
J Supercomput (2011) 58:429–437
DOI 10.1007/s11227-011-0606-4

Using graphics processors to accelerate
the computation of the matrix inverse

P. Ezzatti · E.S. Quintana-Ortí · A. Remón

Published online: 15 April 2011
© Springer Science+Business Media, LLC 2011

Abstract We study the use of massively parallel architectures for computing a ma-
trix inverse. Two different algorithms are reviewed, the traditional approach based on
Gaussian elimination and the Gauss–Jordan elimination alternative, and several high
performance implementations are presented and evaluated. The target architecture is
a current general-purpose multicore processor (CPU) connected to a graphics pro-
cessor (GPU). Numerical experiments show the efficiency attained by the proposed
implementations and how the computation of large-scale inverses, which only a few
years ago would have required a distributed-memory cluster, take only a few minutes
on a hybrid architecture formed by a multicore CPU and a GPU.

Keywords Linear algebra · Matrix inversion · Graphics processors

1 Introduction

Matrix inversion appears in a few scientific applications of different areas (e.g., model
reduction, polar decomposition, optimal control, prediction, etc.) and requires an im-
portant computational effort in terms of execution time and memory. Thus, matrix
inversion is a suitable operation for new highly parallel architectures, like GPUs or
general-purpose multicore processors.

P. Ezzatti
Centro de Cálculo—Instituto de Computación, Universidad de la República, 11.300 Montevideo,
Uruguay
e-mail: pezzatti@fing.edu.uy

E.S. Quintana-Ortí · A. Remón (�)
Dept. de Ingeniería y Ciencia de Computadores, Universidad Jaime I, 12.071 Castellón, Spain
e-mail: remon@icc.uji.es

E.S. Quintana-Ortí
e-mail: quintana@icc.uji.es

mailto:pezzatti@fing.edu.uy
mailto:remon@icc.uji.es
mailto:quintana@icc.uji.es


430 P. Ezzatti et al.

In this paper, we evaluate a variety of high performance implementations for ma-
trix inversion that exploit all the computational capabilities offered by an hybrid ar-
chitecture formed by a multicore CPU and a GPU. The study includes the revision of
two methods for the computation of a matrix inverse and several high-performance
implementations for each method. The numerical experiments illustrate the efficiency
attained by the Gauss–Jordan elimination implementations on the target architecture.

The rest of the paper is structured as follows. In Sects. 2 and 3, we describe dif-
ferent algorithms and implementations for matrix inversion. This is followed by ex-
perimental results in Sect. 4. Finally, in Sect. 5, a few concluding remarks and open
questions are exposed.

2 High-performance matrix inversion

This section presents two strategies to compute the inverse of a general unsymmetric
matrix, the traditional technique based on Gaussian elimination (i.e., the LU factor-
ization) and the Gauss–Jordan elimination method.

2.1 Matrix inversion via the LU factorization

The traditional approach to compute the inverse of a matrix A ∈ R
n×n is based on the

LU factorization, and consist of the following four steps:

1. Compute the LU factorization PA = LU , where P ∈ R
n×n is a permutation ma-

trix, and L,U ∈ R
n×n are, respectively, unit lower and upper triangular factors [6].

2. Invert the triangular factor U → U−1.
3. Solve the lower triangular system XL = U−1 for X.
4. Undo the permutations A−1 := XP .

The computational cost of computing a matrix inversion following the previous
four steps is 2n3 flops (floating-point arithmetic operations).

2.2 Matrix inversion via the Gauss–Jordan elimination

The Gauss–Jordan elimination algorithm [5] (GJE) for matrix inversion is, in essence,
a reordering of the computations performed by matrix inversion methods based on
Gaussian elimination, and hence requires the same arithmetic cost.

Figure 1 illustrates a blocked version of the GJE procedure for matrix inversion us-
ing the FLAME notation [4, 7]. There m(A) stands for the number of rows of matrix
A. We believe the rest of the notation to be intuitive; for further details, see [4, 7].
A description of the unblocked version, called from inside the blocked one, can be
found in [8]; for simplicity, we hide the application of pivoting during the factoriza-
tion, but details can be found there as well.

The bulk of the computations in procedure GJEBLK can be cast in terms of the
matrix-matrix product, an operation with a high parallelism. Therefore, GJEBLK is
a highly appealing method for matrix inversion on emerging architectures like GPUs,
where many computational units are available, especially if a tuned implementation
of the matrix-matrix product is available.



Using graphics processors to accelerate the computation of the matrix 431

Algorithm: [A] := GJEBLK(A)

Partition A →
(

AT L AT R

ABL ABR

)

where AT L is 0 × 0 and ABR is n × n

while m(AT L) < m(A)do
Determine block size b

Repartition(
AT L AT R

ABL ABR

)
→

⎛
⎝A00 A01 A02

A10 A11 A12
A20 A21 A22

⎞
⎠

where A11 is b × b

⎡
⎣A01

A11
A21

⎤
⎦ := GJEUNB

⎛
⎝

⎡
⎣A01

A11
A21

⎤
⎦

⎞
⎠ Unblocked Gauss-Jordan

A00 := A00 + A01A10 Matrix-matrix product
A20 := A20 + A21A10 Matrix-matrix product
A10 := A11A10 Matrix-matrix product
A02 := A02 + A01A12 Matrix-matrix product
A22 := A22 + A21A12 Matrix-matrix product
A12 := A11A12 Matrix-matrix product

Continue with(
AT L AT R

ABL ABR

)
←

⎛
⎝A00 A01 A02

A10 A11 A12
A20 A21 A22

⎞
⎠

endwhile

Fig. 1 Blocked algorithm for matrix inversion via GJE without pivoting

3 High-performance implementations

3.1 Implementations via the LU factorization

The algorithm presented in Sect. 2.1 is composed of four steps that have to be com-
puted in that strict order. We can identify in this algorithm two drawbacks from the
parallel computing viewpoint:

– The algorithm sweeps through the matrix four times (one time per step), so there
are many repeated memory accesses.

– Operating with triangular factors may be a source of load imbalance.

LAPACK [2] is a high-performance linear algebra library, for general-purpose pro-
cessors that comprises routines covering the functionality required by this algorithm.
In particular, routine getrf obtains the LU factorization (with partial pivoting) of
a general matrix (Step 1), while routine getri computes the inverse matrix of A us-
ing the LU factorization obtained by getrf (Steps 2–4).

3.1.1 Implementation on a multi-core CPU: LU(CPU)

MKL offers a multithreaded version of BLAS for multicore CPUs. The thread-level
parallelism of BLAS carries over to the implementation of LAPACK in MKL. Thus,



432 P. Ezzatti et al.

the simple use of the multithreaded implementation of MKL exploits the parallelism
inside the BLAS calls performed from routines getrf and getri.

3.1.2 Implementation on a many-core GPU: LU(GPU)

For this implementation, we developed GPU versions of routines getrf and getri,
as well as getf2 and trtri which are invoked from the former two. All the
codes extract fine-grained parallelism using specific BLAS kernels for the GPU (e.g.,
CUBLAS). This implementation also requires that the matrix is initially sent to the
GPU and the inverse is retrieved from there once it has been computed.

3.1.3 Hybrid implementation: LU(MAGMA)

This is the implementation based on the use of computational kernels from the
MAGMAlibrary. In this version, routines getrf, trsm, and gemm from MAGMA

[1] are used to obtain the LU factorization of the matrix, solve the triangular sys-
tem, and compute the product of matrices, respectively. As routine trtri needed to
compute the inverse of a triangular matrix is not implemented in MAGMA, we have
employed a high-performance implementation developed by researchers at AICES-
RWTHD. As in the previous case, this variant also requires the initial transfer of data
from CPU to GPU and the final communication of the result in the inverse direction.

3.2 Implementations via the Gauss-Jordan elimination

In this subsection, we describe four implementations for the GJE method (with partial
pivoting) on the two parallel architectures (multicore CPU and a GPU from NVIDIA).
The variants differ mainly on which parts of the computation are performed on the
CPU (the general-purpose processor or host), and which operations are off-loaded to
the hardware accelerator (the GPU or device). They all aim at reducing the number
of communications between the memory spaces of the host and the device.

3.2.1 Implementation on a multi-core CPU: GJE(CPU)

In this implementation all operations are performed on the CPU. Parallelism is ob-
tained from a multi-threaded implementation of BLAS. Since most of the computa-
tions are cast in terms of matrix-matrix products, high performance can be expected.

3.2.2 Implementation on a many-core GPU: GJE(GPU)

This is the GPU-analogue to the previous variant. The matrix is first transferred to
the device; all computations are performed there, and finally the result (the matrix
inverse) is retrieved to the host. Again, all the parallelism is extracted from a multi-
threaded implementation of BLAS on a GPU(e.g., the implementation from NVIDIA,
CUBLAS).



Using graphics processors to accelerate the computation of the matrix 433

3.2.3 Hybrid implementation: GJE(Hybrid)

While most of the operations performed in the GJE algorithm are well suited for
the GPU, a few are not. This is the case for fine-grained operations, where the low
computational cost and data dependencies deliver little performance on massively
parallel architectures like GPUs. To solve this problem, Benner et al. [3] proposed
a hybrid version in which operations are performed in the most convenient device,
exploiting the capabilities of both architectures.

In this variant, the matrix is initially transferred to the device, then the iterative
algorithm in Fig. 1 is computed jointly by both architectures, and finally the inverse
is moved back to the host. In particular, only the factorization of the current col-
umn panel, composed of [AT

01;AT
11;AT

21]T , is executed on the CPU, since it involves
a reduced number of data (limited by the algorithmic block size), pivoting and level-
1 BLAS operations which are not well suited for the architecture of the GPU. The
matrix-matrix products and pivoting of the columns outside the current column panel
are performed on the GPU using BLAS kernels (e.g., in the CUBLAS library).

3.2.4 Multilevel hybrid implementation: GJE(Hyb-ML)

Although GJE (Hybrid) attains an important computational efficiency due to the fact
that each operation is executed on the most convenient architecture, all stages are
performed sequentially. Variant GJE (Hyb-ML) targets the concurrent execution of
operations in both architectures.

In order to achieve this, we apply some minor changes to obtain a look-ahead
variant [9] of the algorithm in Fig. 1, that enables concurrent computations on CPU
and GPU:

1. The first column panel ([AT
01;AT

11;AT
21]T ) is factored on the CPU.

2. The active column panel is transferred to the GPU.
3. The first b columns of block [AT

02;AT
12;AT

22]T (that is, block [ÂT
01; ÂT

11; ÂT
21]T of

the next iteration) are updated and transferred to the CPU.
4. While the GPU update blocks [AT

00;AT
10;AT

20]T , and the remaining part of

[AT
02;AT

12;AT
22]T , the CPU factorizes [ÂT

01; ÂT
11; ÂT

21]T .
5. Move the factorization forward by b columns and repeat steps (b)–(d) until the

full matrix inverse is computed.
6. All the GPUs transfer their corresponding column block to the host.

The efficiency of the look-ahead variant can be limited by the algorithmic block
size (b). The optimal block size for the GPU is usually larger than that for the CPU;
in other words, if we set b to the optimal block size for the GPU, we will slow
down the execution on the CPU. Therefore, we introduce an additional modification
to simultaneously optimize the efficiency in both architectures operating with two
different block sizes (one for the CPU and one for the GPU); especially, as in GJE

(Hybrid), a blocked implementation of the GJEmethod is applied to matrix A, but this
time the CPU factorizes [ÂT

01; ÂT
11; ÂT

21]T using a blocked algorithm (i.e., GJEBLK)
instead of its unblocked version. Thus, the CPU executes algorithm GJEBLK on panel
[ÂT

01; ÂT
11; ÂT

21]T using its optimal block size (bc) while at a higher level, algorithm
GJEBLK is executed with the optimal block size for the GPU.



434 P. Ezzatti et al.

Table 1 Hardware employed in the experiments

Platform Processors #cores Frequency (GHz) L2 cache (MB) Memory (GB)

PECO Intel Xeon QuadCore E5520 8 2.27 8 24

Nvidia TESLA c1060 240 1.3 – 4

ZAPE AMD Phenom QuadCore 9550 4 2.20 0.5 4

Nvidia GTX 480 480 1.4 – 1.5

4 Experimental results

In this section, we evaluate the parallel implementations described in Sect. 3 for the
computation of a matrix inverse.

Two target platforms consisting of a multicore CPU connected to a GPU have
been tested; see Table 1. The first platform, PECO, consists of two Intel Xeon E5520
(Nehalem) QuadCore processors at 2.27 GHz connected to an NVIDIA Tesla C1060
GPU. The second platform, ZAPE, consists of an AMD 9550 (Phenom) QuadCore
at 2.2 GHz connected to an NVIDIA GTX480 (Fermi) GPU. Notice that, in general,
the CPU in PECO is faster than that in ZAPE, but the GPU in the latter platform
outperforms that of PECO. Intel MKL 10.1 implementation of BLAS and LAPACK is
employed to compute most of the operations on the general purpose processors, while
the NVIDIA CUBLAS (version 2.1 for PECO; 3.0.14 for ZAPE) and MAGMA (version
0.2) libraries are employed on the GPUs.

We set OMP_NUM_THREADS to the number of cores on the CPU, so that one
thread is employed per core in the parallel execution of the MKL routines.

The different implementations of matrix inversion were evaluated for a variety of
matrix dimensions (n = 1000–14000 on PECO and n = 1000–13000 on ZAPE). For
each matrix dimension, several block sizes (b = 32, 64, 96, 128, 256, 384, 512) were
tested. In the case of the GJE (Hyb-ML) implementation, three values for the CPU
block size (bc = 8,16, 32) were employed. For simplicity, only the results obtained
with the optimal pair (b, bc) are reported.

All experiments employ single precision floating-point arithmetic, and the results
include the communication times between the host and the device memory spaces.
Performance is reported in terms of GFLOPS (109 flops/s)

Figure 2 shows the results for PECO. Implementations based on the Gauss–Jordan
elimination are very efficient, especially for the inversion of large matrices. The
highly tuned implementation from LAPACK is clearly the best option for small matri-
ces, but it is also the slowest for medium/large matrices. Due to the large number of
cores, the GPU implementations are very efficient on the inversion of large matrices,
but the time required by the CPU-GPU transfers makes them inefficient for small
matrices (e.g., for the GJE (GPU) version, this approximately represents 15% of the
total time for matrices of dimension 1024, but less than 4% for matrices of dimension
14016). Hybrid approaches (LU (MAGMA) and GJE (Hyb-ML)) obtain the best results
for matrices with n > 2000. They exploit the capabilities of the underlying platform
and, simultaneously, keep under control the overhead introduced by communications.
Both implementations obtain similar results for small/medium matrices, but variant
GJE (Hyb-ML) is faster for the inversion of large matrices.



Using graphics processors to accelerate the computation of the matrix 435

Fig. 2 Performance (GFLOPS) attained by matrix inversion on PECO

Figure 3 shows the results obtained on ZAPE. Again the hybrid implementations
obtain the best results, and the GJE-based algorithms clearly outperform the alterna-
tives based on Gaussian elimination. The gap between the GPU and the CPU capa-
bilities in ZAPE is larger than in PECO, as:

– Hybrid and GPU implementations are faster than CPU implementations even for
small matrices.

– The best implementation is 10× faster than LAPACK, while in PECO the best im-
plementation is only 3× faster.

– The performance partially stabilizes for large matrices, because it is limited by the
highest performance offered by the gemm routine in CUBLAS.

In summary, the GJE (Hyb-ML) implementation clearly outperforms the rest, ex-
cept for small matrices on PECO, where LAPACK attains the best performance. Thus,
we can conclude that variant GJE (Hyb-ML) can be easily adapted to the target plat-
form and the specific matrix dimension, providing high performance for all the CPU-
GPU platforms and matrix sizes.

5 Concluding remarks

This paper reviews inversion of general large-scale matrices on hybrid CPU-GPU
platforms. Two methods and several implementations are presented and evaluated,
resulting in the following conclusions:



436 P. Ezzatti et al.

Fig. 3 Performance (GFLOPS) attained by matrix inversion on ZAPE

– The GJE method is a well-suited procedure for parallel computing, reaching better
performance than the traditional Gaussian elimination approach.

– Hybrid implementations can efficiently exploit the underlying platform features,
and perform well for small and large matrices.

– The GPU implementations are efficient for large matrices, but inefficient for small
matrices due to the communication overhead.

– The GJE (Hyb-ML) implementation obtains high performance for all the matrix
dimensions and platforms evaluated.

The study has introduced some questions that should be addressed in the future.

– Double precision arithmetic is required in some applications, but pose some chal-
lenges to our implementations.
– The cost of data transfers is higher.
– The gap between the CPU and GPU performance is reduced even for the late

generation of GPUs.
– An automatic procedure to obtain the optimal block size for a given matrix and

platform can significantly decrease the evaluation time.
– Platforms with multiple CPUs and GPUs should be addressed.

Acknowledgements We thank D. Fabregat and P. Bientinesi from the Aachen Institute for Advanced
Study in Computational Engineering Sciences (AICES) from the RWTH Aachen University, for their col-
laboration and their high performance routines for the triangular matrix inversion on GPUs. This work was
partially supported by the Spanish Ministry of Science and Innovation/FEDER (contract TIN2008-06570-
C04-01).



Using graphics processors to accelerate the computation of the matrix 437

References

1. Agullo E, Demmel J, Dongarra J, Hadri B, Kurzak J, Langou J, Ltaief H, Luszczek P, Tomov S (2009)
Numerical linear algebra on emerging architectures: the PLASMA and MAGMA projects. J Phys Conf
Ser 180(1):012037

2. Anderson E, Bai Z, Bischof C, Demmel J, Dongarra J, Du Croz J, Greenbaum A, Hammarling S,
McKenney A, Sorensen D (1999) LAPACK users’ guide, 3rd edn. SIAM, Philadelphia

3. Benner P, Ezzatti P, Quintana ES, Remón A (2009) Using hybrid cpu-gpu platforms to accelerate the
computation of the matrix sign function. In: LNCS, 7th int workshop on algorithms, models and tools
for parallel computing on heterogeneous networks. Springer, Berlin

4. Bientinesi P, Gunnels JA, Myers ME, Quintana-Ortí ES, van de Geijn RA (2005) The science of deriv-
ing dense linear algebra algorithms. ACM Trans Math Softw 31(1):1–26

5. Gerbessiotis AV (1997) Algorithmic and practical considerations for dense matrix computations on the
BSP model. PRG-TR 32, Oxford University Computing Laboratory

6. Golub G, Loan CV (1996) Matrix computations, 3rd edn. The Johns Hopkins University Press, Balti-
more

7. Gunnels JA, Gustavson FG, Henry GM, van de Geijn RA (2001) FLAME: formal linear algebra meth-
ods environment. ACM Trans Math Softw 27(4):422–455

8. Quintana-Ortí E, Quintana-Ortí G, Sun X, van de Geijn R (2001) A note on parallel matrix inversion.
SIAM J Sci Comput 22:1762–1771

9. Strazdins A (1998) A comparison of lookahead and algorithmic blocking techniques for parallel matrix
factorization. TR-CS-98-07 07, The Australian National University


	Using graphics processors to accelerate the computation of the matrix inverse
	Abstract
	Introduction
	High-performance matrix inversion
	Matrix inversion via the LU factorization
	Matrix inversion via the Gauss-Jordan elimination

	High-performance implementations
	Implementations via the LU factorization
	Implementation on a multi-core CPU: lu(CPU)
	Implementation on a many-core GPU: lu(GPU)
	Hybrid implementation: lu(magma)

	Implementations via the Gauss-Jordan elimination
	Implementation on a multi-core CPU: gje(CPU)
	Implementation on a many-core GPU: gje(GPU)
	Hybrid implementation: gje(Hybrid)
	Multilevel hybrid implementation: gje(Hyb-ML)


	Experimental results
	Concluding remarks
	Acknowledgements
	References


