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Abstract In peacekeeping, domestic, or combat operations, unanticipated crowd
confrontations can occur. As a highly dynamic social group, human crowd in con-
frontation is a fascinating phenomenon. This paper presents a novel method based
on the concept of vector field to formulate the way in which external stimuli may
affect the behaviours of individuals in a crowd. Furthermore, Modelling & Simula-
tion (M&S) of large crowds at individual level has long been placed in the highly
computation intensive world. This study adopts GPGPU to sustain massively parallel
M&S of a confrontation operation involving a large crowd. This approach enables
investigation of a crowd consisting of tens of thousands individuals whose size was
prohibitively large for conventional M&S technique to support. Experimental results
indicate that the approach is efficient in terms of both performance and energy con-
sumption.
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Fig. 1 Stampede at a musical
festival in Duisburg (obtained
from Internet)

1 Introduction

Human crowd is a fascinating social phenomenon in nature. A crowd of people may
show well-organized structure and become disordered animals at another point. Nu-
merous incidents/accidents in connection with crowd have been recorded in human
history (see Fig. 1). How to predict and control the behavior of a crowd upon various
conditions/events is an intriguing question faced by many psychologists, sociologists,
physicists, and computer scientists. It is also a major concern of many government
agencies when dealing with crowds in confrontation.

A crowd is not simply a collection of individuals and usually exhibits highly com-
plex dynamics. Study of crowd in confrontation operations has received more and
more attention. Crowd gatherings accompanied by severe violence have occurred
frequently in nowadays restless world. From a researchers’ perspective, another im-
portant reason is that the dynamics a crowd in a confrontation operation is largely
influenced by external stimuli (properties and status of entities in the scenario as well
as events), which are highly uncertain and often interact with the collective behavior
of the crowd.

In general, pure mathematical approaches or analytic models are not adequate
in characterizing the dynamics of a crowd. Crowd modeling and simulation (M&S)
has recently been gaining tremendous momentum [21]. Existing models are largely
at two extreme levels (microscopic and macroscopic): either model each individual
as an autonomous agent, or treat the crowd as a whole [6, 9, 10] or consisting of
homogeneous particles [7] with no cognitive features.

No matter a crowd is formed spontaneously or organized, individuals in the crowd
gathering at the same time and space will globally exhibit common features, which
can be well described by macroscopic modeling approaches. But the inherent pitfall
of macroscopic modeling approaches is the incapability to reflect the impact brought
by regional events and individualities within the crowd: for what microscopic ap-
proaches are designed. On the other hand, in general, there is lack of a formal method
to formulate a crowd’s common features with agent-based approaches.

The collective behavior of a crowd in a confrontation operation is determined by
both unanticipated external stimuli and the common features of the crowd itself. In
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this study, we propose a novel method based on the concept of vector field to for-
mulate the way in which external stimuli may affect the tendency of the behaviors of
individuals. Our approach represents each individual as an autonomous agent whose
actions are guided by the vector field model. As such, we bridge gap between the
macroscopic with the agent-based approaches to more accurately characterize the
interaction dynamics between a crowd and external stimuli.

Furthermore, as spotted out by Helbing, “Emotions play a decisive role in how
people behave in crowds” and “the more nervous crowds get, the more unpredictably
and irrationally they behave.” Existing crowd models normally incorporate a number
of tangible factors (such as speed, location, appearance, age) and some also consider
intangible (such as emotional) factors. How to properly portray intangible factors
and to quantitatively measure the impact these factors in a model remain a research
challenge. This study also explores an information entropy based method to quantify
the degree of panic of individuals and proposes the potential of disorder of the whole
crowd. A quantitative analysis on intangible dynamics of a crowd in confrontation is
then enabled.

It is a research challenge to support confrontation operation simulations (COS) in-
volving large crowd. Large agent-based systems, such as simulation of large crowds
at individual level, have long been placed it in the highly computation intensive world.
Using traditional CPU-based high performance computing technology may provide
an ad hoc solution to the performance issue [15–20] but this type of technology is
being subject to a number of limitations: heat dissemination, excessive energy con-
sumption, high-density power, and excessive cost for associated cooling systems.
There exists a pressing need for computing methods for COS which can simulate
a crowd of a large size while ensuring energy efficiency.

In the past few years, the modern Graphics Processing Unit (GPU) has evolved
into a highly parallel, multithreaded, and many-core processor far beyond a graph-
ics engine which substantially outpaces its CPU counterparts in dealing with com-
putationally demanding, complex problems [3]. In this study, we have developed a
parallelized crowd simulation approach, which successfully adopts General-purpose
computing on the graphics processing unit (GPGPU) to thoroughly exploit the par-
allelisms of the COS process. The proposed approach has been developed upon
NVIDIA’s Compute Unified Device Architecture (CUDA) [5], a general purpose par-
allel computing architecture. Results demonstrate that GPGPU-aided approaches are
remarkably superior to the distributed computing based counterparts in terms of both
performance and energy consumption.

A shorter version of this article was presented in the 16th IEEE International Con-
ference on Parallel and Distributed Systems [1], which is mainly about the agent-
based model of COS. The rest of the paper is organized as follows. Section 2 pro-
vides some background knowledge and redefines notations borrowed from other dis-
ciplines. Section 3 introduces the vector field approach. Section 4 presents a case
study of simulation of a crowd in confrontation operation. This section also gives a
quantitative analysis on the evolvement of the simulated crowd’s entropy in terms
of degree of panic. Section 5 introduces the approach to M&S of large crowd in
confrontation operation using GPGPU. We conclude this paper with a summary and
future work in Sect. 6.
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Fig. 2 A gravitational field
(left) and a repulsive field (right)

2 Background and notations

This study (1) adopts agent-based approach for modeling individuals; (2) transplants
the concept of vector field to reflect the influences of external stimuli on a crowd;
(3) uses information entropy to analyze a crowd’s intangible dynamics; (4) adopts
GPGPU to parallelize COS to sustain scenarios consisting of large crowds. Several
important notations related to the above methods are presented as follows:

• The Agent-based approach is currently the most active approach used for crowd
M&S in the community of computer science and engineering [2–5, 16, 20].
A crowd is regarded as a collection of heterogeneous individuals that are empow-
ered with decision-making capability, with each agent representing an individual.
The agent-based approach is the most natural way to model behaviors with strong
individual differentiations. A typical example is the PAX system which provides
an M&S tool for scenarios of peace support missions [13]. Our model also uses
autonomous agents to model individuals.

• A vector field is a construction in vector calculus which associates a vector to ev-
ery point in a subset of Euclidean space. Vector fields are often used in physics to
model the strength and direction of some force, such as the magnetic or gravita-
tional force, as it changes from point to point. A vector field in the context of this
study formulates the relationship between people’s intention (internal) and the ex-
ternal stimuli. The vector field theory in physics will be adopted as the mathematic
basis of the macroscopic model. A vector field (see Fig. 2) describes the influence
(“force”) that a stimulus has on a certain intention of a person who perceives this
stimulus in the scenario’s space. An intention is regarded as a charged particle,
whose charge is subject to the intention’s magnitude and may change with the
evolvement of simulation. A vector field is dynamic if its intensity and direction
may change over time, otherwise it is fixed.

In this study, a vector field is defined for one particular stimulus which merely
works on one particular intention. As such, interference does not exist between
any two vector fields. This definition significantly differs from those vector fields in
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physics. The effect of multiple vector fields on an individual is only exhibited by the
combined force resulted from the forces these vector fields act on multiple intentions
exclusively.

• “Entropy” has important physical implications as the degree of “disorder” of a
physical system [8, 12, 14]. Information entropy is a measure of the uncertainty
associated with a random variable (X), which is defined as

H(X) = H(P1,P2, . . . ,Pn) = −
∑

P(xi) logP(xi) (1)

where P(xi) is the probability that X is in the state xi , and
∑

n P (xi) = 1. If
P(xi) = 0, P(xi) logP(xi) is defined as 0. The more disorderly a system is, the
more information it contains, and vice versa.

In the context of our crowd model, five types of behaviors have been defined,
namely “following,” “avoiding,” “adjusting,” “confrontation,” and “retreat.” An
agent may have specified a behavior at any point to conduct subject to a probability
distribution on these candidate behaviors. The “information entropy” can then be
calculated for the whole crowd. The value of the entropy will provide a quanti-
tative measure on how disorderly the current crowd is, which may then facilitate
controlling the crowd.

• The notation Degree of Parallelism (DoP) is referred to quantify the parallelism
a problem to be solved. A problem’s DoP means the number of portions in the
problem, which can be concurrently solved/executed with the same results as those
attained in a serial manner.

3 The hybrid behavior model

A hybrid behavior model is designed to manipulate each agent’s behavior. Figure 3
presents a conceptual view of the proposed model consisting of two submodels, i.e.,
(1) a rule-based submodel to specify each agent’s exact behavior and (2) a vector field
submodel representing the influences of external stimuli common on all agents in the
simulation. We adopted a classic design for an agent, which has the cognition capa-
bility to sense, deliberate then act. Rule-based agent approach has been extensively
covered by existing work. This study emphasises the vector field submodel only.

Fig. 3 Conceptual view of the
vector field submodel and the
behavior model
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Fig. 4 Simulation of a crowd in a confrontation operation

The vector field submodel maintains a set of vector fields. The submodel com-
putes the integrative influence of the external stimuli on people’s various internal
intentions, and it outputs the tendency (measured by the combined force) of an in-
dividual’s behavior. The tendency means what the individual is likely to do rather
than a deterministic action/motion as in Helbing’s approach [7]. The vector field ap-
proach has been examined in a scenario of demonstration in front of a governmental
building, as shown at the top of Fig. 4.

A crowd of demonstrators move on a march toward a governmental building
(with its entrance highlighted as the red star). Each individual demonstrator is rep-
resented by a small red circle with its field of view and moving/confrontation direc-
tion marked. Armed policemen are denoted by blue triangles pointing at their mov-
ing/confrontation directions. Agents are moving within the 2D space confined by the
upper and lower bounds.

Here, we consider an agent’s intentions of two types: (A) “To approach the en-
trance of the governmental building,” and (B) “To avoid being attacked by the po-
licemen.” A basic type of vector fields have been defined to represent the influences
of the governmental building on an agent’s intention A ( �Eg(�r)) in (2) and (2) each
armed policeman on an agent’s intention B ( �Ep[i](�r)) in (4):

�Eg(�r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

CA
(�r−Rg)

|�r−Rg | |�r − Rg| < D1

kA
Qg(�r−Rg)

|�r−Rg |3 D1 ≤ |�r − Rg| ≤ DMAX

0 |�r − Rg| ≥ DMAX

(2)

�Ep[i](�r) =
{

−kB
Qp[i](t)(�r−Rp)

|�r−Rp |3 |�r − RP [i]| < D2

0 |�r − RP [i]| ≥ D3

(3)
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Fig. 5 Combined force acted
on an agent

where Qg is a fixed variable representing the “intensity” of the governmental build-
ing; Qp(t) represents the “intensity” of the governmental building; �r is a vector from
the origin of coordinate to an agent’s location; RG is the vector (fixed) from the origin
to the star; RG is the vector from the origin to a policeman (i); CA is a constant. D1,
D2, and D3(�D2) are constants representing distances; DMAX represents the max
distance between any two locations in the scenario; kA and kB are two coefficients.

We write an agent’s intentions A, B at a time point as QA(t) and QB(t), re-
spectively. The combined effect of the governmental building and the policemen
(i = 1,2, . . . , n) on the agent can be written as

�FAB(t) = �FA(t) + �FB(t) = �Eg(�r) × QA(t) +
n∑

i=1

�Ep[i](�r) × QB(t) (4)

In this scenario, policemen are deployed between the governmental building and
the demonstrators, and it close to the government. Given that only intentions A and
B are concerned, the agent tends to confront to policemen when | �FAB(t)| is small
enough (≤ε).

The effect of �FAB(t) on the agent relies on the component (A-component) of
�FAB(t) along the direction of �FA(t), negative means in the same direction (see Fig. 5).

Let α denote the angle between �FAB(t) and �FA(t), the magnitude of the A-component
of �FAB(t), written as �Fe(t):

| �Fe(t)| = | �FAB(t)| × cos(α) (5)

When �Fe(t) is negative, the agent tends to leave the governmental building and
policemen; otherwise, the agent tends to approach the governmental building. The
intensity of the tendency of the agent’s behavior is proportional to | �Fe(t)|.

4 A case study of confrontation operation simulation

Simulation has been executed using the agent model based on the vector-field method
to examine the effectiveness of the proposed method. The dynamics of the simulated
system has been quantified via entropy calculation afterward.
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Fig. 6 Evolvement of a simulated crowd in a confrontation operation

4.1 Simulation of a crowd in a confrontation operation

The simulation scenario involves a crowd of 500 demonstrators marching to the gov-
ernmental building and interacting with the policemen (22 on initialization) attempt-
ing to expel the demonstrators. The simulation lasts for 200 time units.

Figure 4 (see description in Sect. 3) illustrates the initial stage of the simulation.
The gravity field, �Eg(�r), dominates the agents’ (marked in red) tendency; �Fe(t) on
the agents that are positive, so the agents approach the red star. A small number of
agents in the front lead the way followed by the rest of the agents.

Figure 6 demonstrates three other stages of the simulation. When the agents in the
front get close enough to the policemen, the repulsive fields, �Ep[i](1 ∼ n), generate
repulsive force great enough which balances �Eg(�r). �Fe(t) on some agents in the front
half become less than ε, thus most of them confront the policemen and their color
turns to green (see Fig. 6(a)).

Policemen start to move toward the agents to prevent the demonstrator agents from
further approaching the red star (see Fig. 6(b) and (c)). When the distance between
the policemen and the agents in the front is generally small, the agents’ panic level in-
creases and the intensity of their intention A diminishes. In these cases, �Ep[i](1 ∼ n)

dominate, and �Fe(t) of most agents become negative which drive more and more
agents to leave the demonstration. During the stage illustrated by Fig. 6(d), there
are always small numbers of agents that gather into groups. These groups will only
dissolve and leave until the police come too close to them.

4.2 Dynamics analysis via entropy calculation

In this study, we introduce the concept of information entropy to analyze the degree
of disorder of the simulated crowd. The definition of entropy is available in Sect. 2.
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Fig. 7 The information entropy
of the case studies of COS

Figure 7(a) presents the information entropy of the crowd calculated for the simu-
lation scenario presented in Sect. 4.1:

• A peak in entropy in the duration from time 0 to 40 can be observed. This is caused
by the diversity of agents’ behaviors when the agents pour into the demonstration
at the beginning.

• After time 20, the crowd marches to the governmental building and most agents’
behaviors converge, thus the value of entropy drops sharply.

• From time 40 to 70, there is a sheer increase in information entropy. Agents are in
the process of approaching the governmental building, and their degrees of panic
are growing when they get closer to policemen.

• After time 70, agents continue to move forward and most of their behaviors become
confrontation to the policemen. This results in a drop in the value of information
entropy.
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• From time 100 to 130, the policemen move toward the agents in advancing. Agents
gradually start to “retreat.” As the number of retreating agents increases, the be-
haviors of the crowd tend to converge, and the entropy’s value drops further.

• When some small groups of agents are formed and remain in confrontation to
the policemen, the third peak is reached at time 150. There can be a few agents
who manage to cross the policemen and rush into the governmental building. This
diversity makes the information entropy at a relatively high level.

In the previous simulation, agents with strong intention A may break through the
policemen line. To test the influence of more policemen on the order of the crowd, we
performed another simulation with more policemen (30) deployed when most agents
are in the state of confrontation. From Fig. 7(b), we can see that the value of informa-
tion entropy in the current simulation is generally less than that calculated from the
previous simulation. The information entropy also drops to zero at the end stage of
the simulation as a contrast to the results presented in Fig. 7(a). This denotes that the
crowd is more orderly in this simulation and the probability of unanticipated emer-
gency events is reduced. The time for the crowd to reach stability is also shortened.
In the two simulations, the information entropy properly reflects the status and the
evolvement of the dynamics of the crowd under the influence of the policemen and
the governmental building.

5 Confrontation operation simulation aided by GPGPU

Due to the complexity of the COS at the individual agent level, the size of a simulated
crowd is very limited, i.e., around 8,000 individuals to the maximum, even using
a cutting-edge desktop computer. Another problem is the execution efficiency. We
developed a GPGPU-aided solution to address these problems.

5.1 Parallelization of crowd simulation

The most intensive computation of a COS in this study lies in the execution of agents.
The complexity increases almost linearly with the size of crowd, i.e., the number
of agents. A sequential COS operates in a number of identical virtual time frames,
typically representing 0.2 second in real world. For each time frame, the simula-
tion executes all agents one by one to compute each agent’s velocity (V ), position
(P ), decision on behavior selection (B), and its target (G). Computing the four
attributes of an agent requires the COS’ system state (obtained from the last time
frame), and this is independent from the results of any other agent at the current time
frame.

This means that it is possible to parallelize the task of executing multiple agents.
Considering the feature of the crowd simulation, we propose a scheme to partition
the execution of agents into a number of subtasks with each executing an individual
agent as shown in Fig. 8. Given a COS scenario consists of NA individuals, the COS’
DoP equals NA at the individual agent level.
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Fig. 8 Execution task graph of
a parallelized simulation scheme

5.2 Evaluation of performance and energy efficiency

We have performed a number of experiments to study the performance of the alter-
native COS systems. The configurations of the test bed are presented in Table 1. The
original sequential version of the COS has been modeled using Java upon RePast
3.0 [2], a Java-based toolkit for the development of lightweight agents and agent
models. RePast has become a popular and influential toolkit, providing the develop-
ment platform for several large multiagent simulation experiments, particularly in the
field of social phenomena. We first examined the overhead distribution of the simu-
lation program. The computer node is only able to execute ∼8000 demonstrators
to the maximum. Given a scenario consisting of 4,000 demonstrators with timestep
set as 0.5 second (simulation time), the simulation execution time on a single com-
puter node is ∼309 seconds. The elapse times in calculating V,P,B , and G is ∼308
seconds, which contributes about 99.6% of the overall overhead. Clearly, the perfor-
mance bottleneck of the program lies with calculation of the four attributes of the
agents.

5.2.1 GPGPU-aided confrontation operation simulation

Based on the above observations, we developed a parallelized simulation using
GPGPU, which excels in handling a large number of concurrent fine-grained sub-
tasks. The GPGPU-aided COS uses an individual CUDA thread to compute each
agent’s four attributes in each time frame (see Fig. 8). The new simulation program
was developed based on JCuda (version 0.3.2a) [11], a Java binding for Java programs
to interact with CUDA runtime and driver APIs. Thus, most of the original simulation
code in Java can be reused while still having the benefit from the underlying powerful
parallel programming and computing capabilities offered by GPGPU.
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Table 1 Configurations of the
testbed Specifications Computers

Desktop computer
(Client)

Computer Cluster (Server,
1 master node and 15
worker nodes interlinked
via 1 Gbps Ethernet)

Operating
system

Windows 7 Professional Rocks 4.2.1 (Cydonia)

Red Hat Enterprise Linux
ES release 4, X86_64

2.6.9-42.ELsmp

CPU Intel Pentium Dual Core
at 3.20 GHz
and 3.19 GHz

2 × Intel Dual Core at
3.0 GHz

RAM 2048 M 4096 M

Power
consumption

650 W 3.5 KW∼14 KW

Specifications of NVIDIA GeForce GTX 480

CUDA Cores 480

Processor
clock

1401 MHz

Standard
memory

1536 MB GDDR5

Memory
bandwidth

223.8 GB/sec

Power
consumption

250 W

Given that a COS scenario consists of NA individuals, we produced a scheme
which maps this task to CUDA threads in the following steps:

Step 1: After initialization of the kth time frame, the host assigns NA data sets de-
rived from the simulation’s current system state. Each data set corresponds to
an individual agent for computing its velocity, position, decision on behavior
selection, and its target;

Step 2: The host invokes NA CUDA threads via JCuda, and these threads are evenly
grouped into 480 blocks (NA/480 threads operating in each block) on the
“device.” This means 480 cores on the GPU are assigned to execute these
agents with each core computing one agent’s attributes individually;

Step 3: Step 2 repeats until the NA threads complete execution. The NA agents’ new
attributes are then passed from the device to the host. The host then updates
system state through the RePast simulation engine and enters the (k + 1)th
time frame.

Our design minimizes the thread number in a thread block while it creates thread
blocks as many as possible when executing threads of this type. Hence, these threads
can make the most of CUDA cores to deal with intensive computations and occupy as
much fast shared memory (manipulated by each block) as possible to buffer the inter-
mediate data generated during their executions. The GPGPU-aided COS can support
scenarios consisting of more than 30,000 demonstrators.
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Table 2 Performance of sequential and parallelized COS systems

Number of agents Sequential COS Cluster-aided COS
(parallelized)

GPGPU-aided COS
(massively parallelized)

Execution time
(Sec)

Execution time
(Sec)

Speedup Execution time
(Sec)

Speedup

3000 206 102 2 20 9.8

4000 309 138 2.2 31 10

5000 565 191 3 57 10

8000 1219 439 2.8 95 13

10000 N/A 680 N/A 115 N/A

12000 N/A 718 N/A 129 N/A

20000 N/A 1409 N/A 209 N/A

30000 N/A N/A N/A 317 N/A

5.2.2 Performance evaluation and energy efficiency analysis

In order to investigate the potentials of traditional CPU-based high performance
techniques, e.g., cluster computing, and to establish a reference for evaluate the
GPGPU-based approach, we developed another parallelized COS with the support
of HLA_RePast [2], a middleware which supports the execution of multiple interact-
ing instances of RePast agent-based models. Thus, a Cluster-aided COS (CCOS) has
been established, and the load of executing the original COS can then be distributed
over the 15 worker nodes of the computer cluster (see Table 1).

We performed a series of experiments which focuses on speedup (comparing to
sequential COS, referred to as SCOS) and aims to investigate and compare the perfor-
mance of GPGPU-aided and cluster-aided COS systems. Table 2 gives the execution
times of the two types of COS systems with different numbers of agents (demon-
strators). The results indicate that (1) the two parallelized COS systems significantly
improve the runtime performance and scale well with the number of agents; (2) the
GPGPU-aided COS (referred to as GCOS) always excels in performance improve-
ment. The results (agent number ≤8000) are highlighted in Fig. 9.

The GPGPU-aided COS in this study operates on a graphic card with power con-
sumption amounts to the maximum 250 W included in the maxim 650 W power
consumption of the desktop. During the execution of GCOS on the desktop (viewed
as a CPU-GPU hybrid system), the desktop’s consumption was about ∼210 W. In
contrast, during the execution of SCOS on the desktop (viewed as a pure CPU sys-
tem), the desktop’s consumption was about ∼130 W. The computer cluster’s power
consumption amounts to ∼9 KW during the execution of CCOS.

Taking the test scenario with 8,000 agents, for example, the execution times with
SCOS, CCOS, and GCOS are 1219 s, 439 s, and 95 s, respectively. The total en-
ergy consumption using the three systems is ∼158470 J, ∼3951000 J, and ∼19950 J.
Comparing to the GCOS system, SCOS/CCOS consumes ∼7/∼197 times more en-
ergy. This analysis even does not consider the power consumption of the cooling sys-
tem for the computer cluster room. The experimental results demonstrate the great



688 D. Chen et al.

Fig. 9 Execution time of alternative COS systems (agent number ≤8000)

advantages of GCOS over SCOS and CCOS in terms of both runtime performance
and energy consumption.

6 Conclusions and future work

This study explored an energy-efficient and high performance solution to simulation
of confrontation operations involving large crowds. The novel simulation approach,
namely GPGPU-aided COS, has been developed to address the scalability and per-
formance issues using GPGPU.

We first proposed a vector field method which aims to formulate the way in which
external stimuli may affect the tendency of the behaviors of individuals. Together with
the agent-based approach, a model for simulation of crowd in confrontation opera-
tions has been established using RePast. We also introduced the concept of informa-
tion entropy to analyze how the change of each individual’s behavior may affect the
intangible dynamics of the whole crowd. A case study of crowd simulation has been
carried out. Through the measure of information entropy, the status and the evolve-
ment of the dynamics of the crowd can be revealed. The results indicate that (1) the
proposed COS model can exhibit typical behavior pattern of a crowd in confronta-
tion; and (2) that information entropy can provide evident support to the design of
control tactics for crowd control.

This study then emphasizes the feasibility and effectiveness of COS with GPGPU.
The GPGPU-aided approach naturally divides a COS into a large number of fine-
grained tasks, thus it effectively exploits the parallelism of the COS system at the
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individual agent level. It seamlessly maps the tasks to the same number of CUDA
threads which can be executed concurrently by hundred of GPU cores.

Experiments have been carried out to evaluate the performance of GPU-aided
COS and to investigate the potentials of traditional CPU-based high performance
techniques. A cluster-aided COS has been developed upon HLA-RePast. Although
cluster-aided COS runs over a high-end CPU-based computer cluster, GPU-aided
COS prevails in runtime efficiency: G-EEMD is ∼6 times faster than the best dis-
tributed counterpart does. More importantly, the graphic card has maximum power
consumption only ∼1/36 of the computer cluster’s power consumption. This figure
does not consider the power consumption of the cooling system to ensure the com-
puter cluster operable. The results indicate that GPGPU is a very promising technique
in simulation of social phenomena. The proposed GPGPU-aided COS is indeed a
highly energy-efficient and an ultra high performance solution to M&S of confronta-
tion operations

For future work, we will further explore the feasibility of quantifying the degree
of panic of a crowd. We are also interested in the approaches to detecting groups in a
crowd and identification of the leader of a group.
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