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Abstract The cardiac bidomain model is a popular approach to study electrical be-
havior of tissues and simulate interactions between the cells by solving partial dif-
ferential equations. The iterative and data parallel model is an ideal match for the
parallel architecture of Graphic Processing Units (GPUs). In this study, we evaluate
the effectiveness of architecture-specific optimizations and fine grained paralleliza-
tion strategies, completely port the model to GPU, and evaluate the performance of
single-GPU and multi-GPU implementations. Simulating one action potential dura-
tion (350 msec real time) for a 256 × 256 × 256 tissue takes 453 hours on a high-end
general purpose processor, while it takes 664 seconds on a four-GPU based system
including the communication and data transfer overhead. This drastic improvement
(a factor of 2460×) will allow clinicians to extend the time-scale of simulations from
milliseconds to seconds and minutes; and evaluate hypotheses in a shorter amount of
time that was not feasible previously.
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1 Introduction

The contractions of the human heart are initiated by electric wave propagation in
cardiac tissues. The electrical stimulus is generated by a region in the heart called
the SinoAtrial (SA) node. Then the stimulus is propagated across the heart causing
regular contractions. The instabilities in excitation propagation may cause uncoordi-
nated contraction of cardiac muscle which leads to cardiac arrhythmias. Ventricular
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fibrillation is an arrhythmia which is responsible for many cardiac deaths. 3D sim-
ulations of electric wave propagation in cardiac tissue help medical researchers to
understand electrical instabilities and excitation dynamics in cardiac tissues [1]. The
cardiac bidomain model is a popular multidimensional cable model [2] to study the
electrical behavior of cardiac tissues. A realistic tissue simulation typically requires
solving a large number of unknowns at heart cells (nodes) separated by small spatial
as well as temporal steps. The computational resources required for 3D Bidomain
simulation of even a 64 × 64 × 64 grid of cardiac tissue cells for 1 second real time
is immense and is considered as large scale simulation. Bidomain simulations define
the heart as a continuous system comprising of two overlapping regions and involve
solving coupled nonlinear partial differential equations. Every cell in the grid is as-
sociated with an unknown and the Bidomain model solves the nonlinear differential
equations for each node and calculates the trans-membrane voltage. General tech-
nique is first to convert the continuous equations into ordinary differential equations
(ODEs) and partial differential equations (PDEs) and then solve ODEs followed by
PDEs to derive the current state of each cell for each time step of the cardiac simu-
lation. This iterative and inherently data parallel nature of the software architecture
makes it an ideal match for the fine grained parallel hardware architecture of the
NVIDIA Graphic Processing Units (GPU).

It is well understood that GPUs are several times faster than traditional CPUs as
more transistors are dedicated to computing rather than to data cache or flow con-
trol [3]. GPUs allow programmers to exploit fine grained parallelism in the applica-
tion with thousands of concurrent threads which is not feasible with cluster based
high performance computing systems. Partitioning the cardiac simulation with mil-
lions of cells into cell level fine grained processing modules and executing these
modules as parallel threads allow exploiting the threading power of the GPU. In
this study, our objective is to accelerate the simulations of the electrical dynamics
in the heart tissue so that near real time visualization capability can be achieved for
a wide range of clinical scenarios. For a realistic simulation of cardiac tissue on a
multi-GPU platform, the implementation must maintain the excitement propagation
through boundary cells. In the context of multi-GPU implementation, boundary cells
refer to neighboring cells that have been separated after partitioning the tissue data
among the GPUs. In order to address this challenge, we introduce a new approach for
simulating cardiac tissue on multiple GPUs. We evaluate the impact of hardware spe-
cific workload partitioning and memory optimization strategies on the performance.
We then compare performance of the single-GPU and multi-GPU implementations
with the serial version running on a general purpose processor. Results show that as
the size of the 3D grid space increases, the speedup curve reaches to saturation with
up to 657× and 2538× on single-GPU and multi-GPU implementations, respectively,
for a single time step simulation compared with the general purpose processor. This
performance improvement will allow clinicians to extend the time-scale of simula-
tions from milliseconds to seconds and minutes; and evaluate hypotheses in a shorter
amount of time that was not feasible previously. In Sect. 2, we give a brief overview of
the GPU architecture from the processor, memory and programming model perspec-
tives. In Sect. 3, we present the mathematical foundations of the cardiac simulation
and describe how 3D heart is modeled through ODEs and PDEs. In Sect. 4, we de-
scribe our parallelization approach on single-GPU and multi-GPU platforms and then
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present performance analysis with respect to serial version in Sect. 5. Finally, Sect. 6
presents our conclusion.

2 GPU architecture

2.1 Processor and memory architecture

Our target GPU system houses four NVIDIA Tesla C1060 cards. Each card consists
of 30 multiprocessors. Each multiprocessor contains 8 streaming processors for a
total of 240 cores per device. Each multiprocessor can run 1024 threads or 8 blocks
of threads, whichever is less, at an instant of time. A hierarchy of memory architecture
(Global memory, Texture Memory, Shared Memory, and Local Registers) is available
on the GPU for a programmer to utilize. To optimize the memory access time, data
partitioning across various memories at thread level is an important consideration.
GPUs are proven to give high speedups with inherently data parallel applications if
the thread level data partitioning is efficient.

2.2 Programming model

The Compute Unified Device Architecture (CUDA), a C like programming environ-
ment introduced by NVIDIA, has improved the programmability of GPUs for general
purpose applications. CUDA programming environment hides complexity of manag-
ing the computational cores and allows programmer to define a workload in terms of
number of blocks and number of threads per block. However, understanding the low
level details of the hardware architecture and memory access mechanisms is essential
to be able to harness the computation power of the GPU. CUDA programming model
consists of a grid of blocks where each block contains a specified number of threads.
Threads execute an identical kernel of code and access the data through the mem-
ory hierarchy. When launching the kernel on the device, the programmer specifies
the blocks per grid and threads per block based on the memory footprint of the ker-
nel. In order to gain optimal performance out of the Tesla architecture, the user must
organize a program to maximize thread throughput, while managing the shared mem-
ory, registers, and global memory usage. CUDA allows sharing state between threads
within the same thread-block through the shared memory on a multiprocessor. Each
thread block is executed by running groups of 32 threads, known as warps. Individual
threads run all of the code on the kernel, which may be as small as only a function,
or may contain the entire program. The scope of sharing between threads within the
same warp or different warps is the same shared memory space as long as they are
in the same thread-block. If warps are located in different thread blocks, then they
cannot communicate with each other through the shared memory. The global mem-
ory can be utilized to share information among all threads on all multiprocessors;
however, there is no global synchronization method or function in CUDA. To ensure
synchronization occurs, a kernel must finish its execution followed by the launch of
a new kernel. Each thread within the multiprocessor can access the global memory
directly with high latency. The other two memory subsystems, texture and constant
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caches, can also be utilized by all the threads within the GPU. However, shared mem-
ory is an individual and protected region in every multiprocessor that is only available
to its own threads. It cannot be accessed by the threads of other multiprocessors. The
threads can only execute the identical kernel of code. Once launched, the threads
transfer the data stream primarily with the memory subsystems. Even though they
cannot necessarily communicate with each other, they can share the same data within
the shared memory on the multiprocessor.

3 Cardiac bidomain model

As the name suggests, bidomain model consists of two overlapped domains which
represent the region within the cardiac cell (intracellular) and region surrounding the
cardiac cells (extracellular). Capacitive membrane separates the two layers through
which trans-membrane current is conducted. The trans-membrane current is made
up of two components, ionic current and extracellular current. Extracellular current
depends on the variation of potential gradient across different points of interest in
the tissue. Ionic current depends on the difference of ion concentration (Ca, Na, and
K) across the cellular membrane and the conductivity of the respective ion channels
across that membrane. Finite difference equations can be applied to determine the
potential value in each cell of the 3D heart model. Finite difference method converts
the continuous system of cells to a manageable grid of cells in order to facilitate
computer simulation. The properties of cells, e.g., conductivity, are precomputed by
volume averaging across many cells.

In [4], Paulius discussed an efficient and scalable technique for 3D finite difference
computation on GPUs which can be applied to solve coupled differential equations
of bidomain model. In our approach, we first employ the operator splitting technique
[5] and divide bidomain equations of cardiac cell into ordinary differential equations
(ODEs) and partial differential equations (PDEs). ODEs are solved by using Euler
forward method [6] to derive the ionic current as it is a widely accepted model in
terms of its accuracy and is highly compute intensive with independent calculations
for each cell. PDEs are solved by using Jacobi iterative Technique [7] to derive the
capacitive current as it offers SIMD level parallelism for the data intensive cardiac
tissue simulations and poses as an ideal match for multi-GPU implementation.

Cardiac tissue is considered as a grid of cells. Voltage level for each cell is a
function of the voltage level of each neighboring cell calculated from the previous
time step.

V0 = f (V1 + V2 + · · · + V6)

As illustrated in Fig. 1, a voltage applied to one cell propagates through the grid
as an electrical wave. The bidomain model which is equivalent to the actual electric
wave propagation in heart is used to simulate such wave.

3.1 Action potential duration

When a stimulus is applied, a ventricular cell gets excited and generates action poten-
tial as shown in Fig. 2. The stimulus from SinoAtrial Node propagates across the atria
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Fig. 1 On left—heart constructed out of grid of cells. On right—cell 1–6 which interact with cell 0 for
excitation propagation

Fig. 2 APD Curve of a cardiac
(ventricular) cell (350 ms
extension)

and the atrioventricular node to reach and propagate in the ventricular region. When
a ventricular cell is excited, the voltage across its cell membrane increases rapidly for
a short time period and starts discharging like a capacitor. The cell membrane acts
as a capacitive element which charges instantly and discharges slowly. The shape of
the action potential duration (APD) curve is achieved by the combined effect of ionic
currents and capacitive currents across the cell membrane. A stimulus generated by a
sinoatrial cell excites its surrounding cells and starts the propagation of the excitation
as wave propagation.

Excitation potential of each cell depends on the excitation potential of surround-
ing cells and the ionic currents of that cell. The basic procedure of calculating cell
potential contributed by ionic currents is adopted from TNNP model [8] proposed
by Ten Tusscher et al. The intracellular communication of excitation is implemented
by calculating discretized Laplacian of a continuous system model defined by par-
tial differential equation. To develop an efficient algorithm for heart simulation, the
sequential algorithm, which simulates the propagation of signals from one cell to
neighboring cells iteratively, needs to be reconstructed so that the program architec-
ture overlaps with the GPU’s SIMD model hardware architecture.
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Fig. 3 The equivalent electric
circuit of cardiac cell based on
Bidomain model.

3.2 Bidomain equations

The bidomain model consists of cardiac tissue and conducting surface (bath) repre-
sented as overlapped regions (Fig. 3). The space inside each cell is termed as the
intracellular region and the space surrounding each cell is termed as the interstitial
region. Both regions are bounded by the extracellular region.

Let φi , φe , and φo represent intracellular, extracellular, and interstitial potentials,
respectively. Bidomain model is governed by following (1) through (3) where Cm is
the membrane capacitance, Vm is the voltage at node of interest, φo is the intersti-
tial potential, Iion is the ionic current calculated from the Cell Model, and Iso is the
stimulus current. Here, σ represents conductivities of the grid with the first subscript
(i, e, o) denoting the intracellular, extracellular, or interstitial region and the second
subscript representing the direction in (x, y, z) coordinates. These differential equa-
tions are converted to finite difference equations to facilitate computer simulations.
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Using the operator splitting technique, (1) can be split into the following two equa-
tions:
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3.2.1 Solving ordinary differential equations

Many mathematical models [8–13] of cardiac cells have been developed to model the
ionic currents in cardiac cell. The parameters of these models can be altered by med-
ical researchers to study the cardiac cell behavior under different conditions. These
models are useful for calculation of trans-membrane ionic currents in simulation. In
the TNPP cell model [8] proposed by Ten Tusscher et al., action potential (or trans-
membrane voltage Vm) generation in an isolated single cell is calculated with (6),
where Cm represents the trans-membrane capacitance of a cell, Vm represents the
action potential (trans-membrane voltage) generated at cell of interest, Iion is the cur-
rent contributed by various ionic currents, S represents the state of ion concentrations,
and Istim is the current applied as a stimulus to the cell either by surrounding cells or
by injection in simulation. In this study, we are mainly interested in ventricular cells
which are passive and do not generate stimulus by themselves.

Cm

∂Vm

∂t
= −(

Iion(Vm, s) + Istim
)

(6)

∂s

∂t
= F(Vm, s) (7)

Equation (6) is solved for intermediate value of Vm referred to as VmO which is used
as initial value for solving coupled PDEs.

3.2.2 Solving coupled partial differential equations

Equations (2) and (5) form a coupled system of partial differential equations which
can be decomposed into a set of finite difference equations as shown in (8) and (9).
Jacobi Iterative technique is used to solve these coupled partial differential equations.
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3.2.3 Boundary conditions

At the surface of an isolated cardiac tissue, boundary conditions need to be enforced.
Considering cardiac tissue as an isolated electric medium, the current leaving this sur-
face area is forced to be zero based on the Neumann noundary condition. Equation (3)
represents the boundary conditions of an isolated cardiac tissue. The corresponding
finite difference equation is approximated as shown in (10).
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3.2.4 Voltage update

In this stage, every cell is updated with the final membrane voltage (Vm) in the cur-
rent time step. Equation (11) calculates the Vm based on the VmP generated by the
governing PDEs (4) and ionic current value generated by the governing ODEs (5).

Vm = VmP − 1

Cm

(Iion + Istim)�t (11)

4 Implementation details

4.1 Sequential version

The source code for the serial implementation in C (baseline) is publicly available
at [14]. In this implementation, for each time step, voltage of each cell in the 3D grid
space is calculated based on the governing ODEs and PDEs. This process continues
until the global sum of squared residues (SSR) is less than particular value (10−6 in
our case).

As shown in Fig. 2, APD cycle time is 350 mssec and the propagation of the ex-
citement takes 10,000 time steps. Figure 4 shows the execution time of the bidomain
model with respect to change in the tissue (grid) size for a single time step on a gen-
eral purpose processor (GPP) based on Intel I7, 2.4 GHz processor. As the number of
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Fig. 4 Cardiac tissue
simulation time on GPP based
on Bidomain Model with respect
to change in workload (based on
logarithmic scale base 8) shows
linear increase in execution time

cells increase, the execution time increases linearly. Completing the APD cycle time
(350 msec) for 256 × 256 × 256 grid based tissue cells takes almost 453 hours in
simulation time through serial code.

4.2 Heart simulation on a single GPU

We first approach parallelization of the heart simulation at task level and then explore
fine grained parallelism at subtask level. We then evaluate the impact of memory
organization on the performance. The following subsections describe our paralleliza-
tion strategies for each subtask.

4.2.1 Task level parallelism

As part of the parallelization strategies, we partition the execution of the heart simu-
lation into segments, create a kernel for each segment, and launch these kernels one
after another while using the global memory as a facilitator for data dependencies
between each segment. As shown in Fig. 5, heart simulation involves an initialization
phase followed by the ODE (segment 1), PDE (segment 2) and boundary condition
(segment 3) phases in a nested loop structure.

Figure 6 illustrates the implementation of the heart simulation with three parti-
tioning strategies. Strategy 1 launches ODE Solver and Boundary Solver stages as a
single kernel. Strategy 2 (Fig. 6(b)) launches a separate kernel for each segment of
the execution flow (Fig. 5). Strategy 3 explores fine grained parallelism by partition-
ing the execution of the ODE into multiple kernels as illustrated in Fig. 6(c). For each
strategy, Fig. 6 shows the register demand per kernel and the number of threads per
multiprocessor launched by each kernel. Here, we note that PDE Solver must be exe-
cuted in 2 separate Kernels as execution of (8) must be complete before the execution
of (9) can start.

For example in strategy 1, threads of Kernel 1 could be grouped as 256 threads in
one active block, 128 threads in 2 blocks, or 64 threads in 4 blocks and 32 threads
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Fig. 5 Execution flow of the Bidomain Model in four main stages

in 8 blocks. After running each segment with various workloads, we find that having
64 threads per block yields the best performance. When using 32 threads per block,
there is only 1 warp per block. According to [8], having less than 2 warps per block is
not enough to hide latency associated with memory reads. When utilizing 256 threads
per block, we can only have 1 active block per multiprocessor. A new block can be
launched only after all threads in a block finish execution [8]. Having a slightly finer
distribution of threads, in this case 64, helps in reducing this thread dependency. Hav-
ing 64 threads per block allows us to achieve our best performance for this strategy as
it prevents idling threads and provides the best workload distribution in terms of MP
utilization of blocks. For all three strategies, we partition the threads for each mul-
tiprocessor into multiple blocks. This allows overlapping between idle blocks and
working blocks, hence hiding memory latency [8]. Based on our exhaustive fine tun-
ing efforts for identifying the most suitable number of threads per block with various
workloads, we conclude that in order to get optimal performance from the GPU, the
programmer must carefully balance the data partitioning among threads, form thread
counts that are factors of the workload, have an even workload distribution among all
MPs, and avoid idling threads whenever possible. We take the best case for each strat-
egy and compare the performance based on a workload grid space of 256×256×256
cells in Fig. 7.

Strategy 2 partitions Kernel 1 of Strategy 1 into two Kernels and increases the
thread count1. Similarly, Strategy 3 partitions Kernel 1 of Strategy 2 into two Kernels
increasing the number of threads per multiprocessor. Execution time follows the same
trend resulting with the best performance based on Strategy 3.

4.2.2 Memory coalescing

Designing proper data structure is highly critical for data intensive applications.
When the grid size is large, it is not feasible to fit the data (e.g., voltage and con-
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Fig. 6 Execution flow with 3 parallelization strategies (a) Strategy 1 with 4-Kernels, (b) Strategy 2 with
5-Kernels, (c) Strategy 3 with 6-Kernels

ductivity vectors) into the limited shared memory space of the GPU, therefore, we
utilize the global memory in our implementation. Since global memory access la-
tency is from 400 to 600 cycles, it is crucial to hide this latency through memory
coalescing. For that purpose, we designed the data structure for storing the grid space
that is aligned in the memory in terms of warp size. All the threads accessing the
memory are streamlined by the use of this data structure and threads in a warp are
forced to access the consecutive memory locations. Figure 8 shows the performance
improvement achieved through memory coalescing for the case of 256 × 256 × 256
grid space based on Strategy 3.

Figure 9 shows the execution time for Strategy 3 with respect to change in grid
size. Each grid size includes 8 times the amount of cells larger than its predecessor.
Until the gird size of 64 × 64 × 64, as the data size increase, execution time increases
with less than a factor of 8. Execution time increases with a factor of 8× beyond the
grid size of 64 × 64 × 64 which means threading power of the GPU is utilized and
beyond this grid size execution of the program progresses in multiple iterations of the
program flow. In the following section, we describe the multi-GPU implementation
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Fig. 7 Execution time for three parallelization strategies

Fig. 8 Performance improvement due to memory coalescing

and then present performance comparison among single-GPU, multi-GPU, and GPP
based implementations.

4.3 Heart simulation on multi GPU system

Four Tesla cards are used for experimentation. A host thread can create a context
with only one GPU, therefore, we created four host threads to run the simulation
on four GPUs. Synchronization of these GPUs does not force considerable penalty
as workload on all GPUs are almost the same. In order to share the data produced
by GPUs after each iteration, host level thread synchronization by means of barrier
directive is used. We considered OpenMP and POSIX threads for creating host level
threads. The amount of multithreading code required to perform simple operations
made POSIX threads an inconvenient choice for using Multiple GPUs. On the other
hand, OpenMP has a good abstraction of low level details which is not the case with
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Fig. 9 Execution time for Strategy 3 with respect to change in workload (based on logarithmic scale base
8) shows linear increase in execution time beyond 64 × 64 × 64 grid size

Fig. 10 Multi GPU implementation flow

POSIX programs. Supporting the choice of OpenMP, there also exist many software
tools for performance evaluation and debugging of OpenMP programs. Host threads
keep the data produced by each GPU in the shared data structure. Figure 10 shows
the flow of the multi-GPU implementation.

4.3.1 Jacobi iteration and solving PDE

In solving the PDE equation, new challenges arise in terms of data partitioning when
multiple GPUs are used. Each cell requires data from surrounding cells after each
iteration. For the cells which lie on inter GPU boundary, voltage values of the neigh-
boring cells are received from the other GPUs. To address the data dependency, we
evaluated various data sharing techniques. The naive technique is to copy the grid
space back to host CPU after each iteration. Once CPU has all the data required, it
can launch a separate kernel which calculates the voltage values for cells in the inter-
face region. In this method, it is quite evident that memory transfer would take most
of the time due to redundant data transfer between the CPU and the GPUs. An alter-
native is to copy only the boundary cells back to the CPU after each Jacobi iteration.
Figure 11 illustrates our grid partitioning strategy and Fig. 12 illustrates the execution
flow.

One of the major concerns in programming multi-GPUs is the nonavailability of
tools and libraries. A programmer needs to take care of all levels of detail like mem-
ory hierarchy and alignment of data structure in memory. For cardiac simulations, the
inter-GPU data dependency poses a major issue. Data partitioning becomes difficult
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Fig. 11 The shaded region has
inter GPU Data Dependency

Fig. 12 Showing the process of
calculating PDE

Table 1 GPU-CPU system configuration

GPU-CPU System

Host System GPU System

Brand Supermicro GPU Model Tesla C1060

Host CPU Intel Xeon 2.4 GHz Number of GPUs 4

Interface 8 GB/s (PCIe 2.0 × 16) Core Clock (GHz) 1.3

Memory 24 GB Global Memory 4 GB

OS Fedora Linux Memory Bandwidth 102 GB/s

Compiler -g –use_fast_math -arch sm_13 Theoretical FLOP 933 Gflops/sec

if the data is not organized properly. Another challenge is finding ways to avoid ir-
regular memory accesses by choosing proper indexing scheme in terms of block and
thread IDs. If the indexing scheme is selected in such a way, that threads can access
all the data in inter GPU boundary, then selective copy of boundary data is possible.
This reduces the time taken for inter-GPU synchronization.

5 Results

Tables 1 and 2 show the device configurations for the GPU and GPP systems, respec-
tively.

On a 4-GPU system, simulating one APD cycle (350 msec real time) for 256 ×
256 × 256 tissue in 10,000 time steps takes a total of 664.05 seconds including the
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Table 2 General Purpose
Processor (GPP) system
configuration

GPP System

Machine Model Asus

Processor Intel I7 920

Clock Rate 2.4 GHz

Hard Disk 640 GB

RAM 9 GB

OS Ubuntu

Compiler Options gcc O3 Wall

Fig. 13 Showing the time taken
by various stages of the program

computation, communication, and data transfers between the host and the device.
This is a drastic improvement (a factor of 2460×) compared to the serial version of
the same simulation. As shown in Fig. 13, computation time (ODE and PDE solvers)
for this simulation dominates the total execution time. For the multi-GPU scenario,
communication time includes the overhead due to OpenMP primitives. Single-GPU
and multi-GPU implementations are 657 and 2,538 times faster than the serial version
respectively based on the computation time.

Table 3 illustrates the total execution time by considering the data transfer over-
head for a 256 × 256 × 256 tissue after 10,000 iterations on single-GPU and multi-
GPU platforms. Tissue data is transferred from the host once and the output of each
iteration is accumulated in a file at the host side. To illustrate the impact of data
transfer overhead on performance, in Table 4 we report the speedup values for a sin-
gle time step execution based on computation time only. For both single-GPU and
multi-GPU platforms, speedup values improve significantly, showing the computa-
tion efficiency of the GPU when data transfer time overhead is not considered. Table
4 presents the performance comparison between single-GPU, 4-GPU, and GPP based
implementations. For small gird size (16 × 16 × 16) single GPU performs better than
multi GPU due the synchronization overhead associated with the multi-GPU system.
As the grids size increases, speedup for the 4-GPU version converges to the factor of
4× compared to the single-GPU version as expected. Heart simulation calculations
involve 88.87 × 109 floating point operations for 256 × 256 × 256 grid size. There-
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Table 3 Computation and Total Execution Time (seconds) for 256 × 256 × 256 grid size for 10,000
iterations on the GPU

Computation
time

Memory Copy and
Synchronization Time

Total time
(sec)

Speedup
over GPP

Host to
Device

Device
to Host

single-GPU 0.248 0.485 0.432 6800 239

multi-GPU 0.064 0.125 0.121 1850 881

Table 4 Single Time Step Computation Time for GPU and GPP Systems with respect to change in work-
load

Workload Computation time (seconds) Speedup over GPP Speedup

Single
GPU

Four
GPUs

GPP Single
GPU

Four
GPUs

Four GPUs over
Single GPU

16 × 16 × 16 0.00029 0.00030 0.021 72 70 0.97

32 × 32 × 32 0.00079 0.00042 0.189 239 453 1.89

64 × 64 × 64 0.00383 0.00122 1.5 392 1232 3.14

128 × 128 × 128 0.02932 0.00765 14 478 1830 3.83

256 × 256 × 256 0.24804 0.06423 163 657 2538 3.86

fore based on the computation time reported in Table 3, the single-GPU reaches 360
GFLOPS.

5.1 Correctness of implementation

Excitation propagation in 3D cardiac tissue is visualized using OpenDX toolkit from
IBM. The data generated by GPUs are stored in a file which is processed to generate
offline visualization showing the propagation of wave. Apart from that, we randomly
selected a cell in the grid and dumped its voltage values with respect to time in a file.
The values were used to plot the APD curve shown in Fig. 14(a) and showed that the
output matches the expected APD curve.

A video for the visualization of the GPU based bidomain simulation tool gener-
ating the voltage propagation across the 3D grid system is hosted at http://acl.ece.
arizona.edu/cardiacsim/video.html and sample screen shots are shown in Fig. 15.

6 Related work

In [15], Vigmond et al. studied the effect of offloading ODEs to GPUs as they are
slower than PDEs in CPU/cluster of CPUs. ODEs are inherently parallel and are best
candidates for GPUs. In [16], Sato et al. proposed a method to solve ODEs and PDEs
on GPUs. It is evident from their work that solving PDEs take more time than solving
ODEs on GPUs. Whereas on CPU/cluster of CPUs, solving ODEs take more time as

http://acl.ece.arizona.edu/cardiacsim/video.html
http://acl.ece.arizona.edu/cardiacsim/video.html
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Fig. 14 (a) APD curve plotted using sampled values in our experiment, (b) Actual APD curve voltage
change in grid based

Fig. 15 The voltage values calculated at each node in the grid can be used to visualize the excitation
propagation in cardiac tissue

they are computationally intensive. Both studies shows that PDEs is the bottleneck in
GPU implementation. In [16], the operator splitting technique is used to break car-
diac equations into PDE and ODE. We also used the operator splitting technique in
our implementation. However, our approach to solving PDEs is different from the
technique used in [16]. In our implementation, we employ the Jacobi iterative tech-
nique to solve PDEs which is more efficient and accurate as it iteratively calculates
the result until the values in consecutive values converge to a small value. Though
[16] has a 3D implementation, not enough results are reported for us to conduct a
fair evaluation. For 100 × 100 cells, their 2D implementation takes 8.2 seconds for
simulating 1 second of real time, whereas our implementation takes around the same
time to simulate (10 × 10 × 10) cells in 3D for 1 second real time. The sequential
implementation times reported in [16] is also comparable with our serial execution
time. For the larger tissue of 800 × 800 cells, their implementation is about 2 times
slower than our 3D implementation with 40 × 40 × 40 cells.

In [17], Unat et al. proposed the multi-GPU implementation of 2D tissue using
MPI. In their configuration, multiple GPUs are connected to different host machines.
Hosts synchronize one another through message passing. Values of shared cells
among the GPU partitions are updated before each iteration through message pass-
ing. In our 3D implementation, all 4 GPUs are connected to the same host machine.
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As each host thread can only manage one GPU context, multiple threads are created
using OpenMP for the multi-GPU implementation. The inter-GPU synchronization
time is nit significant in our case as the data is moved around in a single system,
avoiding any uncertainties/delays caused by the network. Our inter-GPU synchro-
nization time (which includes OpenMP barrier synchronization, exchange of shared
cell values) is 1% of the total execution time per iteration. On the other hand, their
implementation requires synchronization time which is 4.4% of the total execution
time per iteration. It is also notable that 3D implementation is computationally heav-
ier than 2D implementation even for same number of cells because of the complex
nature of the PDEs being solved. Considering the average execution time per itera-
tion, our implementation of 16 × 16 × 16 cells is (4849/300) 16.2× faster than their
4K cells implementation. Moreover, none of the papers that discuss the 3D Cardiac
simulations have provided enough information about their parallelization strategies
and how various limitations of GPUs can be overcome to provide good speedup.

7 Conclusion

3D simulations of electric wave propagation help medical researchers understand
electrical instabilities and excitation dynamics in cardiac tissues. The cardiac bido-
main model is a popular approach for studying the electrical behavior of cardiac
tissues. The model simulates interactions between the tissue cells by solving a large
number of unknowns with nonlinear differential equations and calculating the trans-
membrane voltage. One second of real time tissue modeling takes several days to
simulate on a high end general purpose processor. The iterative and inherently data
parallel nature of the bidomain model’s software architecture makes it an ideal match
for the fine grained parallel hardware architecture of the NVIDIA Graphic Processing
Units (GPU). In this study, we evaluate the architecture specific fine grained paral-
lelization and optimization strategies, identify the suitable threads per block config-
uration, and study the impact of memory organization and coalesced memory access
on performance. We study the challenges for porting the single GPU implementation
of an application onto a multi-PGU system. Simulating a single action potential du-
ration (APD) cycle (350 msec real time) occurs in 10,000 time steps. In the case of
simulating one time step, as the size of the 3D tissue space increases, the speedup
curve reaches to saturation reaching up to 657× and 2631× with single-GPU and
multi-GPU implementations, respectively, compared to general purpose processor. In
the case of simulating the APD cycle for a 256 × 256 × 256 tissue, general purpose
processor based system takes 453 hours to execute the program, while it takes 664
seconds on a four-GPU based system including the communication and data trans-
fer overhead. This drastic improvement (a factor of 2460×) will allow clinicians to
extend the time-scale of simulations from milliseconds to seconds and minutes; and
evaluate hypotheses in shorter amount of time that was not feasible previously.
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