s Πϕ computation.



780 J.M. Cecilia et al.

3.4 Enhanced simulator: increasing parallelism

Parallelism is increased and all computation is performed on the GPU by using two
kernels. New approaches are taken to the computation of the Check out and Out-
put stages, and heuristics are used to allow theoretical computation to be adapted to
the simulator, while preserving the nature of the P system Πϕ , i.e. without loss of
generality.

Algorithm 3 shows the Single Program Multiple Data (SPMD) pseudo-code for
the Enhanced simulator. The CUDA kernels formerly belonging to the Generation
stage are grouped into a single kernel, dividing membranes, and evolving objects
concurrently. Furthermore, the evolution of control objects (R and D) [24] is replaced
by a fixed number of iterations in the loop, as the main goal of these objects is to
control the timing of execution in the theoretical P-system computation (which is
known in advance).

Algorithm 3 SPMD pseudocode of the P system simulation algorithm for the SAT
problem with n variables
Require: n ≥ 0

{Start Generation and Synchronization stages}
repeat

Generation
until n

{Start Check out and Output stages}
Checkout

The Generation and Synchronization stages synchronously create an exponential
workspace of membranes, that unifies objects codifying a partial solution within each
membrane. The unification of objects is performed by each thread independently
from each other after generation. Thus, there are no global synchronization require-
ments between both stages, and they are merged into a single Generation stage. Note
that (1) each membrane is always generated by the same membrane in the same com-
putational step, and (2) each membrane runs in parallel at each step, but a global
synchronization is required between steps. The computation fits into a pattern of dy-
namic memory generation. Due to the static nature of the device memory allocation
in CUDA, we solve this by creating a static queue, and setting kernel parameters at
each iteration.

Once membranes have been created, the Check out and Output stages are per-
formed (see Algorithm 3). First, they determine the “true” clauses in every internal
membrane, and then check if a solution exists. We refer to these two stages as the
Check out stage. In this kernel, each thread block loads a membrane from global
memory, and then each thread checks rules associated with this stage. Finally, each
block returns whether its associated membrane makes the CNF formula true/false.
This kernel also includes the Output stage.

Initially, the simulation starts with a single CUDA thread block (representing the
membrane received as input) that barely exploits GPU resources. However, the num-
ber of CUDA thread blocks grows exponentially in the Generation stage along with



Enhancing GPU parallelism in nature-inspired algorithms 781

the number of membranes, and GPU resources are fully utilized at relatively early
stages of the simulation. Although it is possible to create a larger set of initial mem-
branes on the CPU to avoid this problem, we have verified that this initial low usage
of GPU resources has a negligible impact on performance, even on tiny benchmarks.
The simulator does not take advantage of the data locality. First of all, a dynamic
data set is generated and stored in global memory, due to the synchronization issues
previously highlighted. Then the Check out stage again loads the data from global
memory, incurring a high number of loads/writes from/to device memory.

3.5 Tiled simulator: exploiting data locality

Tiling is a technique for improving data locality in memory hierarchies [16]. The tiled
simulator augments the Generation kernel to include a Block Preprocessing (BP)
step, where a set of membranes are partially created and placed at block size intervals
(see Fig. 1) in order to improve memory locality.

The second kernel performs the rest of the Generation locally at each block, fol-
lowed by the Check out stage. Each thread within a block cooperates for an efficient
load from global memory to shared memory of the initial membrane generated by the
BP step (represented by a black square in Fig. 1). The Generation stage then interacts
with shared memory, saving expensive loads/writes from/to global memory, which
are around 400 times slower. Finally, the Check out stage is performed over the data
stored in shared memory after a block-level synchronization. This checks whether a
clause makes the CNF formula true, and writes its result into device memory.

4 Experimental setup

The performance of both algorithms was evaluated on two different NVidia GPU
Tesla architectures: C1060 and C2050 (GT200 and Fermi architectures respec-
tively [21]). Both GPUs are connected to the same motherboard with a dual-socket
2.40 GHz quad-core Intel Xeon E5620 for single-threaded sequential experiments.
We use gcc 4.3.4 with the -O3 flag to compile our CPU implementations, and CUDA
compilation tools release 3.2 for GPUs.

For TSP, we use a set of benchmark instances from the well-known TSPLIB
library [26, 28]. We compare our implementations to the sequential code, written
in ANSI C, provided by Stüzle in [10]. Performance figures are given for single-
precision (float) numbers and a single iteration run averaged over 100 iterations. We
set the ACO parameters according to the values recommended in [10]; α = 1, β = 2,
and ρ = 0.5, and m = n, which means the number of ants, m, is equal to the number
of cities, n.

For SAT, a set of benchmarks generated by the WinSAT [25] program are used.
WinSAT generates random SAT problems in DIMACS CNF file format by config-
uring several parameters: the number of variables (n), the number of clauses (m),
and the number of literals per clause (k). The number of membranes in our P system
depends on the number of CNF variables, n (Membranes = 2n). We vary this pa-
rameter from n = 13 up to n = 25 whenever possible, whereas the number of literals
(l = m×k) is kept constant (l = 256 when n < 22 and l = 200 when n ≥ 22) in order
to remain within GPU device memory limits.



782 J.M. Cecilia et al.

Fig. 1 Tiled simulator on a single GPU

5 Performance evaluation

In this section, we compare and contrast the performance of our ACO and P system
implementations on the benchmark programs and problem instances.

5.1 ACO solving TSP

Our initial focus investigates floating-point math library calls to powf() in the
choice_info kernel in ACO tour construction. The analogous CUDA function,
__powf(), maps directly to hardware [20] and can be used a replacement with neg-



Enhancing GPU parallelism in nature-inspired algorithms 783

Table 1 Execution times (milliseconds) on the GPU system for the choice_info kernel, using both CUDA
instructions: powf and __powf. Execution times (ms.) of task and data-based parallelism for our tour
construction stage of the ACO algorithm on a Tesla C2050 GPU. We vary the TSPLIB benchmark instance
to increase the number of cities

TSPLIB
instance

choice_info kernel Tour construction parallelism
GPU Tesla C2050

GPU Tesla C1060 GPU Tesla C2050 Task Data Data speedup

powf () __powf () powf () __powf ()

d198 0.06 0.03 (1.9x) 0.03 0.01 (2.8x) 29.37 4.32 6.79x

a280 0.10 0.05 (2.1x) 0.06 0.02 (3.1x) 70.52 11.94 5.90x

lin318 0.13 0.06 (2.2x) 0.08 0.02 (3.3x) 153.33 15.18 10.10x

pcb442 0.23 0.10 (2.2x) 0.14 0.04 (3.4x) 301.66 38.73 7.78x

rat783 0.71 0.30 (2.3x) 0.44 0.11 (3.7x) 1375.38 207.08 6.64x

pr1002 1.15 0.49 (2.3x) 0.71 0.18 (3.8x) 2437.34 392.56 6.20x

pr2392 6.50 2.73 (2.5x) 4.04 1.03 (3.9x) 29792.03 5092.27 5.85x

ligible accuracy losses, as its omission of special arithmetic cases is irrelevant for
our computational problem. The performance gains from using CUDA __powf() are
shown in Table 1 for a range of TSP benchmark instances, giving up to 3.9x and 2.5x,
respective performance gains for Tesla C2050 and C1060.

5.1.1 Tour construction evaluation

Table 1 additionally presents the performance benefit of data versus task based paral-
lelism for the tour construction stage of the ACO algorithm on the C2050 GPU. For
task parallelism, we use 16 CUDA threads with 16 ants running in parallel per thread-
block, in order to maximize performance. This produces a low GPU resource usage
per SM, and is not well suited for developing high-throughput GPU applications. The
heavy-weight threads of this design need resources in order to execute their tasks in-
dependently and to avoid large serialization phases. In CUDA, this is obtained by
distributing those threads amongst SMs, by increasing the number of thread-blocks
during execution.

For data parallelism, the number of threads in each CUDA block is under pro-
grammer control, and we have empirically demonstrated that: (1) the 64 thread-block
configuration reaches peak performance on an Tesla C1060, except for the 2392 cities
benchmark instance, where this block-size is not allowed due to register constraints,
and (2) the 128 thread-block configuration is optimal for all benchmark instances on
an Tesla C2050.

Classic Roulette Wheel (RW) selection compromises GPU parallelism, but our In-
dependent Roulette (I-R) selection method gives up to a 2.12x factor gain compared
to classic roulette wheel on an Tesla C1060, and even higher gains on an Tesla C2050
(2.36x). The average performance gain is 2.00x and 1.87x on C1060 and C2050, re-
spectively, because algorithm parallelism is increased at the cost of generating ad-
ditional random numbers. Better performance is obtained by the older Tesla C1060
in tour construction on the pr1002 and pr2392 TSP benchmarks, and this difference



784 J.M. Cecilia et al.

Table 2 Execution times (ms)
for the tour construction stage of
the ACO algorithm on different
hardware platforms (single core
CPU vs. GPUs) and enabling
data parallelism on the GPU

TSPLIB
instance

CPU
Xeon
E5620

GPU Tesla C1060 GPU Tesla C2050

Execution
time

Speed-up
vs. CPU

Execution
time

Speed-up
vs. CPU

d198 43.01 3.34 12.88x 4.32 9.95x

a280 151.99 10.81 14.06x 11.94 12.72x

lin318 223.78 12.62 17.67x 15.18 14.69x

pcb442 618.07 26.98 22.90x 38.73 15.95x

rat783 3539.01 168.27 21.03x 207.08 17.08x

pr1002 7965.17 334.05 23.84x 392.56 20.33x

pr2392 110573.22 4264.46 25.93x 5092.27 21.71x

widens by using roulette wheel (RW) as a selection process instead of our method. In
the Tesla C1060, the 64 thread-block configuration produces better results, as thread-
level parallelism is severely affected by sequential parts of the RW algorithm. This
is partially solved by our selection procedure I-R, increasing the best configuration
thread-block layout to 128 thread-block on Tesla C2050 architecture. The 64 thread-
block configuration remains the best thread block layout on the Tesla C1060 case.
This fact highlights that the Fermi architecture requires more thread-level parallelism
to fully exploit the pipeline on each SM, and thus hide and amortize operation latency.
Although this is partially fulfilled by our selection approach, the tour construction
stage still has some sequential parts that compromise parallelism, such as the final
decision to the next city to visit by each thread-block, marking this city as visited,
and so on.

Finally, Table 2 shows execution times for our ACO algorithm. Notable gains are
found on the GPU side, which are also favored with the problem size, as expected.
Paradoxically, we note the unexpected higher performance on the Tesla C1060 ver-
sus the newer GPU, C2050. After a thorough study of architectural features on those
two GPUs, we find that the amount of parallelism in the ACO algorithm can be com-
promised by several parts which are inherently sequential, and may produce long-
stall instructions. Those instructions should be hidden by other parallel warps, but if
we analyze the number of in-flight threads that each GPU is able to run at a given
time, for the C2050 we have 21504 (a Fermi architecture with 1536 threads/SM and
14 SMs), whereas the C1060 can run up to 30720 (a GT200 architecture with 1024
threads/SM and 30 SMs). Therefore, 9216 threads more can be executed in-flight on
the Tesla C1060, which means having 288 warps ready to prevent severe stalls during
execution.

5.1.2 Pheromone update evaluation

Figure 2 shows the performance evaluation of the pheromone kernel strategies we
have developed in this work. The baseline code is our optimal kernel version, which
uses atomic instructions and shared memory, along with the known tradeoff between
the number of accesses to global memory for avoiding costly atomic operations and
the number of those operations. The “scatter to gather” computation pattern exhibits a



Enhancing GPU parallelism in nature-inspired algorithms 785

Fig. 2 Execution times (ms) on Teslas C1060, C2050, and single-threaded C version for the ACO
pheromone update implementation. Different optimizations techniques are represented on y-axis

major imbalance between these two parameters, which is reflected by an exponential
performance degradation as the problem size increases. Tiling improves application
bandwidth in the scatter to gather approach. Reduction diminishes the total number
of accesses to either shared or device memory by halving the number of threads with
respect to versions 4 and 5 (and also using tiling to alleviate device memory use).
Even though the number of loads per thread remains the same, the overall number of
loads in the application is reduced.

Figure 2 also shows on the lower side the best version of the pheromone update
kernel compared to a single-threaded sequential code executed on a CPU. The com-
putational pattern for this kernel is based on data-parallelism, showing a linear speed-
up along with the problem size. However, the lack of atomic operation support on
an Tesla C1060 for floating point operations results in better performance for the
sequential kernel on small benchmark instances. Whenever the level of parallelism
increases, performance rises, reaching up to 2.56x speed-up for Tesla C1060 and
20.04x for Tesla C2050.

5.2 P systems solving SAT

Table 3 presents execution times for SAT experiments on the two high-end Tesla
GPUs. The GPUs are consistently at least two orders of magnitude faster if we com-
pare the baseline version against a single-threaded CPU, and three orders faster when
we consider the GPU Enhanced version, which reaches a 15–16x speed-up factor



786 J.M. Cecilia et al.

Table 3 Execution times (ms) for SAT on different hardware platforms. The number of literals is k = 256.
The best configuration for our GPU tiled simulator is shown on each case (n.a. means “not available” due
to shared memory constraints)

Number
of mem-
branes

CPU
Xeon
E5530

GPU generic GPU baseline GPU enhanced

Tesla
C1060

Tesla
C2050

Tesla
C1060

Tesla
C2050

Tesla
C1060

Tesla
C2050

213 800.47 3130.93 2348.20 10.09 7.61 0.82 0.62

214 1659.92 6678.89 5009.16 20.15 15.18 1.55 1.20

215 3382.49 16948.77 12711.58 39.99 29.59 2.90 2.30

216 6888.05 37841.52 28381.14 80.40 58.93 5.65 4.37

217 14211.80 69581.05 52185.78 163.06 119.36 11.16 8.71

218 28995.10 n.a. n.a. 327.38 255.71 22.06 17.15

219 59521.80 n.a. n.a. 657.97 474.39 44.69 33.16

220 121199.67 n.a. n.a. 1328.58 955.24 88.48 69.03

221 247467.00 n.a. n.a. 2675.85 2782.58 171.04 127.85

versus the baseline implementation. This is mainly because it saves 50 % of the
synchronization time on average per iteration, and avoids duplicating a number of
accesses to device memory, thus reducing the total number of operations carried out.

Considering the slowest GPU time (on Tesla C1060) for the optimized version,
speed-up is 976x when the simulation covers 213 membranes, and reaches up to
1446x when it is extended to 221 membranes. The main reason for this concerns
memory bandwidth, which is much higher on GPUs. On small data sets, memory la-
tency plays its role, but when the working data set size grows exponentially, as in this
benchmark, Table 3 also shows the performance degradation of the Generic simulator
(see Sect. 3.2), even with the single-threaded CPU. The Generic version benefits from
adapting the P system computation solving the SAT problem, and also from using the
blocking technique. Besides, a thread per object (or set of objects) is defined in the
alphabet Γ for each block to enable a wide range of recognizer P systems to be sim-
ulated. This generality prevents race conditions and synchronization issues, which
can be solved on the targeted P system, but which causes a performance degradation,
leading to a slower code execution on GPUs compared to the single threaded CPU
(C++) version. We note that no more than 17 CNF formula variables may be used by
the Generic version, in order to stay within available GPU memory limits.

5.2.1 P systems solving SAT: Improvements through tiling

Table 4 quantifies the benefit of using tiling in our P system. Up to 1.4x speed-up
gains are achieved versus the non-tiled counterpart on GPUs, with the best perfor-
mance coming on the newer Tesla C2050. Tiling becomes more effective with caches,
and the C2050 enables a 16 KB L1 cache plus a 768 KB L2 cache together with 3x
more shared memory space in which to allocate membranes. GPUs can significantly
improve the achieved memory bandwidth through shared memory usage under ex-
plicit programmer control on memory bounded applications such as presented in this
paper.



Enhancing GPU parallelism in nature-inspired algorithms 787

Table 4 Execution times (ms)
on different GPU platforms and
enabling tiling on P systems
solving the SAT problem. The
number of literals is k = 256

Number of
membranes

GPU Enhanced GPU Tiled

Tesla
C1060

Tesla
C2050

Tesla
C1060

Tesla
C2050

213 0.82 0.62 0.64 0.37

214 1.55 1.20 1.15 0.66

215 2.90 2.30 2.17 1.24

216 5.65 4.37 4.23 2.37

217 11.16 8.71 8.29 4.65

218 22.06 17.15 16.46 9.19

219 44.69 33.16 32.79 18.27

220 88.48 69.03 65.51 36.65

221 171.04 127.85 130.96 73.23

Table 5 Execution times (ms) on a single GPU for the particular case of a P system composed of 221

membranes. Communication and initialization times (runtime overhead) are not accounted for (n.a. means
“not available” due to shared memory constraints)

Tesla
archit.

Algorithm stage(s) CUDA Block size (in membranes)

2 4 8 16 32

C1060 Block Preprocessing (BP) 83.59 41.56 20.68 N.a. N.a.

Generation and Check out 113.12 104.02 103.61 N.a. N.a.

All (total execution time) 196.71 145.58 124.29 N.a. N.a.

C2050 Block Preprocessing (BP) 32.51 16.17 8.10 4.13 2.02

Generation and Check out 85.71 75.90 65.12 65.63 101.24

All (total execution time) 118.22 92.07 73.22 69.76 103.26

5.2.2 P systems solving SAT: Block size and shared memory use

Table 5 shows the breakdown of the total execution time for a single GPU executing
with n = 21 variables and tiling. These numbers also evaluate the impact of the data
block size, which is limited by the on-chip shared memory space (16 KB for Tesla
C1060 and 48 KB for Tesla C2050). Considering these constraints, we are able to
measure performance for 2, 4, and 8 membranes per block on the Tesla C1060, and
for 2, 4, 8, 16 and 32 membranes per block on the Tesla C2050. Note that the number
of global memory accesses and the number of iterations in the Block Preprocessing
kernel depend intrinsically on the block size. In particular, eight membranes per block
require half of the memory accesses and computations (that is, iterations) compared
to the four membranes per block case. Similarly, four membranes cut down to a half
those required by the two membranes per block case. Furthermore, memory accesses
in the Generation and Check out stages are similarly reduced as long as the block
size increases. However, GPU resource occupancy worsens for the eight membranes
per block case, because shared memory usage per block prevents the allocation of



788 J.M. Cecilia et al.

more than one block per GPU. As a result, the overall improvement is barely 14 %
versus the four membranes per block case on the Tesla C2050, and then the situation
worsens if the parameter is increased further (shared memory constraints limits this
to 8 on the Tesla C1060).

6 Summary and conclusions

This paper provides insights into the behaviour of nature-inspired Ant Colony Op-
timisation (ACO) and P system methods on GPUs. The main inefficiencies of base-
line implementations are identified, and significant performance improvements of
several orders of magnitude are obtained through various optimizations. Our key in-
sights/contributions are: (1) Floating point arithmetic is the flagship of GPU comput-
ing. However, some mathematical operators (such as powf) can drastically affect the
overall performance of GPUs when implemented at software level. (2) At a higher
level, the task parallelism used by early algorithm implementations does not fit well
with GPU architecture, and a data parallelism approach is proposed exploiting SIMD
and CUDA. Algorithmic modifications for SIMD and the exploitation of GPU re-
sources are presented. (3) A set of strategies aimed at avoiding atomic instructions,
and tradeoffs for increasing application bandwidth is presented.

Overall, the gains achieved by our implementations reach impressive speed-up
factors of 4–5 orders of magnitude for our largest benchmarks on Teslas C1060 and
2050 GPUs. However, our most valuable contribution is to demonstrate the research
potential for nature-inspired algorithms on GPU platforms.

Acknowledgements Partially supported by a travel grant from project EU FP7 NoE HiPEAC IST-
217068, and by the Spanish MEC and European Commission FEDER funds under grants “Consolider
Ingenio-2010 CSD2006-00046” and “TIN2009-14475-C04-02”, and also by the Fundación Séneca (Agen-
cia Regional de Ciencia y Tecnología, Región de Murcia) under grant 15290/PI/2010. We also thank
NVIDIA for hardware donation under Professor Partnership 2008–2010, CUDA Teaching Center 2011–
2013, CUDA Research Center 2012 and CUDA Fellow 2012 Awards.

References

1. Blum C (2005) Ant colony optimization: introduction and recent trends. Phys Life Rev 2(4):353–373
2. Cecilia JM, García JM, Guerrero GD, Martínez-del-Amor MA, Pérez-Hurtado I, Pérez-Jiménez MJ

(2010) Simulation of P systems with active membranes on CUDA. Brief Bioinform 11(3):313–322
3. Cecilia JM, García JM, Guerrero GD, Martínez-del-Amor MA, Pérez-Jiménez MJ, Ujaldón M (2010)

P systems simulations on massively parallel architectures. In: Third international workshop on paral-
lel architectures and bioinspired algorithms (WPABA’ 10), in conjunction with the nineteenth interna-
tional conference on parallel architectures and compilations techniques (PACT’ 10), Vienna, Austria

4. Díaz-Pernil D, Pérez-Hurtado I, Pérez-Jiménez MJ, Riscos-Núñez A (2008) P-lingua: a programming
language for membrane computing. In: Proceedings of the 6th brainstorming week on membrane
computing, Sevilla, Spain

5. Dorigo M (1992) Optimization, learning and natural algorithms. Dissertation, Politecnico di Milano
6. Dorigo M, Birattari M, Stützle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–

39
7. Dorigo M, Bonabeau E, Theraulaz G (2000) Ant algorithms and stigmergy. Future Gener Comput

Syst 16:851–871



Enhancing GPU parallelism in nature-inspired algorithms 789

8. Dorigo M, Colorni A, Maniezzo V (1991) Positive feedback as a search strategy. Dipartimento di
Elettronica, Politecnico di Milano, Milan, Italy, Tech Rep 91-016

9. Dorigo M, Maniezzo V, Colorni A (1996) The ant system: optimization by a colony of cooperating
agents. IEEE Trans Syst Man Cybern, Part B 26:29–41

10. Dorigo M, Stützle T (2004) Ant colony optimization. Bradford Company, Scituate
11. Fu J, Lei L, Zhou G (2010) A parallel ant colony optimization algorithm with GPU-acceleration

based on all-in-roulette selection. In: Proceedings of the third international workshop on advanced
computational intelligence (IWACI), Suzhou, China

12. Garland M, Le Grand S, Nickolls J, et al (2008) Parallel computing experiences with CUDA. IEEE
Micro 28:13–27

13. Garland M, Kirk DB (2010) Understanding throughput-oriented architectures. Commun ACM 53:58–
66

14. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-
Wesley, Longman, Reading, Harlow

15. Johnson DS, Mcgeoch LA (1997) The traveling salesman problem: a case study in local optimization.
In: Aarts EHL, Lenstra JK (eds) Local search in combinatorial optimization. Wiley, London, pp 215–
310

16. Lam MD, Rothberg EE, Wolf ME (1991) The cache performance and optimizations of blocked algo-
rithms. ACM SIGPLAN Not 26(4):63–74

17. Lawler E, Lenstra J, Kan A, Shmoys D (1987) The traveling salesman problem. Wiley, New York
18. Li J, Hu X, Pang Z, Qian K (2009) A parallel ant colony optimization algorithm based on fine-grained

model with GPU acceleration. Int J Innov Comput, Inf Control 5(11):3707–3715
19. NVIDIA CUDA C Programming Guide 4.0 (2011)
20. NVIDIA CUDA C Best Practices Guide 4.0 (2011)
21. NVIDIA, Whitepaper NVIDIA’s Next Generation CUDA Compute Architecture: Fermi (2009)
22. Păun G (2002) Membrane computing: An introduction. Springer, Berlin
23. Păun G (2000) Computing with membranes. J Comput Syst Sci 61:108–143. TUCS Report No 208
24. Pérez-Jiménez MJ, Romero-Jiménez Á, Sancho-Caparrini F (2003) Complexity classes in models of

cellular computing with membranes. Nat Comput 2(3):265–285
25. Qasem M (2009) WinSAT website. http://users.ecs.soton.ac.uk/mqq06r/winsat
26. Reinelt G (1991) TSPLIB: A traveling salesman problem library. ORSA J Comput 3(4):376–384
27. Scavo T (2010) Scatter-to-gather transformation for scalability
28. TSPLIB Webpage (2011) http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
29. You YS (2009) Parallel ant system for traveling salesman problem on GPUs. In: GECCO 2009—

GPUs for genetic and evolutionary computation, pp 1–2

http://users.ecs.soton.ac.uk/mqq06r/winsat
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

	Enhancing GPU parallelism in nature-inspired algorithms
	Abstract
	Introduction
	Tuning the ACO algorithm for solving TSP on GPUs
	The sequential baseline
	Tour construction on GPUs
	Strategies to increase data parallelism

	Pheromone update stage: evaporation and deposition

	Tuning P systems for solving SAT on GPUs
	The sequential baseline
	A generic simulator
	Baseline simulator: adapting the simulator for the SAT problem
	Enhanced simulator: increasing parallelism
	Tiled simulator: exploiting data locality

	Experimental setup
	Performance evaluation
	ACO solving TSP
	Tour construction evaluation
	Pheromone update evaluation

	P systems solving SAT
	P systems solving SAT: Improvements through tiling
	P systems solving SAT: Block size and shared memory use


	Summary and conclusions
	Acknowledgements
	References


