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Abstract Growth in availability of data collection devices has allowed individual
researchers to gain access to large quantities of data that needs to be analyzed. As
a result, many labs and departments have acquired considerable compute resources.
However, effective and efficient utilization of those resources remains a barrier for the
individual researchers because the distributed computing environments are difficult
to understand and control. We introduce a methodology and a tool that automatically
manipulates and understands job submission parameters to realize a range of job exe-
cution alternatives across a distributed compute infrastructure. Generated alternatives
are presented to a user at the time of job submission in the form of tradeoffs mapped
onto two conflicting objectives, namely job cost and runtime. Such presentation of
job execution alternatives allows a user to immediately and quantitatively observe vi-
able options regarding their job execution, and thus allows the user to interact with the
environment at a true service level. Generated job execution alternatives have been
tested through simulation and on real-world resources and, in both cases, the average
accuracy of the runtime of the generated and perceived job alternatives is within 5%.
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1 Introduction

Continuous advancement and acceptance of data collection devices such as sequenc-
ing instruments, observation networks, and even the social media has enabled an
enormous amount of information to be generated or collected on a daily basis [1].
Auvailability of such volume of data is desirable because advances in research that
were unthinkable just a few years ago are made possible. However, with the rise of
the data volume, the demand for computational resources that process the collected
data is also rising. Results that used to be collected and analyzed on researcher’s lap-
top now require access to a dedicated workstation, a cluster, or even a collection of
clusters.

At the same time, much of the data being collected comes from within domains
that were traditionally not computationally intensive, such as biology, psychology,
or sociology. Because of the fast pace of data collection and corresponding tool de-
velopment, many of the scientists being forced to deal with the data deluge lack
sufficient training in how to process given data and how to operate available com-
pute resources. This is in contrast to the traditionally computational domains such as
physics or mathematics where researchers have been developing their own tools and
using computational resources for generations. Due to the mentioned lack of compu-
tational culture among domain scientists in the new computational domains, simply
running a data analysis program represents a barrier, let alone managing and dealing
with compute infrastructure capable of handling the available data.

Because of the described demand for computational resources, many departments
and research labs have acquired considerable computational resources. This has led
to dispersion of computational resources where many small pockets or hotspots with
considerable computational capacity exist. Access to these resources is typically
granted through command line tools, custom developed portals, or dedicated access
points. Depending on the given institution’s policies, access may be granted directly
to individual machines or from a single location that distributes jobs across all of the
available resources.

If direct access to individual resources is granted to an applied scientist, all of
the available resources and choices regarding job submission might appear equiv-
alent and inherent differences would not be recognized. User’s selection of which
resource to run the job on might be random or based on previous experience. In addi-
tion, once a routine has been established, even though the resource availability, input
data, algorithms, or even the applications change, the user may always use the same
resource(s) and/or job parameters. The resulting observation is that the available in-
frastructure does not meet users’ expectations and results in underutilized resources
in terms of both, cost and time [2].

Alternatively, distribution of user jobs can be realized automatically from a single
access point through job scheduling. Job scheduling can be defined as a selection of
appropriate mappings between resources and an application. The act of job schedul-
ing is fundamental to the success of a distributed computational infrastructure and the
computational process imposed on researchers because it alleviates users from many
low-level technical details [3]. However, this scheduling process is complicated due
to complexities introduced by resource availability, application and resource depen-
dencies [4], as well as user goals and requirements. In order to deliver desired Quality
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of Service (QoS) to users and make efficient use of available resources, job schedul-
ing abstractions need to be raised to the level where they can fulfill user’s aspirations.
The user experience has to be tailored to support individual users and provide them
with the options they need and desire.

From a job scheduler’s perspective, job scheduling can be viewed as a function
of resource heterogeneity, resource and application availability, and application op-
tions [5]. In addition to these influencing factors, multiple, conflicting objectives can
be incorporated into a scheduling decision. Examples of such objectives include time-
liness, cost, reliability, security, and accuracy. Such scheduling approaches are termed
multiobjective scheduling [6]. Due to the multidimensional exploration space, it is
not possible to find a single, optimal solution that maximizes/minimizes all of the
included factors. Current schedulers that implement multiobjective scheduling [7],
automatically trade off individual objectives on users’ behalf to choose one solution
that strikes a balance between the objectives. Although such solutions hold signif-
icant value, they fall short of focusing on an individual user’s requirements, which
differ from other users and also evolve as a function of time.

For the sake of illustrating the potential and significance of this reasoning, we
draw an analogy to an action that many people can easily relate to: the purchase of an
airline ticket. When a customer wants to purchase a flight ticket, a popular option is
to visit one of the online flight search engines and provide simple trip details (i.e., de-
parture/destination and travel dates). The system then analyzes many possible routes,
companies, layovers, etc. resulting in a self-contained list of travel alternatives. Such
alternatives offer the user a choice regarding ticket cost, departure time, flight dura-
tion, layover location, and so on. In the end, the user can make informed decisions on
customized choices that meet their current needs. For example, a person traveling on
business with a tight schedule and set meeting times may choose the shortest flight
or one that lands at a particular time, irrespective of the cost. On the other hand, if a
person is traveling for leisure with their family, they may choose the most economical
alternative and not be so concerned with other travel circumstances.

The solution presented in this paper realizes the same objectives for job schedul-
ing and user job submission in a distributed compute environment; it incorporates
notions behind multiobjective scheduling, but rather than automatically selecting one
job execution option and acting on it, it presents a range of job execution options
directly to the user before job submission. This approach focuses on individual users
and their current needs instead of treating all users the same and continuously mak-
ing the same decisions. Rather than being bogged down with the low-level operating
details, the user is provided with high-level information of a job’s execution options,
allowing one to embrace the technology. The proposed approach represents an excit-
ing solution to an end-user because the user is abstracted from architectural details of
the infrastructure while enjoying maximum system flexibility and support.

In order to achieve such a solution, knowledge about a particular application and
possible mappings and dependencies to underlying resources is needed. Such knowl-
edge needs to be interpreted and the process automated, yielding a set of job execution
alternatives. Beyond automating and hiding the underlying technological details, the
job scheduling process needs to be presented to a user through a job submission in-
terface that immediately and quantitatively influences the user. This is achieved by
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presenting the user with concrete values regarding their job, in metrics relevant to
them directly (e.g., cost vs. runtime or accuracy vs. runtime) as opposed to technical
terms (e.g., number of CPUs, amount of required memory).

In this paper, these goals are realized by developing a new job scheduler that op-
erates in two steps:

1. At the low level, through automatic yet application-specific exploration and gen-
eration of possible job execution alternatives prior to a job’s execution.

2. Through the user interaction module, which interprets derived alternatives and
presents them to the user in a concise and clear manner, allowing the user to select
the most appropriate option for executing the job.

The outcome of the proposed approach to job scheduling is a set of job execu-
tion options mapped onto conflicting objectives that are presented to a user for final
selection. A single job execution option represents decomposition of a job into a
set of tasks and a mapping of this set of tasks to a set of execution resources. Each
option furthermore represents a distribution or allocation of job input requirements
(e.g., input data, number of iterations), representing the job’s workload, to selected
resources in a manner that best meets selected resources’ capabilities and minimizes
load imbalance across employed tasks. Repeated generation of such job execution
options leads to a job execution space. Effective presentation of this job execution
space offers deep insight into job execution tradeoffs to an individual user.

Currently, the proposed method works with embarrassingly parallel applications
due to their wide-spread use [8] as well as their overall suitability for distributed en-
vironments [9]. However, the same approach can be quite easily extended to other
application types (see Sect. 6.3 for further discussion). Presented solution focuses on
small, relatively static, and distributed environments where the given job scheduler
is used as a primary method for accessing underlying compute resources. As a re-
sult, contention between multiple such job schedulers is alleviated and rapid changes
in resource availability are minimized. The described usage scenario and applica-
ble infrastructures are well suited for departments and research labs that have access
to a pool of distributed compute resources. In particular, it is suitable for the quickly
emerging domain-specific labs. The proposed method further contributes to the desire
of individual labs to aggregate their resources into a common resource pool that may
be shared between multiple labs while not imposing resource management respon-
sibilities onto their users. Through the proposed method, although the underlying
compute infrastructure is composed of multiple, distributed resources, users of the
system do not need to concern themselves with which resource is currently available,
which one has desired application available, or how is one resource different than the
other—the proposed method alleviates users from this effort.

Overall, this paper realizes the following three general contributions, which are
realized through a tool called OptionView:

1. Two-way live communication between a user and the scheduler is introduced,
which fundamentally changes how job are submitted and how a user interacts
with the infrastructure.

2. Adopted model allows focus on individual users and individual jobs, rather than
a one-solution-fits-all approach that is currently prominent.
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3. Effective mapping of a job onto a set of resources, which is achieved through un-
derstanding of resource capabilities in terms of selected application and provided
data, followed by appropriate data distribution.

The rest of this paper is organized as follows. Section 2 provides further motivation
for the problem and associates proposed work with other respective projects. Consid-
ered scheduling problem is presented in Sect. 3, while Sect. 4 presents current im-
plementation and solutions. Section 5 shows results of proposed work in simulation
as well as real world distributed environments. Section 6 presents some discussion
about the results and the approach while Sect. 7 concludes the paper.

2 Motivation and related work

With the advent of distributed computing, a need for meta-level scheduling systems
quickly became apparent [10]. In addition, because of the potential for high degree
of system heterogeneity across encompassing systems, it also became evident that
there is a need for application-specific scheduling approaches [4]. Such application-
specific scheduling systems were able to target resource selection not only to meet,
but also to maximize application’s requirements and resource capabilities. The prime
example of such an approach is the Application Level Scheduler (AppLeS) [11].
AppLeS, and the later developed AppLeS Parameter Sweep Templates (APST) [12],
focused on scheduling parameter sweep applications with the goal of minimizing
job’s makespan. This was achieved by taking into account the resource suitability
from the perspective of given application followed by generation of a job execu-
tion plan. However, one of the main difficulties that arose from experiences with
the AppLeS scheduler and its application-specific structure was adaptability to new
applications. The AppLeS scheduler was tightly integrated with the particular appli-
cation, so adopting the scheduler to alternate applications was not trivial.

As part of the Grid Application Development Software (GRADS) project [13],
the AppLeS scheduler was decoupled from the underlying application [14]. This en-
abled development of application-specific and resource-specific performance models
that could be applied to the scheduling process, irrespective of the application it-
self. Another early project in this context was Nimrod-G [15]. Nimrod-G focused on
scheduling parameter sweep applications. Similar to AppLeS, Nimrod-G performed
application specific scheduling but the process was based on deadlines and an econ-
omy model.

Subsequent projects developed by the community took a different approach to job
scheduling where by focusing on ease of use rather than strictly job performance
[16—18]. Such schedulers focus on wide-spread applicability and simplicity of use by
supporting the “submit and forget” methodology [19]. Although available schedulers
provided a comprehensive job submission environment with a focus on runtime min-
imization, they require users to decide on job parallelization method prior to job’s
execution (e.g., data vs. task parallel), divide the input data as deems appropriate, and
then submit necessary number of tasks, specifying each task’s execution parameters.

Condor’s classads [20] represent an approach to involve the user into the job sub-
mission and the scheduling process. Through classads, users can “communicate” with
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Table 1 Categorized summary and a comparison of projects related and/or extended with work presented
in this paper. (Symbols used: v* full support or intended usage; ~ partial support or requires manual
configuration to support given feature; ¥ no support)

Application- Nimrod-G ~ Condor Usability Workflow OptionView
oriented classads approaches  approaches
scheduling
Projects? [11,12, 14] [15] [20] [16,17,18] [21,22,23]
Application-
PP ! v = x x x v
specific
Economy x v =~ x =~ v
User
x v v =~ x =~
customization
Simplicity of
¥ y x =~ x v x v
use
Single objective
=~ v x x v x
optimization
Multiple
objective x x x x v v
optimization
Works for
x ~ x x v x
workflows

a scheduler and, in abstract terms, provide requirements for their jobs. However, use
of classads assumes users are familiar with the demand their application impose on
underlying infrastructure, correlations between multiple job submission requirements
(e.g., input data size vs. number of CPUs vs. amount of memory required), and cur-
rent resource availability.

Several workflow scheduling and execution projects have adopted a different ap-
proach and explore the notion of multicriteria scheduling [21-23]. These projects aim
at providing a user with tradeoffs, including runtime vs. cost or runtime vs. accuracy.
Such approach allows presentation of a range of QoS levels regarding job execution
as opposed to uniformly minimizing job turnaround time. Work performed in [7] in-
corporates the multiobjective approach to job scheduling but focuses on parameter
sweep applications exclusively. Although the execution of user tasks is fully auto-
mated, task submission is performed only for the number of tasks the user provides
during job submission. Table 1 summarizes relevant projects and compares them to
the work presented in this paper in an easy-to-compare presentation.

The work presented in this paper builds on the outcomes of the application-specific
scheduling and adopts benefits of multiobjective scheduling. The application-specific
scheduling is adopted to allow the necessary level of detail and customization for each
individual job. In order to exploit derived benefits of application-specific scheduling,
the multiobjective ranking of job options is presented to a user. This has the effect of
transferring the impact of job parameters directly to the user but also not requiring
the user to deal with such low-level details. As a result, the proposed approach differs
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from the original works [7, 12, 14, 15] greatly by providing a user with a set of
execution alternatives as opposed to any single solution. The more recent works [21—
23] are all workflow oriented as opposed to providing solutions for standalone jobs.
In addition, the user-scheduler interaction presented in proposed work is not available
in any other work. Lastly, a significant contribution of this work is the simplicity of
use from the user’s perspective; the user only needs to select an application to run
and the job input data without needing to specify any other details required by the job
parameterization process or the infrastructure.

3 Job execution planning problem

Because of the overall suitability for distributed computing environments [9], sup-
ported by a recent study showing wide spread use across national grids [8, 9], ex-
ecution properties of the Embarrassingly Parallel (EP) class of applications deserve
considerable attention and have thus been chosen as a focus of this work. The EP
class of applications is composed of a class of applications whose computational
load consists of executing the same application multiple times, with each instance
operating on varying input properties and possibly varying input parameters [24]. In
this context, input properties represent the workload, for example input data or num-
ber of iterations, and input parameters represent instance configuration options, for
example, number of threads employed by the instance (e.g., [2]). The most signifi-
cant characteristic of EP applications is that, once started, there is no communication
between individual tasks.

Although executions of individual instances of EP application jobs are considered
independent, systematic execution of those invites considerable technical difficulties
when executed in distributed environments [5], including following considerations:
resource heterogeneity, dynamic resource availability, input data distribution, task
load balancing, and failure handling. In this context, we broadly define the EP appli-
cation job scheduling as a problem of (1) selecting available resources for execution,
(2) distributing the input data to meet resources’ capabilities, and (3) assigning gen-
erated task instances to selected resources.

An instance of an EP application is referred to as an EP job J and it is represented
by a set of tasks #; that work toward a common goal: J = {t1, 1, ..., t,}. Because of
the heterogeneity of distributed resources, individual tasks #; comprising the job J
are likely to exhibit heterogeneous runtime characteristics [5]. In the EP application
execution model, a job is considered complete only after the longest running task has
completed. Therefore, in order to achieve maximum performance for a job, load im-
balance across tasks needs to be minimized while resource utilization is maximized.
To achieve such job execution characteristics, factors that affect runtime character-
istics of a task need to be understood. The following are factors affecting runtime
characteristics of a task #; [5]:

e d task input data
e r task execution resource
e p task invocation parameters
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As aresult, the runtime characteristics C of a task ¢; are a function of the three factors:

C@t) = fd,r, p) ey

Understanding and controlling how these factors cumulatively affect task runtime
characteristics is an example of task parameterization. Task parameterization is de-
fined as understanding and selecting the task parameters (i.e., user controllable and
application dependent options that can be changed when submitting a task, such as
the number of threads employed or algorithm used) that are algorithm, input data,
and resource dependent. Controlling individual tasks that comprise a job leads to a
fine level of control of a job and thus the ability to realize desired objective from the
perspective of a job. In other words, task parameterization leads to job parameteriza-
tion. Job parameterization is then defined as coordination and control of individual
tasks (and relevant factors) in such a fashion that a desired objective is realized (e.g.,
minimize runtime, maximize accuracy).

In order to achieve maximum job utilization given selected set of resources, the
aim of job parameterization is to minimize the load imbalance across tasks compris-
ing the job. For the case of static data distribution required by the proposed approach,
achieving such a goal requires a scheduler to coordinate resource capabilities, match
those to application’s observed potential, realize appropriate data distribution, and
finalize the process through individual task parameterization. The results of a job
scheduling action is a job plan comprising of a set of heterogeneous tasks whose in-
teractions and execution characteristics are simultaneously understood, balanced, and
coordinated (please see Fig. 1).

The process of job parameterization can be formalized as follows: given a job
J with a single input D of size size(D), we may create n tasks t; € J and J =
{t1,12,...,1,} such that size(D) = Z?:l size(t;) holds (size(t;) is defined as size of
the input assigned to a task #;). Let R be the set of available resources. Each re-
source rj, 1 < j < |R| has capacity c(r;). Although capacity of individual resources
is considered application, data, and parameter dependent, in this discussion it is con-
sidered constant. Let E (where E C R) be a set of resources selected for executing
job J. Function resourceUtilization(J) then defines a policy stating that full capac-
ity of each resource in E is consumed by the job J (e.g., if x CPUs are available
on rj, all x CPUs are consumed by the task assigned to the given resource). Fur-
thermore, two functions are assumed existent, estTime(t, r), which provides an es-
timate of runtime for a task ¢ on a resource r, and estCost(t, r), which provides
an estimate of cost for executing task ¢ on resource r. loadlmbalance(J) is defined

as stdDev(estTime(t1, r1), estTime(ty, r2), ..., estTime(t,, ry)) is minimized, where r;
indicates a resource to which tasks #; through #, are assigned.
A function plan; is then defined, which generates the set of tasks {t1, 12, ..., #;}

and parameterizes each task #; according to (1) so that loadlmbalance(J) is small

Fig. 1 Ill.ustr.ation of the js)b' Job
parameterization process aiming

at minimizing load imbalance J Jﬁ N
Tasﬁ\ Task 2 Taskn| | />
oo L '
{Cfn r, P1} {Cf;. ra .Dz} {dm In, .Dn} Tasks

Runtime
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and resourceUtilization(J) is satisfied. Single execution of the function plan; pro-
vides a single job execution option 0;, 1 <[ < m for executing given job J. O =
{o1, 02, ...,0,} defines the job option space as a set of all execution options gener-
ated for the job J.

4 OptionView tool

In this section, we take a close look at the approach and the implementation details
of work presented in this paper. The next four subsections, in order, describe the
overall framework of OptionView tool, the job execution option selection process,
the scheduling algorithm derived for generating selected options, and the subsequent
mapping of derived options to absolute values that are presented to a user.

4.1 OptionView architecture

As illustrated in Fig. 2, a user initiates a job submission through a job submission
interface (step 1); OptionView then analyzes job properties and resource availability
leading to a job execution space (steps 2 through 7) that is presented back to the
user (step 8). The user considers presented options and makes a selection as to which
option to execute (step 9). The control is then transferred to a job submission engine
for execution on appropriate resources (step 10). Controller, scheduler, mapper and
GUI generator are the four major components comprising OptionView.

More specifically, the controller accepts a job submission request from the job
submission interface and implements the logic controlling option generation. It ac-
quires information from the Resource Information Services (RIS) such as Ganglia!

Fig. 2 High level OptionView /i‘\
architecture with numbers 1 9

indicating general information

progress flow [ RIS j |
/h—-{ submlssnon % :
3 I interface i

P P !

N S I'8] 1
| oul ||
E “ Mapper ;Z:>< generator E
J
1 I 1
| 6 OptionView | \10
i R 2
i | Scheduling| | (~ Application
| | algorithm | | | performance
T — 1 tools

Job
submission
engine y

1 http://ganglia.sourceforge.net/.
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or Nagios? regarding resource state and availability. For each option the controller
selects to generate, the scheduler is invoked. The scheduler acquires application-
specific information required for effective scheduling from the Application Informa-
tion Service (AIS) [25] and generates tasks comprising the given option. Upon all of
the selected options have been generated, the mapper is called, which maps options’
relative values to the absolute ones based on information from available tools (e.g.,
performance prediction tools [26], AIS [27], AppDB [28]). Lastly, the GUI generator
presents the derived options to the user by mapping them onto conflicting objectives.

Because OptionView’s focus is on individual users and their individual jobs, it
represents user’s workspace for access to the distributed resources. The workspace
targets single user use and the implementation can either reside on user’s local ma-
chine or, in the future, in a personal account within a portal. Also, note that with
adopted approach, there is no need for job queues within OptionView as jobs are
mapped only to available resources. For the case where no resources are available
or where resource availability changes rapidly, proposed approach can be integrated
with solutions for advance reservation (e.g., [29, 30]).

4.2 The controller

The controller is responsible for administering generation of job execution options.
A job option represents a single parameterization of the job. Correspondingly, a sin-
gle job option corresponds to a single execution of the function plan; defined in
Sect. 3. Descriptively, a single job option is comprised of a set of resources and a
CPU assignment across those resources as they are chosen among all of the available
resources and resources’ maximum processing core capacity. Furthermore, within
each option, each selected resource is assigned a task that meets resource’s capability
and all tasks across selected resources have their workload distributed in such fashion
that the overall load imbalance within a job option is minimized.

In order to initiate generation of job execution options, the controller’s two main
functions are: determining the range of possible parameters for options, followed by
selection of which options to generate. Acceptable range of parameters for options is
governed by the resource availability. Because individual options are primarily distin-
guished by the different selection of resources and assignment of CPUs across those
resources, the total number of possible options is the product of idle CPUs across
available resources. Note that here we make a simplification and use the number of
CPUs on a resource as a measure of resource’s size. For the case of computationally
intensive applications of particular interest to us, as well as the application bench-
marks used by the scheduling algorithm, we feel this is an acceptable simplification.
For example, if three resources are available with 10, 15, and 8 CPUs available, the
total number of options would be (104 1) * (154 1) % (8 + 1) = 1584 (note that 1
is added to the total number of CPUs on each resource to account for zero CPUs on
each resource, i.e., not using the resource). From this simple example, it is obvious
that the total number of possible options for all but nontrivial resource availability

2http://www.nagios.org/.
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will be very large. However, because the total number of possible job options rep-
resents an exhaustive list of resource and CPU assignments, it is clear that such an
approach is unnecessary and even unwanted. Rather, a subset of all possible options
should be selected, processed and presented to the user. Nonetheless, such a subset
needs to be representative of the overall set of options to allow for a comprehensive
overview of the possible job execution options to the user.

Selection of the subset of options can be performed using either of two main statis-
tical sampling principles: random or targeted [31]. A form of targeted search includes
selection of options based on their quality with the solution yielding a Pareto line
[6] of job execution options. However, because the details of the sample space (i.e.,
options) are unknown prior to generating the data points (i.e., options), the quality
of individual data points cannot be calculated. Such an approach would thus require
generation of all the options by invoking the scheduling algorithm followed by option
ranking and selection. Due to the associated computational cost, this is not a feasible
method. An alternate targeted search is systematic sampling [31], where resource-
and application-specific knowledge is exploited to drive option exploration. In such a
case, certain predetermined resource configurations could be explored, for example,
use all idle CPUs on a resource, use half of idle CPUs on a resource, etc. Furthermore,
application-specific information about scalability of the application (e.g., number of
CPUs must be a power of 2, or maximum number of CPUs this application scales
to is n) can be used to select option configurations. The benefit of such an approach
is that these option configurations can be systematically chosen, requiring genera-
tion of only a small subset of all possible options. Furthermore, application-specific
knowledge enables such targeted option selection to maximize job’s performance.
However, if needed application-specific information is not available, systematic sam-
pling resorts to resource-based sample selection and can thus omit interesting data
points.

In cases where application-specific information is lacking, simple random sam-
pling method [31] can be used to perform option selection. From our observations
(data now shown), the exhaustive list of job execution options is characterized by the
normal distribution. Well established statistical methods [31] can thus be used to ob-
tain high level of confidence about truthful representation of a sample compared to
the overall sample space. To obtain the desired level of accuracy, a confidence level
of 95% is used with a 5% confidence interval. These values can easily be adjusted
by the user, but the presented values offer a suitable balance between required and
presented number of sample data points. The calculated number of job execution op-
tions is randomly selected by the controller without replacement from the exhaustive
list of job execution alternatives. Use of the sampling method results in a number
of options selected to less than 400 regardless of resource availability and the total
possible number of job execution options. This represents a manageable number of
data points to be calculated by the scheduler.

4.3 Scheduling algorithm

The focus of the presented scheduling algorithm is to provide a job plan for an indi-
vidual job execution option under the constraints of the function plan; described in
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Sect. 3. Implementing the described function results in generation of a set of tasks that
are mapped to selected resources, each directly corresponding to capabilities of as-
signed resource. Because the overall approach described in this paper requires gener-
ation of job options prior to job submission, given function plan; and the implement-
ing algorithm focus on static scheduling and static data distribution. By definition of
the plan; function, minimizing load imbalance among tasks to be created maximizes
option performance and is thus the single most important goal of the scheduling al-
gorithm. In the context of presented algorithm and selected application type, this is
realized through relative comparison of available resources and assignment of appro-
priate data allocations to each resource. This results in cumulative minimization of
load imbalance at the level of an individual job option.

Overall, when a job execution option data is presented to the metascheduling al-
gorithm, the input data is decomposed by applying a static scheduling scheme for the
specific application and matched to selected resources. As a result, a fraction A; of
entire data is allocated to task ¢#;. The data decomposition is based on the performance
information of current application on selected resources. The objective of the schedul-
ing action is determining the workload distribution {A1, X2, ..., A;} corresponding to
a set of tasks {1, 1, ..., 4}

Algorithm 1—Job option generation algorithm
Receive resource info R, job input size D, application info A
for i =1 to |R| do {|R|—number of resources}
optionPerf[i] = adjustResourcePerfToApp (R;, A);
dData = divideData (R, D, optionPerf);
fori =0to |R| do
task = new Task (i, anOption, dData, resourcelD);
option.add (task);
return option;

A A T

The pseudocode for the scheduling algorithm is provided in Algorithm 1 and it
proceeds as follows: after receiving initialization data that consists of resource con-
figurations, input data size and application name, the performance of resources in
terms of current application is computed (lines 2 and 3). This strategy accounts for
heterogeneity of individual resources, so that the amount of data A; assigned to re-
source R; is proportional to the resource capacity. Equation (2) is used to perform the
resource performance calculation:

optionPerf; =n; x a; 2)

where n; is the number of processing elements on resource R; and a; is applica-
tion performance metric, or weight, for the same resource. Calculation of such appli-
cation performance across selected resources is implemented in a separate module,
adjustResourcePerfToApp on line 3. This module interacts with AIS to obtain needed
application- and resource-specific information. Alternatively, if needed information
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is not available within AIS, desired performance data can be obtained by directly run-
ning benchmarks on given resource, through a study of historical performance of the
application and resource (e.g., [25, 28]), or by using the generic SPEC benchmark for
the particular resource [32]. Such application-specific approach yields the devised al-
gorithm (and the overall solution) an application-specific solution. On line 4, the data
allocations dData = {A1, A2, ..., A;} for corresponding resources are calculated. In
the most general format, A; is computed as (n; is the number of processing elements
on resource R;):

° )
Yo
Depending on the application though, workload allocation process may differ from
the simple one just shown and can thus be implemented as a plug-in to OptionView’s
scheduling algorithm by implementing divideData module. By extracting implemen-
tations of resource weight calculation and data distribution into separate modules,
presented algorithm is made more versatile while providing support for application-
specific scheduling [14]. With all of the information calculated and available, the
second for loop iterates over the number of available resources, assembles informa-
tion into a single task, and adds the task to the current option list. The generated
option is then returned to the controller.

The devised algorithm presents an approach for minimizing load imbalance across
tasks that is application-specific. Nonetheless, a generic version of the given algo-
rithm could be used instead. It is left as part of future work to see what the outcome
of such an effort would be.

Ai = optionPerf; *

4.4 User interaction module

The user interaction module consists of the mapper and the GUI generator and the
approach implemented through the user interaction module aims at fundamentally
changing the interaction mode between a job scheduler and a user. Most of the pre-
vious work in grid job scheduling area aims at automatically optimizing execution of
user’s jobs in terms of execution time, or cost, or both, e.g., [7]. Here, proposed work
focuses on exploring and presenting a set of tradeoffs and concrete values regarding
one’s job before job execution begins. Through this model, the user is exposed to and
is interacting at the true service level. Rather than being concerned with how many re-
sources to select for execution, how many processors are being employed on each re-
source, or how much data is being transferred between hosts, a user is presented with
discrete, quantitative metrics, for example, job execution time and associated cost.
This represents a much more friendlier environment for non-computational savvy
users because they do not have to specify low-level infrastructure details that may all
appear equivalent where subtle differences are not recognized. To accommodate such
interaction mode, the user interaction module maps generated job execution options
onto concrete metrics of direct benefit to the user.

The mapper is concerned with taking the relative values of job execution options
generated by the scheduling algorithm and replacing those with the absolute ones.
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During execution, the scheduling algorithm normalizes performance of individual re-
sources and thus the options it returns are relative to each other on the normalized
scale. In order to map those onto absolute values, whether it is cost and time or ac-
curacy and time, the mapper must analyze each option’s parameters and adjust the
values. To achieve so, the mapping component interacts with the available services to
obtain actual resource cost and application’s absolute performance values (i.e., base
execution time). This is achieved through calls to estTime(t;, r;) and estCost(t;, 1)
methods defined in Sect. 3. Overall, the scheduling algorithm focuses on abstract
job parameterization (by focusing on minimizing load imbalance for a given job ex-
ecution option). The mapper then maps generated options onto specific job option
attributes such as runtime, cost, or accuracy. This process translates the internal, low-
level description of a job option into a high-level, meaningful option a user can easily
evaluate.

Note should be taken that derived job options have the property of relative com-
parison, meaning that one option is directly comparable to any other option. This
property follows from the uniformity of method through which the options are gen-
erated (i.e., a single scheduling algorithm). The benefit is that runtime and cost es-
timation for all the options can be derived by scaling such information from any
single option. This is more so important because proposed method operates on an
application-specific basis and, as such, options that it generates are very unique and
specific leading to hardship in accurate runtime/cost estimation by generic meth-
ods [26]. Therefore, mapping of options to desired objectives is performed by obtain-
ing relevant information for a single option (e.g., from historical data or performance
prediction tool) and then scaling the remainder of options accordingly. Even though
this approach is dependent on underlying tool for its initial accuracy, relational accu-
racy of individual options is increased by such an approach. Furthermore, advances in
runtime estimation and development of application-specific repositories and services
will automatically have an impact on the correctness of described solution.

The GUI component represents the user-scheduler interaction module. All the
complexities of resource selection, task parameterization, and data distribution are
abstracted and hidden from the user who is presented with a clean interface enumer-
ating available options and visualizing them in terms of selected tradeoffs. Such an
approach to user-scheduler interaction enables a two-way interaction model where
the user is offered insight into their current job’s execution properties before commit-
ting to job submission. Through this model, the user becomes aware of job’s execu-
tion space and can choose job execution option that they might not have known even
existed. This is in direct contrast to solutions such as Condor classads or a cluster
manager (e.g., SGE, PBS) where a user must provide low level details regarding their
current job, such as maximum time they believe a job will run, number of processors,
minimum amount of memory, and so on. To a non-computational user providing such
values is a barrier to system usability because they are not interested in drawing nec-
essary correlations. Therefore, such values are always set arbitrarily high and often
results in poor resource utilization [3]. Moreover, once a user has an established a
routine, they are unlikely to change it when input data and even applications change.

An example of the user interface displaying a set of possible job execution options
is provided in Fig. 3. As can be seen, the interface provides a mapping of available
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and generated job options onto the two objectives, namely time and cost. The user
can easily interpret available options, consider tradeoffs, and select an option for ex-
ecution. Such a presentation of a comprehensive spectrum of available job execution
options allows the user great flexibility in terms of meeting their current needs. The
interface furthermore allows the user to see details about any one option and apply
a filter that will reduce the number of elements displayed on the screen. If user has
narrowed down the desired area, local exploration functionality has also been im-
plemented. Based on user input, the controller can be invoked with a specific job
execution option around which the user wishes to explore for additional job execu-
tion options. The controller initiates exhaustive computation of a set of job execution
options within a predefined window that are neighboring the one specified by the user
(neighboring based on CPU assignment). The aim of this functionality is to provide
the user with deeper insight regarding job execution options within a targeted range.

5 Experimental studies

Validation of the presented approach has been done in two stages. In the first stage, the
entire set of job execution options, as generated by OptionView, is validated for the
accuracy through simulation. In the second stage, accuracy of a representative subset
of the generated options is validated on real-world resources, further demonstrating
the validity of job option generation mechanism.

5.1 Environment setup

With the focus on generating job execution space that is applicable to an individ-
ual application and an available set of resources, validation methodology employed
focuses on one application, namely Basic Local Alignment Search Tool (BLAST).
BLAST is a popular sequence alignment tool used to perform similarity searches
between an input query and database of infrequently changing sequences. For the
performed tests, the nr database was used to execute the searches. nr database is
a non-redundant protein database with entries from GenPept, Swissprot, PIR, PDF,
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Table 2 Resource details used during experiments. PS refers to processing slot or a node. PE refers to a
processing element or a core. MIPS stands for Millions Instructions Per Second of a single PE and is a
resource performance metric employed by GridSim toolkit. PE MIPS were derived based form normalized
application-specific performance benchmarks for given resource

Resource ID #PSs # PEs PE MIPS rating Cost/time unit
R1 (F) 5 40 100 $0.10
R2 (E) 10 20 52 $0.10
R3 (O) 15 15 57 $0.10

PDB, and RefSeq. Used version was 1.6 GB in size and available from NCBI.? Rea-
sonably so, BLAST application and needed search database are assumed available
on given resources. The input query files used for given job originated from 1,024
protein queries/sequences in FASTA format that were randomly selected from Viral
Bioinformatics Resource Center (VBRC)* database.

The simulation part of validating proposed scheduling approach is performed
through the GridSim toolkit [33]. GridSim is a distributed infrastructure simulation
package that allows for creation and customization of individual resources as well
as creation of heterogeneous jobs. Jobs created are packaged as Gridlets, which are
specified in terms of job length in Millions of Instructions Per Second (MIPS), the
size of job input, and the size of job output in bytes. Processing times of jobs within
GridSim are proportional to the predefined speed of resources and the size of the job
with a random variation of 0-10% to account for heterogeneity present in real-world
environments.

Real-world validation has been performed on a set of resources available at UAB.
Individual tasks were parameterized as per results of OptionView and then passed on
to GridWay [34], which was used as the job submission engine. Relevant hardware
characteristics of employed resources are shown in Table 2. In the table, PSs refers to
the maximum number of Processing Slots available for use. A PS is single schedul-
ing unit on a given resource and it depends on scheduling policy employed on the
resource. Examples of PS include a single processing core or a single compute node
with multiple, multicore CPUs on it. Processing Element (PE) refers to the small-
est computational unit on given resource (i.e., a CPU in case of a single, one-core
CPU resource or a core in case of a multi-CPU, multicore resource). With the avail-
able resources, the exhaustive number of job execution options is 1,056, and thus 7,
or the selected sample generated by OptionView (as described in Sect. 4.2), is 282.
Therefore, 282 job execution options were simulated in GridSim and analyzed.

5.2 Simulated results

For the simulation experiments, a set of resources was created within GridSim that
represent available real-world resources in terms of their configuration as well as

3http://www.ncbi.nlm.nih. gov/.

4http://www.biovirus.org/‘
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Fig. 4 Job option execution space as (A) generated by OptionView, and (B) simulated through GridSim.
Each individual point shown represents a single job execution option, namely all the details required to
submit a job in an application-oriented fashion (i.e., resource(s) selected for execution, data distribution
under resource capability constraints, and individual task parameterizations)

relative performance. Relative performance of the resources was assigned based on
application-specific resource benchmarks; BLAST was executed with the same input
data across all available resources and obtained runtime values were normalized to
the fastest resource. Derived values were used for the performance rate (i.e., Millions
of Instructions Per Second—MIPS) of individual processing elements of a resource
within GridSim (see Table 2). Cost associated with consuming resources was uni-
formly assigned to $0.10 per unit of execution. OptionView was used to generate a
set of job execution options, each of which consisted of resource assignments and
appropriate data distributions as per implementation of function plan ;. The derived
options were simulated through GridSim by setting tasks’ sizes as derived by Option-
View and submitting the jobs to respective resources.

Experiment results are shown in Fig. 4(A) and 4(B) for generated and simulated
data, respectively. From the shown figures, it is apparent that the job execution space
generated by OptionView is somewhat more structured and regular than the simu-
lated counterpart. However, the overall shape of the job execution space is main-
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Table 3 Statistics of differences between generated and simulated job execution options. Numbers indi-
cate difference in respective units and the corresponding percentage of simulated results when compared
to the estimated values

Runtime analysis Cost analysis
Avg A 0.01 4.08% $0.04 0.93%
Mean A —0.01 —0.94% $0.03 0.98%
Std dev A 0.21 15.00% $0.12 3.18%
Max A 0.93 84.55% $0.46 10.87%

tained across generated and simulated data indicating global accuracy achieved by
OptionView.

Statistical results of the analysis of simulated data at the individual option level
are presented in Table 3. In the table, delta (A) is calculated by noting the differ-
ence between each of the generated and simulated data points and summarizing those
across the sample space. From this data, it can be observed that, on average, the sys-
tem achieves a very acceptable level of accuracy (approx. within 4%). Furthermore,
value for the median statistic indicates that the system is very evenly generating data
points on the positive as well as negative side. As a result, over time, a user would
experience a high level of overall system accuracy. However, noteworthy values for
the standard deviation and maximum delta indicate that many data points are likely to
be incorrectly generated. Based on values of standard deviation measurements the er-
ror is largely contained within 15% of the observed results. In the area of application
runtime prediction, this is considered an acceptable result (e.g., [35]).

The cost analysis presented shows that the cost component of the generated job
options is at least as accurate as the runtime component. Overall, with the GridSim’s
built-in randomized variability of each task’s runtime, these results present a very
accurate solution.

5.3 Experimental results

Because comprehensive validation of the generated options would require executing
n parameterizations of the same BLAST job, for the validation purposes, a smaller,
representative subset of job execution options was selected. This subset was selected
in the same fashion as the selection process of the sample space generated by Option-
View. When using OptionView for meaningful computations, the user would obvi-
ously select only one such option to execute, namely the one that meets their demand
most closely as opposed to executing the same job numerous times.

For our calculation of the validation sample space, the confidence level was set
to 95% and confidence interval to 15%. Selected confidence interval value was se-
lected in accordance to observed accuracy levels of application runtime prediction
tools (e.g., [35]). As a result, from the 282 job execution options generated by Op-
tionView for given resource availability, 37 represent the desired sample space. These
37 options were randomly selected for execution on real-world resources. Each of the
jobs was executed based on the parameterization calculated by OptionView tool and
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runtime results were recorded. Because in the utilized model, the cost is a function of
task runtime, experiments focused on collection and accuracy of runtime data only.

Figure 5 is showing the runtime results of executing selected job execution options
on resources specified in Table 2. Because of the individualized parameterization of
any one option, the behavior of the scheduling system can be verified by considering
accuracy of runtime estimation for a given option and then generalizing it by cumula-
tive accuracy of all executed options. Due to the high level of detail, parameterization
particulars on individual options that were executed are not provided. Analysis of
details at such low level is not necessary because, from the user’s perspective, the
interaction with OptionView takes place at the job option level anyway. When inter-
acting with OptionView, the user only sees available job execution options without
regard for the details as to how each option execution is implemented. That is one of
the internal tasks of OptionView as described throughout Sect. 4. Therefore, analyz-
ing accuracy of the individual options provides insight into overall accuracy of the
system.

Based on the data shown in Fig. 5, overall accuracy of individual job options in
real-world setting is well within expected and acceptable outcomes. Data in Table 4
shows results of a statistical analysis of runtime accuracy across all executed options.
This data is showing average accuracy of the system within 2% with maximum er-
ror being within 10%. These results furthermore coincide with the results obtained
through simulation as described in the previous section.

6 Discussion

This section captures reflective discussion regarding limitations and extensions of the
presented approach.
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6.1 Result accuracy

Based on the experimental data, it can be concluded that job execution options auto-
matically calculated and effectively presented through OptionView experience a high
level of accuracy. This high level of accuracy is a result of the application-specific ori-
entation and available application benchmarks. By understanding the dependencies
that exist between an application and resource, resource capabilities can be more ade-
quately met resulting in high confidence regarding runtime estimation. Such approach
also presents a downside to the described approach because, in order to attain such
high level of accuracy, an application and resource relationship needs to be under-
stood and an application specific module needs to be built. Nevertheless, irrespective
of the overall level of accuracy, OptionView performs metascheduling actions across
resources in a fully automated fashion. It performs such actions in application- and
resource-specific manner, and thus represents a best-effort type of a solution that will,
in general, perform at least as good as an otherwise generic metascheduler.

6.2 Resource availability

As noted at the end of Sect. 4.1, OptionView operates best in an environment where
resource availability does not rapidly change and where it is the only access point
to the given set of resources (thus, no contention arises between multiple schedulers
submitting jobs to the same set of resources). As a result, OptionView is seen as an
ideal solution where a small number of users interact with the given compute in-
frastructure. Although this represents a niche area, it is a very important area because
users in such environments typically lack time, knowledge, and desire to tweak their
job submission process. Therefore, for users that do not posses needed informatics
expertise, OptionView provides an awaited solution.

Because of the two-way communication between a user and the scheduler devel-
oped as part of OptionView, the span of time from the start of job submission, as
initiated by a user, to submission of the actual tasks by a job manager may take con-
siderably longer than a simple and immediate job submission performed by a fully
automated scheduler. This implies that OptionView assumes non-rapidly changing
resource availability. Going back to the airline analogy from the Introduction, the
same model is adopted and it is working by flight reservation companies. Nonethe-
less, if the underlying environment resource availability is changing rapidly or it often
happens that no available resources exist, OptionView can be implemented as an in-
terface to an advance reservation system allowing users to realize the full potential
for their jobs as well to observe viable job tradeoffs. However, this work and analysis
are left as part of future work.

6.3 Extensions beyond EP applications

Because of lack of communication among individual tasks, a common assumption
is that execution of an EP application in distributed environments is easy or at least
significantly easier than execution of tightly coupled applications (e.g., MPI). How-
ever, based on an earlier study [5], execution of EP applications in distributed en-
vironments is confined by resource availability, optimized through task parameteri-
zation, hindered by simultaneous use and management of heterogeneous resources
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belonging to different administrative domains, and dependent on user requirements.
Consequently, an act of effective application execution inherently includes an act of
application scheduling. Because of the multiple influencing components, scheduling
becomes a major component for effective execution of EP applications and should
be handled comprehensively with respect to application execution environment vari-
ables and user desires.

The model of the EP class of applications possesses a versatility that can be used
to model other classes of applications. This can be achieved by encapsulating those
application classes within the EP class itself. A benefit of this feature of the EP class
of applications is that it allows the same scheduling principles and techniques to be
applied to other application classes.

For example, a sequential application can be represented by a single task that
would also define the entire job within the EP application model. At that point, the
scheduling model is simplified because the requirement to minimize load imbalance
is removed and only a direct comparison of individual resources in terms of the given
application needs to be performed. Similarly, because of the general inability of MPI
applications to cross individual cluster boundaries, a tightly coupled MPI application
can be encapsulated within a single task and scheduled as such. As the case is with
the sequential applications, such an application instance can be scheduled irrespective
of other such instances. Therefore, scheduling one such application job reduces to
the ability to understand and leverage capabilities of individual resources from the
perspective of given application, and then selecting the one resource that is the most
likely to realize desired objective.

7 Conclusions and future work

Existing scheduling applications and approaches for scheduling loosely coupled ap-
plications across distributed environments focus on minimizing job turnaround time,
cost, or ease of use. In such works, the user is assumed to know specifics about the
given infrastructure and selected application and must provide initial job properties
(e.g., number of tasks or number of CPUs to use). Then the scheduler must oper-
ate within those constraints. In addition, prior to job’s completion, the user has no
or minimal insight into concrete job metrics, such as the actual job execution time
or cost. Furthermore, the user cannot observe differences among multiple execution
alternatives and use the scheduler in an ‘exploratory’ mode.

The scheduler presented in this paper focuses on generating, providing, and pre-
senting a set of job execution alternatives to a user so that the user can make tar-
geted and timely decisions. Such presentation of job execution options allows for
clear understanding of tradeoffs between the conflicting objectives. Adopting pre-
sented flexibility allows users to merge their requirements with the available job ex-
ecution options and thus achieve higher level of QoS. The user becomes abstracted
from the technology to the point where the technology presents its full potential to
the user—automatically, without requiring specific knowledge form the user. Adop-
tion of presented work allows delivery of focused solutions to domain scientists and
enables them to concentrate on their work without requiring them to learn and under-
stand how to use underlying technology operates. Specifically, the OptionView tool
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presents a fresh and novel approach to distributed application scheduling that has
also shown a high level of accuracy for application scheduling in simulated as well
as real-world environments.

In summary, we have developed a solution that analyzes application requirements
and resource capabilities to generate a set of job execution options. A scheduling
algorithm has been developed that effectively parameterizes execution of each gener-
ated option and, in turn, allows mapping of the options onto the two conflicting ob-
jectives. On top of the scheduling algorithm, a novel user interaction module has been
developed that interprets job options and maps those to absolute values corresponding
to chosen application and selected resources. Available options are presented to the
user in terms of job execution tradeoffs allowing the user to better meet their needs.
The system was validated through simulation as well as across real-world resources
and has shown a high level of accuracy in terms of data presented and runtime results.

As part of future work, a generalized approach will be devised for incorporating
any application into the scheduling framework. Moreover, adding support for speci-
fying and executing an entire workflow without intermittent user intervention is en-
visioned. In order to do so effectively and enable easy addition of new applications,
integration with the Application Information Service [27] framework is under devel-
opment allowing generalization of applications performance characteristics as well
as description of an application through standardized means. Lastly, cloud comput-
ing offers a quickly emerging domain that fits well into the functionality supported by
OptionView (i.e., on-demand provisioning of distributed, heterogeneous resources to
individuals). Although the resource acquisition model is different in cloud comput-
ing when compared to the traditional distributed resources (i.e., unlimited vs. limited
resource pool), the solution offered by OptionView is highly applicable and it is our
intent to adopt OptionView to execute within the cloud computing environments as
well.
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