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Abstract In MapReduce model, a job is divided into a series of map tasks and reduce
tasks. The execution time of the job is prolonged by some slow tasks seriously, es-
pecially in heterogeneous environments. To finish the slow tasks as soon as possible,
current MapReduce schedulers launch a backup task on other nodes for each of the
slow tasks. However, traditional MapReduce schedulers cannot detect slow tasks cor-
rectly since they cannot estimate the progress of tasks accurately (Hadoop home page
http://hadoop.apache.org/, 2011; Zaharia et al. in 8th USENIX symposium on operat-
ing systems design and implementation, ACM, New York, pp. 29-42, 2008). To solve
this problem, this paper proposes a History-based Auto-Tuning (HAT) MapReduce
scheduler, which calculates the progress of tasks accurately and adapts to the contin-
uously varying environment automatically. HAT tunes the weight of each phase of a
map task and a reduce task according to the value of them in history tasks and uses
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the accurate weights of the phases to calculate the progress of current tasks. Based
on the accurate-calculated progress of tasks, HAT estimates the remaining time of
tasks accurately and further launches backup tasks for the tasks that have the longest
remaining time. Experimental results show that HAT can significantly improve the
performance of MapReduce applications up to 37% compared with Hadoop and up
to 16% compared with LATE scheduler.

Keywords History-based auto-tuning - Scheduling algorithm - Heterogeneous
environments - MapReduce

1 Introduction

Current data intensive applications need to process larger and larger data sets with the
explosion of information. Due to the large data sets of applications, users prefer to use
more and more processors or computers together to ensure the execution time of the
applications reasonable and acceptable. This need has promoted the development of
MapReduce, which is one of the most popular programming and scheduling models
to process and generate large data sets [8]. MapReduce enables users to specify a map
function that processes a key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all the intermediate values associated with the
same intermediate key [8]. MapReduce is used in Cloud Computing in the beginning
[2, 3, 7, 23, 24]. It is initiated by Google, together with GFS [12] and BigTable [4]
comprising backbone of Google’s Cloud Computing platform. Apart from the Cloud
Computing platform, MapReduce is also ported to work on GPU and multiprocessors.
In addition, it is also extended to solve more loose-coupling problems [6, 9, 10, 18,
20, 22, 27].

For a MapReduce job (i.e., an application that is implemented based on the
MapReduce programming model), its data set is divided into many small data sets.
When a MapReduce system starts to execute a MapReduce job, the MapReduce
scheduler! in the system launches a map task for each of the small data sets, and
launches a group of reduce tasks to collect the results of all the map tasks. After the
division, the MapReduce scheduler distributes these tasks onto different nodes ac-
cording to the location of the tasks’ data sets. In this way, all the nodes (called as
workers) execute the tasks which are assigned to them in parallel. Since every node
needs to execute many tasks, MapReduce scheduler launches a task scheduler for
each node to manage tasks. Furthermore, since a MapReduce job is not completed
until all the data is processed completely, the execution time of the MapReduce job
is decided by the last finished tasks (i.e., the weakest link effect).

It is not a serious problem in homogeneous environments, since homogeneous
nodes execute tasks with the same data set size in similar time. In heterogeneous
environments, on the other hand, the execution time of a MapReduce job is prolonged
by the last finished tasks (called as straggler tasks) seriously since workers require

N MapReduce scheduler is a scheduler that schedules map and reduce tasks.
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various time in accomplishing even the same tasks due to their differences, such as
capacities of computation and communication, architectures, and memorizes.

One of the most popular solutions of this problem in MapReduce is launching
backup tasks for straggler tasks on fast node. If a MapReduce scheduler launches a
backup task y;, for a straggler task y, the small data set of y is processed completely
when either y;, or y finishes. In this case, if y;, finishes before y, the execution time
of the job is reduced.

Although current MapReduce schedulers try to launch backup tasks for straggler
tasks, they fail to detect straggler tasks correctly due to the wrong-estimated remain-
ing time of all the tasks [13, 28]. The wrong detected straggler tasks cause at least
two problems. First, launching backup tasks for these wrong straggler tasks cannot
improve the performance of the MapReduce job since the real straggler tasks still pro-
long the execution time. Second, the backup tasks which are launched for the wrong
straggler tasks waste system resources. The contention on the system resources even
degrades the overall performance of the MapReduce job.

The wasting of system resources is one of the main problems of the backup strat-
egy. Currently, MapReduce schedulers classify nodes into fast nodes and slow nodes,
so that backup tasks can be launched on fast nodes. However, slow nodes can be fur-
ther classified into map slow nodes and reduce slow nodes in a real system, since it
is very possible that a node processes map tasks fast but processes reduce tasks slow
and vice versa. We use map/reduce slow nodes to represent the nodes that execute
map/reduce tasks slow than most of other nodes. The undistinguishing between map
slow nodes and reduce slow nodes wastes system resources. Let us take a reduce
task y that needs a backup task for example. Current MapReduce schedulers will
not launch the backup task on a slow node N;. However, if Ny is only a map slow
node, launching the backup task of y on N; can utilize resources on N efficiently
and improve the overall performance, since Ny can process reduce tasks fast.

In order to detect straggler tasks and launch backup tasks efficiently, we propose a
History-based Auto-Tuning (HAT) MapReduce scheduler. HAT incorporates histori-
cal information recorded on each node to tune parameters and detect straggler tasks
dynamically. HAT further classifies slow nodes into map slow nodes and reduce slow
nodes. In this way, HAT can launch backup tasks for map straggler tasks on reduce
slow nodes and launch backup tasks for reduce straggler tasks on map slow nodes.

The most important contributions of this paper are three-fold:

— HAT detects straggler tasks correctly based on the historical information recorded
on every node.

— HAT classifies slow nodes into map slow nodes and reduce slow nodes further.

— The experimental result shows that HAT scheduler can achieve a performance gain
up to 37% for MapReduce applications.

The rest of this paper is organized as follows. Section 2 introduces the background
information and the motivation of HAT MapReduce scheduler. Section 3 presents the
HAT MapReduce scheduling algorithms. Section 4 reports the implementation details
of HAT scheduler. Section 5 evaluates the performance of HAT. Section 6 describes
the related works. Section 7 draws the conclusion with pointing out our future work.
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Fig. 1 Two phases of a map task and three phases of a reduce task

2 Background and motivation

Current MapReduce schedulers, such as Hadoop’s scheduler [13, 25] and LATE [28],
launch backup tasks for straggler tasks to improve performance of MapReduce ap-
plications. There are two main policies to detect straggler tasks: the least progress
policy and the longest remaining time policy. For example, Hadoop’s scheduler uses
the least progress policy and LATE scheduler uses the longest remaining time policy.
In the least progress policy, tasks with the least progress are the straggler tasks. In
the longest remaining time policy, the tasks with the longest remaining time are the
straggler tasks.

Both policies monitor the progress of every task using progress score (ranges
from O to 1). In current MapReduce system, the execution of a map task comprises
two phases and the execution of a reduce task comprises three phases as shown in
Fig. 1. Therefore, the progress score of a task comprises from the progress score of
every phase. Current MapReduce schedulers, such as Hadoop’s scheduler and LATE,
assume that M1, M2, R1, R2, and R3 are 1, O, %, %, and %, respectively.

The progress of a phase, denoted by PSpase, can be calculated in (1). In the equa-
tion, M is the number of key/value pairs that have been processed in the phase and N
is the overall number of key/value pairs that needed to be processed in the phase.

M
PSphase = . (D
N

Take a task y for example. If y is a map task, since the first phase occupies the
overall progress score, the progress score of y is the progress M 1. If y is areduce task
and the first K phases of y has finished, since each phase occupies % of the progress
score, PS,, is calculated by adding the progress score of the finished phases and the
progress score of the current phase. Therefore, the progress score of y, denoted by
PS,,, is calculated in (2).

PSphase y is a map task,
PS, =1, i : 2
3% K+ 3%PSphase K €(0,1,2),y1s2 reduce task.
For a MapReduce system with n running tasks (yi1,y2,..., ), the average
progress score of the n running tasks, denoted by PS,y,, is calculated in (3).
n
PSag =Y PSi/n. A3)

i=1
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Suppose task y;’s progress score is PS; and it has run 7; seconds (j €
(1,2,...,n)). If the least progress policy is used to detect straggler tasks, y; is a
straggler task only when PS; < PS,yy — 20%.

On the other hand, if the longest remaining time policy is used, the remaining time
of all the n tasks needs to be calculated further. Then the scheduler chooses the tasks
with the longest remaining time as straggler tasks. To calculate the remaining time of
task y;, the progress rate of y;, denoted by PR}, is calculated first in (4). Based on
(4), the remaining time of y;, denoted by TTE , is calculated, (5).

PR; =PS;/T, “
1.0 — PS;

TTE; = (1.0 — PS;)/PR; =T x 75,

&)

In most cases, the longest remaining time policy works better than the least
progress policy [28]. This is because the tasks with the least progress score are not
always the last finished tasks. For example, in a MapReduce system that has six tasks
(y1, 2, ---5 V6), suppose their progress scores are 0.7, 0.5, 0.9, 0.9, 0.9, and 0.9,
respectively. We further suppose that they need 100, 30, 10, 10, 10, and 10 seconds
to finish their work. In this case, PSave = (0.7 + 0.5 + 0.9 * 4) /6 = 0.8. The least
progress policy classifies y» to be a straggler task. However, y; is the real straggler
task since y| needs more time to finish its work.

On the other hand, if the progress score of all the tasks can be calculated ac-
curately, the longest remaining time policy can always detect out the real straggler
tasks. However, current MapReduce schedulers cannot calculate the progress score

accurately, since M1, M2, R1, R2, and R3 are set to be constant values 1, 0, %

%, and % In the real execution, the values of them are totally different for different

hardware settings and different MapReduce applications.
For example, given a node with R1, R2, and R3 equal to 0.6, 0.2, and 0.2, respec-
tively. Suppose a reduce task y has finish the first phase and has run 7 seconds on

the node, the remaining time of y is T * 16.066 = 0.67T seconds. However, since the
values of R1, R2, and R3 are all % in current schedulers, the calculated remaining

time of y is T * 1: /13/ 3 — 2T seconds. Based on the wrong remaining time, the longest

remaining time policy cannot find real straggler tasks.

To this end, we propose HAT MapReduce scheduler, which uses a history-based
auto-tuning strategy, to tune the values of M1, M2, R1, R2, and R3 based on the his-
torical values of them in the completed tasks. Based on the specific values of them for
the current hardware features and application features, HAT can estimate the progress
scores of running tasks accurately, and hence can find real straggler tasks. HAT is im-
plemented using the longest remaining time policy.

3 History-based auto-tuning MapReduce scheduling

This section presents HAT, a History-based Auto-Tuning MapReduce scheduler.
First, we give an overview of HAT. Then we introduce a historical-based auto-tuning
strategy for tuning runtime parameters used by HAT. Lastly, we present the detailed
algorithms in HAT.
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Algorithm 1 Runtime algorithm of HAT

Input: Key/Value pairs. Output: Statistical results.

Initialize the scheduler:

Stepl: Every worker reads in historical information and tunes parameters using the history-based
auto-tuning strategy as illustrated in Sect. 3.2.

Process tasks:

Step2: Every worker computes progress scores of all the running tasks using the progress monitoring
algorithm as illustrated in Sect. 3.3.

Step3: HAT processes tasks and detects straggler tasks using the straggler detecting algorithm as
illustrated in Sect. 3.4.

Step4: HAT detects slow nodes (either map slow nodes or reduce slow nodes) using the slow node
detecting algorithm as illustrated in Sect. 3.5.

Step5: HAT launches backup tasks on appropriate nodes using the backup task launching algorithm
as illustrated in Sect. 3.6.

Termination: HAT collects results and updates historical information on every node.

3.1 Overview of HAT

HAT detects straggler tasks based on the accurate progress score and achieves bet-
ter performance compared with Hadoop and LATE scheduler. Algorithm 1 lists the
runtime algorithm of HAT.

When HAT starts to execute a MapReduce job, each worker reads in the historical
information from local node and sets them to be the default values of the parameters
in this execution (to be described shortly). The historical information contains the
values of M1, M2, R1, R2, and R3. Based on the dynamic-tuned M1, M2, R1,
R2, and R3, HAT can compute progress scores of tasks more accurate, which is
the basis of straggler task detecting. Meanwhile, HAT detects slow nodes according
to the average progress rates of map tasks and reduce tasks on every node (to be
described shortly). If there are any straggler tasks, HAT launches backup tasks for
these straggler tasks. After all the data sets have been processed, HAT terminates the
MapReduce job and reports the final result.

3.2 History-based auto-tuning strategy

As mentioned before, different worker process tasks in different speed. Therefore,
each worker has different M1, M2, R1, R2, and R3. To obtain them for each worker
accurately, HAT uses a history-based auto-tuning strategy to tune the value of them
dynamically. In the strategy, each worker reads in the historical values of M1, M2,
R1, R2, and R3 from the corresponding node as their default values when the worker
was started. Once a map task finishes on the worker, M1 and M2 are updated. Once
a reduce task finishes on the worker, R1, R2, and R3 are updated.

For any recorded weights of phases (i.e., M1, M2, R1, R2, R3), if the recorded
value is Vg and the corresponding value of it in the just finished task is Vinisheds,
HAT updates the recorded value to Vyey that is calculated in (6). HP represents the
weight of old values of M1 in the new value of it.

Viaew = Vold * HP + Viinished * (1 — HP) (6)
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As shown in (6), if HP is too large (close to 1), Vhew mostly depends on Vgq.
In this condition, Vpew cannot reflect the up-to-date features of the current running
tasks. On the other hand, if HP is too small (close to 0), the appropriate values of the
weights may be destroyed by random factors, since Vipished 1S likely to be influenced
by random events.

In addition, there is not any additional communication when a worker reads and
updates historical information, since every worker reads and writes historical infor-
mation from local node. So HAT scheduler is scalable.

3.3 Progress monitoring algorithm

During the execution of a MapReduce application, HAT computes the progress scores
of all the running tasks periodically (every 100 ms). Given a task y that is running
in HAT. Suppose K phases of y has been finished, (7) and (8) compute the progress
score of y, in which PSppase is computed according to (1).

M1 x PSphas if K =0,
For map task: PS,, = % Pphase : @)
M1+ M2 x PSphase  if K =1.
R1 X PSphase if K =0,
For reduce task:  PSy, = { R1+ R2 x PSphase ifK=1, 8)

R1+ R2+ R3 X PSppase  if K =2.
3.4 Straggler tasks detecting algorithm

Based on the accurate progress scores of tasks that are computed according to (7)
and (8), HAT detects straggler tasks according to Algorithm 2. A task y is a straggler
task only when it fulfills the following two restrictions. First, y is a slow task. Second,
y is one of the tasks with the longest remaining time.

Let PRy, and PR,y represent the progress rate of y and the average progress rate.
y is a slow task only when its progress rate fulfills (9). Task_Cap is a cap of slow
proportion in the equation.

PR, < (1.0 — Task_Cap) x PRyyy. ©)]

According to (9), if Task_Cap is too small (close to 0), HAT will classify some
fast tasks into slow tasks. On the other hand, if Task_Cap is too large (close to 1),
HAT will classify some slow tasks into fast tasks.

For all the slow tasks, HAT computes the remaining time of them according to
(5). HAT chooses those slow tasks with the longest remaining time to be strag-
gler tasks using the longest remaining time policy. To handle the fact that backup
tasks of straggler tasks cost resources, HAT limits the number of straggler tasks and
backup tasks. Therefore, a cap on the number of straggler tasks (i.e., the number of
backup tasks since HAT only allows one backup task for each straggler task), de-
noted by Strag_Cap, is used. Suppose the number of the overall running tasks is
Task_Num, the up-bound of the number of straggler tasks, denoted by Strag_UB, is
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Algorithm 2 Straggler tasks detecting algorithm

While (the job is still running) {
Every worker computes progress rate of every tasks that are running on it.
HAT computes the average progress rate of all the running tasks.
Every worker determines slow tasks according to (9).
Every worker reports the list of slow tasks running on it.

HAT computes the remaining time for all the slow tasks according to (5) and orders the tasks in
descending order according to the remaining time.

HAT computes the up-bound of the number of straggler tasks, Strag_UB.
If (the number of slow tasks < Strag_UB)
All the slow tasks are detected as straggler tasks.
Else if (the number of slow tasks > Strag_UB)
HAT selects Strag_UB slow tasks with the longest remaining time as straggler tasks.
HAT inserts all the straggler tasks into straggler map/reduce task list.

usleep(100000); /THAT detects straggler tasks every 100 ms.
}

Strag_Cap * Task_Num. If Strag_Cap is too small (close to 0), some really straggler
tasks is overlooked by HAT. On the other hand, if Strag_Cap is too large (close to 1),
there can be too many straggler tasks. Too many backup tasks for these straggler
tasks cost a lot of system resources. Algorithm 2 lists the detailed straggler detecting
algorithm.

3.5 Slow nodes detecting algorithm

To detect slow nodes in the system, HAT uses the average progress rate of the running
map/reduce tasks on a node to represent the map/reduce task progress rates of the
node. The nodes with the smallest map/reduce task progress rate are map/reduce
slow nodes. Given a node @ with M map tasks and R reduce tasks. The map/reduce
task progress rates of @, denoted by MRp and RRg, are calculated in (10). PR; is the
progress rate of the ith map/reduce task.

MRo = ZKTIPR
SR PR (10
RRp = ==

For node @, if MRy < (1 — Node_Cap) * MRy, it is a map slow node. If RRp <
(I = Node_Cap) * RRyyg, it is a reduce slow node. MRy, and RR,y are the average
map/reduce tasks progress rate of all the nodes. Node_Cap is a cap of slow proportion
of the slow node.

Therefore, if Node_Cap is too small (close to 0), HAT will classify some fast nodes
into slow nodes. On the other hand, if Node_Cap is too large (close to 1), HAT will
classify some slow nodes into fast nodes.

To limit the number of slow nodes, a cap on the number of slow nodes, de-
noted by SN_Cap, is introduced in HAT. Suppose the number of the overall node
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Straggler map Running map
task pool tasks

‘ 100d yse3 possaooadun) ‘

Straggler reduce Running reduce
task pool tasks

Fig. 2 Architecture of HAT. Nodes can obtain tasks from both the unprocessed task pool and the straggler
task pool. The unprocessed task pool stores all the unprocessed tasks. Straggler map task pool and strag-
gler reduce task pool store the straggler map and reduce tasks. The filled squares represents the map/reduce
slow nodes, and the filled cycles represents either slow map task or slow reduce task, respectively

is Node_Num. The up-bound of the number of slow map/reduce nodes is SN_Cap *
Node_Num.

3.6 Backup tasks launching algorithm

Launching backup tasks for straggler tasks is one of the most popular method to im-
prove the performance of a MapReduce job. Since HAT has detected out the straggler
tasks and map/reduce slow nodes, HAT can simply launch backup tasks for the strag-
gler tasks. When a node @ is free, it first tries to obtain a new task that never been
executed before. If there is not any new task, @ checks whether it is a map or reduce
slow node. If @ is not a map slow node, @ launches a backup task for a straggler map
task. If @ is not a reduce slow node, @ launches a backup task for a straggler reduce
task.

HAT also limits the number of backup tasks since backup tasks cost system re-
sources. As mentioned in Sect. 3.4, the up-bound of the number of backup tasks is
Strag_Cap * Task_Num.

4 Implementation of HAT

We implement HAT scheduler on Hadoop using the longest remain time policy. Fig-
ure 2 shows the general architecture of HAT scheduler.

As shown in Fig. 2, HAT uses straggler map task pool and straggler reduce task
pool to record straggler map tasks and straggler reduce tasks, respectively. When
a node tries to launch a backup task for either a straggler map task or a straggler
reduce task, the straggler task with the longest remaining time is popped out from
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<HAT>
<MAP><M1>0.80</M 1><M2>0.20</M2></MAP>
<REDUCE><R1>0.59</R1><R2>0.19</R2><R3>(.22</R3></REDUCE>
</HAT>

Fig. 3 Anexample of M1, M2, R1, R2, and R3 that are recorded in XML format

the corresponding task pool. In this way, HAT always launches backup task for the
straggler task which prolongs the execution time most serious first.

As mentioned before, every node records the values of M1, M2, R1, R2, and R3,
which partly reflect the execution features of tasks on the node. For easy maintaining,
the values are stored in XML format, as shown in Fig. 3. Every node uses a XML
parser to read in the stored values and takes them as the default values of M1, M2,
R1, R2, and R3 in the current execution.

In HAT, all the nodes prefer executing unprocessed tasks from the unprocessed
task pool rather than launching backup tasks. Due to the large data set of tasks, all
the nodes prefer to execute tasks whose data set is stored on local node.

5 Performance evaluation

This section evaluates the performance of HAT. Due to hardware limits, we use a
cluster that comprises from five computers. In order to simulate heterogeneous en-
vironment, we have installed different number of virtual machines on the homoge-
neous computers. Each computer has 1 GB RAM and each virtual machine runs
Linux 2.6.24. We implement HAT scheduler on Hadoop 0.19.1. Since Hadoop is im-
plemented in Java, we use the latest JDK (i.e., J2SDK 1.6.0.10).

In order to demonstrate HAT scheduler can improve the performance of MapRe-
duce applications in most of hardware scenarios, we simulate two heterogeneous en-
vironments with different settings (fast setting and slow setting). Table 1 lists the
detailed settings. Note that, we run a CPU-intensive program on one of the comput-
ers that have two virtual machines to simulate two extremely slow nodes in the slow
setting.

Two classic benchmarks, Sort and WordCount, are used to evaluate the perfor-
mance of our HAT scheduler. The two benchmarks are always used to evaluate the
performance of MapReduce schedulers, such as LATE [28] and Phoenix [18]. For
each test, every benchmark is run ten times and the average execution time is used as
the result.

5.1 Performance of HAT

Since slow setting provides more heterogeneity, we use slow setting as the main set-
ting of our experiments. Experiments on the fast setting show similar result to the
slow setting. Figure 4 show the performance of Sort and WordCount in HAT, Hadoop
and LATE scheduler. We can see that HAT significantly improves the performance
of Sort, with the performance gain up to 37%. Meanwhile, WordCount has achieved
up to 16% performance gain with HAT compared with Hadoop. However, on the
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Table 1 Setting of hardware system

Settings VM/PC No. of PC No. of nodes Write rate (MB/s)
Fast setting 1 1 1 2.87
2 3 2%x3=06 1.40
bare Linux 1 1 3.43
Slow setting 1 1 1 2.87
2 2 2x3=4 1.40
2 1 extremely slow PC 2 1.34
bare Linux 1 1 3.43
T T T 12 T T T
'2I  EZANATSNLATEE—Hadoop] | [ [EZAHAT NNNLATE =S Hadoop|
E 1.0
<
£ o8
3
o
5 06
e
N o4
[}
§ 02
z
0.0

(b) WordCount

Fig. 4 Execution time of Sort and WordCount in the slow setting

other hand, both Sort and WordCount have achieved a slightly performance gain
with the LATE scheduler, which uses the longest remaining time policy as well. The
performance results of HAT are collected with best configured parameters (i.e., HP,
Task_Cap, Node_Cap, SN_Cap, and Strag_Cap). We will describe the way to choose
the appropriate values for them shortly.

As shown in Fig. 4, both benchmarks achieve a slightly better performance in
LATE compared with Hadoop. The performance gains origin from the longest re-
maining time strategy in launching backup tasks [28]. Since HAT estimates the
progress of tasks accurately, it can detect straggler tasks more accurate. Therefore,
Sort and WordCount achieve better performance in HAT compared with LATE.

5.2 Effectiveness of backup strategy and history-based auto-tuning strategy

In order to evaluate the effectiveness of backup strategy and the history-based auto-
tuning strategy in HAT, we compare the performance of Sort that is scheduled by
Hadoop, Hadoop-nb (Hadoop without backup strategy) and Hadoop-ha (Hadoop with
history-based auto-tuning strategy) on both the fast setting and the slow setting. Word-
Count shows similar results. Figure 5 shows the performance of Sort scheduled by
the three schedulers on the two settings, respectively. From the figure, we can see
that the backup strategy can significantly improve the performance of MapReduce
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Fig. 5 Execution time of Sort on the slow setting and the fast setting
Table 2 The recorded/real values of M1, M2, R1, R2, and R3

Map task Reduce task

M1 M2 R1 R2 R3
Nodel 0.8/0.78 0.2/0.22 0.59/0.62 0.19/0.23 0.22/0.15
Node2 0.77/0.77 0.23/0.23 0.46/0.42 0.06/0.03 0.48/0.55
Node3 0.75/0.66 0.25/0.34 0.44/0.40 0.43/0.45 0.24/0.15
Node4 0.74/0.77 0.26/0.23 0.62/0.64 0.13/0.06 0.25/0.32
Node5 0.81/0.82 0.19/0.18 0.43/0.44 0.14/0.04 0.43/0.52
Node6 0.73/0.77 0.27/0.23 0.51/0.53 0.19/0.12 0.30/0.35
Node7 0.71/0.67 0.29/0.33 0.51/0.50 0.11/0.06 0.38/0.44
Node8 0.79/0.78 0.21/0.22 0.46/0.41 0.13/0.48 0.41/0.11

applications while the backup strategy can enhance the stability of execution time as
well.

To demonstrate HAT can tune the values of M1, M2, R1, R2, and R3 accurately
using the history-based auto-tuning strategy, Table 2 lists the recorded values and
the real values of them on every node. For map tasks, the difference between real
values and the recorded values are less than 5%. For reduce tasks, in most cases,
the difference between real values and the recorded value are less than 10%. Both
the recorded values and the real values are far from the constant values of them em-
ployed in Hadoop’s scheduler and LATE scheduler (i.e., 1, 0, %, %, and %). Based
on the accurate values of them, HAT detects the straggler tasks accurately. Therefore,
HAT can improve the performance of MapReduce applications in heterogeneous en-
vironments.

5.3 Appropriate parameters in HAT
HAT uses five parameters (i.e., HP, Task_Cap, Node_Cap, SN_Cap, and Strag_Cap)
to configure the scheduler for different hardware architecture and different applica-

tions. In order to find appropriate values for the parameters, we tune one parameter
while keeping all the other parameters static. Following the runtime algorithm of HAT
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Fig. 6 Performance of Sort 500 T T T T T T
with different HP in the trained [ —o—Untrained _ —=— Trained

and untrained scenarios 400 - o T

O

300 | g0 : ]

200 -

Execution time (s)

0 1 1 1 1 1 1
10% 20% 30% 50% 80%  100%

Fig. 7 Performance of Sort 500 T T T T T T

with different Task_Cap, - i —&— Task_Cap —O— Node_Cap —A— SN_Cap
Node_Cap and SN_Cap 400 - 7

Q
/

300

200 | = i

Execution time (s

1 1 1 1 1 1
10% 20% 30% 50% 80%  100%

that is proposed in Sect. 3.1, we evaluate the performance of Sort with different HP,
Task_Cap, Node_Cap, SN_Cap, and Strag_ Cap. Experiment on WordCount shows
similar results.

Figure 6 shows the performance of Sort with different HP in two scenarios: un-
trained scenario and trained scenario. HP is the weight of the recorded values of M1,
M?2, R1, R2, and R3 in the new values of them as defined in Sect. 3.2. We construct
the trained scenario by executing Sort for two times before the current execution and
construct the untrained scenario by setting the recorded M1, M2, R1, R2, and R3 to
1,0, %, %, and % manually just like the assumption in Hadoop and LATE scheduler.

From the figure, we can see that the value of HP does not affect the performance
of Sort too much in the trained scenario. However, the performance of Sort degrades
with the increasing of HP in the untrained scenario. The high and static performance
of Sort in the trained scenario is resulted from the well-trained value of M1, M2,
R1, R2, and R3. Figure 6 also suggests to use small HP if an application is executed
for the first time. In this way, the value of M1, M2, R1, R2, and R3 can be tuned
based on the current execution rapidly. Note that, if HP equals to 100%, the values of
M1, M2, R1, R2, and R3 in the current job equal to the recorded value. In this case,
HAT scheduler is the same to the LATE scheduler in the untrained scenario. In the
following experiments, HP is 20%.

Figure 7 shows the performance of Sorr with different Task_Cap, Node_Cap, and
SN_Cap in the slow setting. From the figure, we can see that the best values of
Task_Cap, Node_Cap, and SN_Cap are 30%, 20%, 30%, respectively.

Task_Cap is the percentile of speed below which a task will be considered too
slow to be a slow task as defined in Sect. 3.4. As shown in Fig. 7, Sort gains best
performance when Task_Cap is 30%. Deduced from (9), the smaller Task_Cap is the
more tasks are classified to slow tasks. Therefore, if Task_Cap is smaller than 30%,
some fast tasks are classified to slow tasks and even straggler tasks. In this case, the
launching of backup tasks for these wrong-classified tasks consume a lot of system
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Fig. 8 The performance of Sort 500 T T T T T T T
with different Strag_Cap

400 |- 4

300

200 E

Execution time (s)

100 - -

1 1 1 1 1 1 1 1 1
10% 20% 30% 40% 50% 60% 70% 80% 100%

resources, so the overall execute time is prolonged. On the other hand, if Task_Cap
is larger than 30%, some slow tasks and even straggler tasks are classified to fast
tasks and none backup tasks are launched for them. These slow tasks will prolong the
execute time as well.

Node_Cap is the percentile of speed below which a node will be considered too
slow to be a map/reduce slow node as defined in Sect. 3.5. As shown in Fig. 7, Sort
gains best performance when Node_Cap is 20%. If Node_Cap is small than 20%,
some fast nodes are treated as map/reduce slow nodes by fault. In this case, the com-
puting power of these wrong-classified nodes cannot be used to improve the perfor-
mance by executing backup tasks for straggler tasks. On the other hand, if Node_Cap
is larger than 20%, some map/reduce slow nodes are classified to fast nodes by fault.
In the case, backup tasks may be launched on these slow nodes. Since the backup
tasks on slow nodes will be finished later than the original straggler tasks, the overall
execute time cannot be shortened.

SN_Cap is used to limit the maximum number of slow nodes as defined in
Sect. 3.5. As shown in Fig. 7, Sort gains best performance when SN_Cap is 30%.
SN_Cap is useful if Node_Cap has an unappropriate value, since SN_Cap limits the
number of slow nodes. SN_Cap guarantees that there are not too many nodes are clas-
sified to slow nodes. If SN_Cap is smaller than 30%, some map/reduce slow nodes
may be classified to fast nodes if Node_Cap is too small (e.g., smaller than 20%). On
the other hand, if SN_Cap is larger than 30%, some fast nodes may be classified to
slow nodes if Node_Cap is too large (e.g., larger than 30%). The wrong classifications
lead to the poor performance as described in the last paragraph.

Strag_Cap is used to limit the maximum number of backup tasks as defined in
Sect. 3.4. As shown in Fig. 8, Sort gains best performance when Strag_Cap equals
to 30%. If Strag_Cap is smaller than 20%, HAT cannot launch backup tasks for all
the straggler tasks because of the small number of backup tasks. On the other hand,
if Strag_Cap is larger than 0.2, too many backup tasks will consume a lot of system
resources, so the execution time of Sort is prolonged.

After a series of experiments, the best parameters for HAT are: HP = 20%,
Task_Cap = 30%, Node_Cap = 20%, SN_Cap = 30%, Strag_Cap = 20% in our
test bed for Sort. These parameters must be respecified for any new scenarios.

6 Related work

MapReduce is increasingly popular in large data set processing. There have been a
lot of research works on its adaption and improvement [9, 20, 22, 27].
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MapReduce scheduling has been extended to a great many of platforms, such as
shared-memory multicore platform, Cell broadband engine platform, GPU, FPGA,
and mobile platform. Phoenix [18] is a MapReduce framework on shared-memory
multi-core architecture. Based on Phoenix, [26] and [14] optimized the performance
of MapReduce on a multicore platform. De Kruijf and Sankaralingam [6] and Rafique
et al. [17] implemented MapReduce frameworks for Cell broadband engine and
Cell-based clusters. Mars [6] harnesses the GPU computation power and high mem-
ory bandwidth to accelerate MapReduce frameworks, such as Hadoop. In this case,
MapReduce applications are executed on both CPUs and GPUs. Shan et al. [21]
proposed FPMR for developers to create MapReduce programs on FPGA. Elespuru
et al. [9] proposed a MapReduce framework on heterogeneous mobile platform.

A lot of efficient MapReduce scheduling algorithms have been proposed to im-
prove the performance of MapReduce in many scenarios. Fischer et al. [11] pro-
poses an idealized mathematic model to evaluate the cost of task assignments and
develops a flow-based algorithm to optimally assign tasks. In [16], an infrastructure
aware MapReduce scheduler is proposed. The scheduler monitors the tasks and eval-
uates the benefits of running each task on different nodes in real time. Based on the
evaluation, the scheduler can decide the best distribution of tasks on nodes accord-
ingly. In [5], Tiled-MapReduce scheduling algorithm is proposed. Tiled-MapReduce
scheduler partitions a large MapReduce tasks into a number of small subtasks and
iteratively processes one subtask at a time with efficient use of resources. In [27],
a fair-sharing algorithm for a multiuser MapReduce system is proposed to arrange
system resources (map/reduce task slots) for many users fairly. In [1], a MapReduce
scheduling algorithm is proposed to minimize the execution time and improve the
system resources utilization. The algorithm defines virtual machines (VM) and allo-
cates the VMs to jobs, and to physical nodes. In [19], a Dynamic Priority (DP) parallel
task scheduler is designed, which allows users to control their allocated capacity by
dynamically adjusting their budgets. Note that our history-based auto-tuning strat-
egy could be integrated into these MapReduce scheduling algorithms to improve the
performance of MapReduce applications further.

Detecting straggler tasks in the execution of current job is another interesting is-
sue. There are two policies to detect straggler tasks: the least progress policy and
the longest remaining time policy. For example, Hadoop [13] uses the least progress
policy while LATE [28] uses the longest remaining time policy to detect straggler
tasks as mentioned in Sect. 2. Both policies need to estimate the progress of every
map/reduce task accurately. ParaTimer [15] is a time-oriented progress indicator for
parallel queries that ensembles of MapReduce jobs. However, the indicator can only
estimate the progress of SQL queries. On the other hand, our HAT scheduler, which
uses a history-based auto-tuning strategy, can estimate the progress of all the tasks
accurately.

7 Conclusion

Traditional MapReduce schedulers cannot detect out straggler tasks accurately be-
cause the progress scores of tasks are calculated based on inaccurate weight of each
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phase in the overall progress of a task. To address the problem, we have designed and
implemented HAT: a History-based Auto-Tuning MapReduce scheduler. HAT esti-
mates progress of a task accurately since it tunes the weight of each phase of a map
task and a reduce task automatically according to the historical values of the weights.
HAT further classifies slow nodes into map slow nodes and reduce slow nodes. In this
way, HAT can launch backup tasks for reduce straggler tasks on map slow nodes and
vice versa. Experimental results demonstrate that HAT can achieve up to 37% perfor-
mance gain compared with Hadoop, and up to 16% performance gain compared with
LATE scheduler.

One of our future works is to address the data locality problem when launching
backup tasks, i.e., launching backup tasks on nodes with the corresponding data set of
the straggler task. Another possible future direction is to profile a small-scale of the
MapReduce application first before the real execution. In this way, the recorded val-
ues of M1, M2, R1, R2, and R3 are trained appropriately before the real execution.
We will evaluate our HAT scheduler on more platforms, such as the Cell broadband
engine platform and the rented Cloud Computing platform, to test the scalability of
HAT.
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