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Abstract During the last decades, a host of efficient algorithms have been developed
for solving the minimum spanning tree problem in deterministic graphs, where the
weight associated with the graph edges is assumed to be fixed. Though it is clear
that the edge weight varies with time in realistic applications and such an assump-
tion is wrong, finding the minimum spanning tree of a stochastic graph has not re-
ceived the attention it merits. This is due to the fact that the minimum spanning tree
problem becomes incredibly hard to solve when the edge weight is assumed to be a
random variable. This becomes more difficult if we assume that the probability distri-
bution function of the edge weight is unknown. In this paper, we propose a learning
automata-based heuristic algorithm to solve the minimum spanning tree problem in
stochastic graphs wherein the probability distribution function of the edge weight is
unknown. The proposed algorithm taking advantage of learning automata determines
the edges that must be sampled at each stage. As the presented algorithm proceeds,
the sampling process is concentrated on the edges that constitute the spanning tree
with the minimum expected weight. The proposed learning automata-based sampling
method decreases the number of samples that need to be taken from the graph by re-
ducing the rate of unnecessary samples. Experimental results show the superiority of
the proposed algorithm over the well-known existing methods both in terms of the
number of samples and the running time of algorithm.
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1 Introduction

Spanning tree of a connected, undirected graph is a tree-based subgraph by which
all the graph vertices are connected. A minimum spanning tree (MST) of an edge-
weighted graph is a spanning tree having the minimum sum of edge weights among
all the spanning trees. The weight assigned to each edge of the graph represents its
cost, traversal time, or length depending on the context. The minimum spanning tree
is an appealing structure in the design of the communication systems that econom-
ically connect spatially dispersed elements, computer networks, and other network-
related problems. Minimum spanning trees also arise in more subtle applications in
statistical cluster analysis [45, 46], data storage [47–49], picture processing [50], and
speech recognition [51]. Due to the tremendous growth of the communication net-
works, the network applications of the minimum spanning trees have attracted a lot
of attention during the last decades. For instance, the broadcasting problem, in which
the same data must be sent to all the nodes within the network (one to all), can be
simply modeled by the minimum spanning tree problem. The minimum spanning
tree is also the optimal routing tree for data aggregation (all to one) in distributed
environments. Besides, in some of the multicast routing protocols [1, 2], the mini-
mum spanning tree is still one of the most effective and reliable methods to multicast
the messages from a source node to a group of destinations. In most scenarios, the
edge weight is assumed to be fixed, but such an assumption does not hold true in real
world applications and the weights vary with time indeed. For example, the links in
a communication network may be affected by collisions, congestions, and interfer-
ences. Therefore, the MST problem is generalized toward a stochastic MST problem
in which the edge weights are not constant but random variables. There have been
many studies of the minimum spanning tree problem dealing with the determinis-
tic graphs and several renowned sequential algorithms have been designed such as
Boruvka [3], Kruskal [4], and Prim [5] in which the MST problem can be solved in
polynomial time. However, when the edge weight is allowed to be a random vari-
able (or vary with time), the problem of finding the minimum spanning tree of the
(stochastic) graph becomes incredibly difficult. This becomes more intractable, if the
probability distribution function of the edge weight is assumed to be unknown.

Ishii et al. [6] proposed a method for solving the stochastic spanning tree problem
in which the mentioned problem is transformed into its proxy deterministic equivalent
problem and then a polynomial time algorithm is presented to solve the latter prob-
lem. In this method, the probability distribution of the edge weight is assumed to be
known. Ishii and Nishida [7] considered a stochastic version of the bottleneck span-
ning tree problem on the edges whose weights are random variables. They showed
that, under reasonable restrictions, the problem can be reduced to a minimum bottle-
neck spanning tree problem in a deterministic case. Mohd [8] proposed a method for a
stochastic spanning tree problem called interval elimination. In the proposed method,
like Ishii et al. [6], the problem is first transformed into a deterministic equivalent
problem and then solved. Mohd also introduced several modifications to the algo-
rithm of Ishii et al. [6]. He showed that the modified algorithm is able to obtain



A learning automata-based heuristic algorithm for solving 1037

much better results in less time. Ishii and Matsutomi [9] presented a polynomial time
algorithm to solve the problem stated in [6]. In this approach, the parameters of un-
derling probability distribution of edge costs are assumed to be unknown, and so they
are estimated by a confidence region from statistical data. In the proposed method,
the problem is first transformed into a deterministic equivalent problem with a min-
max type objective function and a confidence region of means and variances, since
they assume that the random edge costs have normal distributions. In [52], Jain and
Mamer proposed a method for estimation of the distribution of the MST weight in
a stochastic network. They relaxed the condition that the random variable associated
with the edge weight must be identically distributed. They obtained bounds on the
distribution and the mean of the MST weight which is proved to be better than the
naive bound obtained by solving the deterministic MST with expected edge weights.
Alexopoulos and Jacobson’s algorithm [10], which is hereafter referred to as ALJA,
extended the partitioning technique considered in [40] to compute and bound specific
values of the minimum spanning tree distribution in networks with independent, but
not necessarily identically distributed, discrete edge weight random variables. Alex-
opoulos and Jacobson also proposed several methods to determine the probability
that a given edge belongs to a minimum spanning tree. They demonstrated that the
exact calculation of values of the minimum spanning tree distribution is NP-hard.

Katagiri et al. [11] examined the case where the edge weights are fuzzy random
variables. They introduced a fuzzy-based approach to model the minimum spanning
tree problem in case of fuzzy random weights. Almeida et al. [12] studied the mini-
mum spanning tree problem with fuzzy parameters and proposed an exact algorithm
to solve this problem. In [13], Hutson and Shier studied several approaches to find (or
to optimize) the minimum spanning tree when the edges undergo the weight changes.
Repeated Prim (RP) method, cut-set (CM) method, cycle tracing (CTM) method, and
multiple edge (ME) sensitivity method are the proposed approaches to find the MST
of the networks in which each edge weight can assume a finite number of distinct
values. To approximate the expected weight of the optimal spanning tree, Hutson and
Shier used the algebraic structure to describe the relationship between different edge-
weight realizations of the network. They compared different approaches and showed
that the multiple edge sensitivity method (ME), hereafter referred to as HUSH, out-
performs the others in terms of the time complexity and the size of the constructed
state space. Fangguo and Huan [14] considered the problem of minimum spanning
trees in uncertain networks in which the edge weights are random variables. In [14],
the concept of the expected minimum spanning tree is initially defined and a model
of the problem is accordingly formulated. Based on this model, a hybrid intelligent
algorithm as a combination of the genetic algorithm and stochastic simulation is pro-
posed. In order to code the corresponding spanning tree for the genetic representation,
the Prüfer encoding scheme that is able to represent all possible trees is employed.
Dhamdhere et al. [15] and Swamy and Shmoys [16] formulated the stochastic mini-
mum spanning tree problem as a stochastic optimization problem and proposed some
approximation approaches to solve two and multistage stochastic optimization prob-
lems.

The major problem with the above mentioned stochastic minimum spanning tree
algorithms is that they are practical when the probability distribution function (PDF)



1038 J. Akbari Torkestani, M.R. Meybodi

of the edge weight is assumed to be known. While such an assumption does not hold
true in realistic applications. In this paper, we propose a learning automata-based
approximation algorithm for solving the minimum spanning tree problem in the sto-
chastic graph, where the probability distribution function of the weight associated
with the graph edge is unknown. In the proposed heuristic algorithm, by a learn-
ing automata-based sampling method, it is probabilistically decided whether an edge
must be sampled or not. That is, each learning automaton which is assigned to a given
graph node decides which incident edge must be sampled at each stage. In the course
of the learning process, automata learn how to sample the edges along the minimum
spanning tree with a higher probability. Hence, as the proposed algorithm approaches
to the end, sampling process is concentrated on the edges by which the minimum
spanning tree is constructed. In other words, the sampling process finally focuses on
the spanning tree with the minimum expected weight. Such a probabilistic sampling
method reduces the rate of unnecessary samples. To evaluate the performance of the
proposed stochastic MST algorithm, the obtained results are compared with those
of Alexopoulos and Jacobson [10] and Hutson and Shier [13], both in terms of the
number of samples and running time of algorithm. The simulation experiments show
that the proposed stochastic MST algorithm outperforms the algorithms proposed by
Alexopoulos and Jacobson [10] and Hutson and Shier [13] in terms of all metrics of
interest.

The rest of the paper is organized as follows. Section 2 provides a brief overview
of the minimum spanning tree problems, and describes the stochastic minimum span-
ning tree problem. Section 3 introduces the learning automata in a nut shell. In Sect. 4,
the proposed learning automata-based algorithm is presented. Section 5 shows the
performance of the proposed algorithm through simulation experiments and compar-
ison with the best existing methods. Section 6 concludes the paper.

2 Minimum spanning tree problem

The Minimum Spanning Tree problem is a classical combinatorial optimization prob-
lem in graph theory. This problem is defined as to find the minimum weight spanning
tree in a weighted graph. Many engineering problems such as the design of communi-
cation network, electric power system, and so on can be described by MST problem.
The weight assigned to each edge of the network could represent its cost, traversal
time, or length depending on the context. The minimum spanning tree problem can be
generally subdivided into deterministic MST Problem and stochastic MST problem
depending upon the edge weight is assumed to be fixed or a random variable. Fig-
ure 1 shows the new classification of the minimum spanning tree algorithms which is
proposed in this paper.

A minimum spanning tree of a weighted, undirected graph G is a spanning tree
of G whose edges sum to minimum weight. In other words, a minimum spanning
tree is a tree formed from a subset of the edges in a given undirected graph, with two
properties: first, it spans the graph, i.e., it includes every vertex in the graph, and then
it is a minimum, i.e., the total weight of all the edges is as low as possible.
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Fig. 1 A new classification of the MST algorithms

Definition 1 Let G〈V,E〉 denotes an undirected graph consisting of vertex-set V =
{v1, v2, . . . , vn} and edge-set E = {e1, e2, . . . , em} ⊆ V × V . Subgraph G′〈V ′,E′〉 of
graph G〈V,E〉 is a spanning tree, if we have

1) Subgraph G′ is connected.
2) G′ has the same vertex-set as G, i.e., V ′ = V .
3) |E′| = n − 1, where |E′| denotes the cardinality of edge-set E′.

Definition 2 Let G〈V,E,W 〉 denotes an edge-weighted, undirected graph, where
V = {v1, v2, . . . , vn} is the vertex-set, E = {e1, e2, . . . , em} ⊆ V × V is edge-set,
and W = {w1,w2, . . . ,wm} is the set of weights associated with the edges. Let
T = {τ1, τ2, τ3, . . .} denotes the set of possible spanning trees of graph G. Let wj

and wτi
= ∑

∀ej ∈τi
wj denote the weight associated with edge ej ∈ E and spanning

tree τi ∈ T . Therefore, spanning tree τ ∗ ∈ T is the minimum spanning tree (MST) of
graph G, if wτ∗ = min∀τi∈T {wτi

}.
2.1 Deterministic minimum spanning tree problem

Deterministic MST problem deals with finding the minimum spanning tree of the
graph where the weight associated with the graph edge is constant. Most researches
study the minimum spanning tree problem when the edge weight is constant, and
so a host of deterministic algorithms are available. As shown in Fig. 1, deterministic
minimum spanning tree problem can be further subdivided as unconstrained and con-
strained MST problems. Constrained MST problem is a generalization of the MST
problem in which some additional constraints must be satisfied.

Unconstrained MST algorithms are divided as centralized and distributed algo-
rithms. Boruvka’s algorithm [3], Kruskal’s algorithm [4], and Prim’s algorithm [5] are
three well-known centralized MST algorithms. Distributed MST algorithms are fur-
ther classified as exact and approximation algorithms. Gallager et al. [17], Spira [18],
Dalal [19], Gafni [20], Awerbuch [21], Garay et al. [22], Elkin [23], and Kutten and
Peleg [24] are representative exact solutions proposed for unconstrained MST prob-
lem. While the previous distributed algorithms deal with computing the exact MST,
the next important question addressed in the literature concerns the study of distrib-
uted approximation of MST, i.e., constructing a spanning tree whose total weight is
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near optimal. Peleg and Rabinovich [25], Elkin [26–28], and Maleq and Pandurangan
[28] proposed several approximation algorithms for finding a near optimal solution
to the MST problem.

Constrained minimum spanning tree problem is a bicriteria (or multicriteria) prob-
lem in which two (or more) parameters must be optimized. In other words, the con-
strained minimum spanning tree problem can be defined as a generalization of the
MST problem in which some additional constraints are satisfied at the same time.
Constrained minimum spanning tree problem is defined as follows.

Definition 3 Given a weighted, undirected graph G〈V,E,W,C〉, where V =
{v1, v2, . . . , vn} is the vertex-set, E = {e1, e2, . . . , em} ⊆ V × V is edge-set, W =
{w1,w2, . . . ,wm} is the set of weights associated with the edges, and C = {c1, c2,

. . . , cm} denotes the (additional) constraints imposed to the edges. The constrained
minimum spanning tree problem (CMSTP) can be formulated as the following opti-
mization problem.

min
∑

∀ej ∈T

wj (1)

subject to
∑

∀ej ∈T

cj ≤ L, (2)

where L is the imposed constraint and T is the solution to the CMSTP. That is, the
constrained minimum spanning tree problem is to find the spanning tree with the
minimum total weight and the total constraint at most L.

Aggarwal et al. [29] proved that the constrained minimum spanning tree problem
is a weakly NP-hard problem. Representative constrained minimum spanning tree
problems studied in the literature include Bounded Diameter Minimum Spanning
Tree (BDMST) [30], Degree Constrained Minimum Spanning Tree (DCMST) [31],
Capacitated Minimum Spanning Tree (CMST) [32], Generalized Minimum Spanning
Tree (GMST) [33], Delay-Constrained Minimum Spanning Tree [34, 35], and Hop-
Constrained Minimum Spanning Tree (HMST) [36]. Since the constrained minimum
spanning tree problem is an NP-hard problem, heuristic methods, such as tabu search
[37], ant colony optimization [31], genetic algorithms [38, 39], and fuzzy-based al-
gorithms [32], have been extensively used by the researchers for solving this complex
optimization problem.

2.2 Stochastic minimum spanning tree problem

As mentioned above, a deterministic MST algorithm aims at finding the minimum
spanning tree of the graph, where the edge weight is assumed to be fixed, while a
stochastic minimum spanning tree algorithm deals with the graph edge whose weight
is a random variable. In most scenarios, it is assumed that the edge weights are fixed,
but this is not always true. For example, links in a communication network can mal-
function or degrade as a result of congestion, accidents, weather, etc. More generally,
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the edges of a time-varying network can assume several states. Therefore, a deter-
ministic graph is not able to realistically model the characteristics of such networks,
and so the network topology should be modeled by a stochastic graph. As mentioned
before, several algorithms have been proposed to solve the minimum spanning tree
problem, where the network parameters are deterministic. However, finding the min-
imum spanning tree becomes considerably harder when the graph is stochastic. In
what follows, we define the stochastic minimum spanning tree problem and review
the stochastic MST algorithms in a nut shell.

Definition 4 A stochastic edge-weighted graph G is defined by a triple 〈V,E,W 〉,
where V = {v1, v2, . . . , vn} denotes the vertex-set, E = {e1, e2, . . . , em} ⊆ V ×V de-
notes the edge-set, and W = {w1,w2, . . . ,wm} denotes the set of weights associated
with the edge-set such that positive random variable wi is the weight of edge ei ∈ E.

Definition 5 Let G〈V,E,W 〉 denotes a stochastic edge-weighted graph, and T =
{τ1, τ2, τ3, . . .} denotes the set of possible spanning trees of the stochastic graph
G〈V,E,W 〉. Let w̄τi

denotes the expected weight of spanning tree τi . The stochastic
MST (SMST) is defined as a stochastic spanning tree with the minimum expected
weight. That is, stochastic spanning tree τ ∗ ∈ T is the stochastic minimum spanning
tree if and only if w̄τ∗ = min∀τi∈T {w̄τi

}.

Several authors have examined network optimization problems where the edge
weights are determined by independent (though not necessarily identically distrib-
uted) discrete random variables. However, in stochastic graphs, the MST problem has
not received the attention it deserves. The existing stochastic minimum spanning tree
algorithms are further subdivided as exact [6–10] and approximation [11, 12, 14–16]
algorithms. Due to the hardness of the stochastic minimum spanning tree problem for
general stochastic graphs, exact algorithms are only feasible for small graphs, while
very large graphs often arise in realistic applications. Therefore, polynomial time ap-
proximation algorithms have been also proposed for finding a near optimal solution
of the stochastic minimum spanning tree problem.

The following briefly describes two methods proposed for solving the minimum
spanning tree problem in stochastic graphs with which our proposed algorithm is
compared. In [40], an efficient heuristic approach was presented by Doulliez and
Jamoulle for computing the probabilistic measures of the multistage systems. The
proposed method is based on the iteratively partitioning the state space of the system.
The proposed decomposition technique was first proposed for solving the stochastic
maximum flow problem in networks with discrete arc capacities where all the flow re-
quirements must be satisfied. Alexopoulos and Jacobson [10] enhanced the efficiency
of the state space partitioning technique presented in [40] by extending and enrich-
ing its theoretical foundations. They applied the extended partitioning technique for
computing the probability distribution of the weight of the minimum spanning trees
in stochastic graphs with independent, but not necessarily identically distributed, dis-
crete edge weight random variables. They proved that the exact calculation of the
parameters of the probability distribution of the weight of the minimum spanning
tree is known to be NP-hard. The number of iterations of the proposed algorithm is
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typically small for moderate size problems, however, for large graphs Alexopoulos
and Jacobson’s algorithm may cause an intractable computational cost. Therefore,
the running time of their proposed algorithm is not necessarily polynomial. The state
space partitioning technique upon which the Alexopoulos and Jacobson’s algorithm
is based computes the probabilistic measure (the probability distribution of the weight
of the stochastic MST) by dividing all the possible edge-weight realizations (the en-
tire state space of the problem) iteratively into subsets with known contribution to the
probabilistic measure and subsets with unknown contribution. This continues until
no sets with unknown contribution remain to be processed. In fact, the partitioning
technique is very similar to a factoring or branch-and-bound procedure, where the
nodes of the search tree are the sets with unknown contribution. At any iteration, the
bounds on the probabilistic measure can be computed. As the algorithm proceeds, the
bounds get more tightened and finally equal to the value of the probabilistic measure.

Hutson and Shier [13] considered several approaches to solve the minimum span-
ning tree problem in networks in which the edge weight can assume a finite number
of distinct values. In [13], the authors believe that even for small graphs the state
space of the problem (i.e., the number of possible edge-weight realizations) is mas-
sive. Therefore, to alleviate the negative impacts of the huge state space, they propose
a systematic way based on Hasse diagram for generating the state space which avoids
generating unnecessary and repetitive states. In this method, the algebraic structure
of the underlying Hasse diagram is exploited to find the relationship between the
different edge-weight realizations of the stochastic network. This algebraic structure
represents a graphical form of the state space in which a state is represented by a
node and an edge represents a change to the next largest weight of exactly one edge.
Then a rooted spanning tree and a traversal algorithm of that tree combine to generate
each state without repetition. Hutson and Shier then proposed several approaches for
calculating the minimum spanning trees associated with the above constructed state
space. The proposed approaches are repeated prim (RP) method, cut-set (CT) method,
cycle tracing method (CTM), and multiple edge (ME) sensitivity method. They the-
oretically analyzed the complexities of different approaches and showed that RP and
CM are always faster than CTM. Such a result is expected since RP and CM have
worst case running times of order O(n2N) and O(mN), respectively, which domi-
nate the complexity of order O(nmN) for CTM, where n is the number of nodes, m

is the number of edges, and N denotes the number of states. They also show that ME
has a worst case running time of O(mN). Hutson and Shier also conducted several
experiments to show the performance of the proposed algorithms. The obtained re-
sults show that the multiple edge sensitivity method (ME) outperforms the others in
terms of the time complexity and the size of the constructed state space. Therefore,
to show the superiority of our method over the proposed approaches, we compare it
with ME. The main problem with the proposed approaches in [13], specifically ME
method, is that to reduce the complexities of the method they take into consideration
only a small subset of all the possible realizations of the stochastic network. Such
a reduced state space may cause the missing of the optimal solution or even near
optimal solutions. Hence, these approaches do not assure the minimum expected so-
lution.
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3 Learning automata

A learning automaton [43, 44] is an adaptive decision-making unit that improves
its performance by learning how to choose the optimal action from a finite set of
allowed actions through repeated interactions with a random environment. The action
is chosen at random based on a probability distribution kept over the action-set and
at each instant the given action is served as the input to the random environment.
The environment responds the taken action in turn with a reinforcement signal. The
action probability vector is updated based on the reinforcement feedback from the
environment. The objective of a learning automaton is to find the optimal action from
the action-set so that the average penalty received from the environment is minimized.

Learning automata have been found to be useful in systems where incomplete in-
formation about the environment exists [60]. Learning automata are also proved to
perform well in complex, dynamic and random environments with a large amount of
uncertainties. A group of learning automata can cooperate to cope with many hard-
to-solve problems. To name just a few, learning automata have a wide variety of ap-
plications in combinatorial optimization problems [53, 55], computer networks [54,
56–59, 66], queuing theory [61], signal processing [62], information retrieval [63],
adaptive control [64], and pattern recognition [65].

The environment can be described by a triple E ≡ {α,β, c}, where α ≡ {α1, α2,

. . . , αr} represents the finite set of the inputs, β ≡ {β1, β2, . . . , βm} denotes the set
of the values that can be taken by the reinforcement signal, and c ≡ {c1, c2, . . . , cr}
denotes the set of the penalty probabilities, where the element ci is associated with
the given action αi . If the penalty probabilities are constant, the random environment
is said to be a stationary random environment, and if they vary with time, the envi-
ronment is called a nonstationary environment. The environments depending on the
nature of the reinforcement signal β can be classified into P -model, Q-model, and S-
model. The environments in which the reinforcement signal can only take two binary
values 0 and 1 are referred to as P -model environments. Another class of the envi-
ronment allows a finite number of the values in the interval [0,1] can be taken by the
reinforcement signal. Such an environment is referred to as Q-model environment.
In S-model environments, the reinforcement signal lies in the interval [0,1].

Learning automata can be classified into two main families [43]: fixed structure
learning automata and variable structure learning automata. Variable structure learn-
ing automata are represented by a triple 〈βα,T 〉, where β is the set of inputs, α is
the set of actions, and T is learning algorithm. The learning algorithm is a recur-
rence relation which is used to modify the action probability vector. Let αi(k) ∈ α

and p(k) denote the action selected by learning automaton and the probability vector
defined over the action set at instant k, respectively. Let a and b denote the reward
and penalty parameters and determine the amount of increases and decreases of the
action probabilities, respectively. Let r be the number of actions that can be taken by
learning automaton. At each instant k, the action probability vector p(k) is updated
by the linear learning algorithm given in (3), if the selected action αi(k) is rewarded
by the random environment, and it is updated as given in (4) if the taken action is
penalized.

pj (k + 1) =
{

pj (k) + a[1 − pj (k)], j = i

(1 − a)pj (k), ∀j �= i
(3)
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pj (k + 1) =
{

(1 − b)pj (k), j = i
(

b
r−1

) + (1 − b)pj (k), ∀j �= i
(4)

If a = b, the recurrence equations (3) and (4) are called linear reward-penalty
(LR−P ) algorithm, if a � b the given equations are called linear reward-ε penalty
(LR−εP ), and finally if b = 0 they are called linear reward-Inaction (LR−I ). In the
latter case, the action probability vectors remain unchanged when the taken action is
penalized by the environment.

3.1 Variable action set learning automata

A variable action set learning automaton is an automaton in which the number of
actions available at each instant changes with time. It has been shown in [42] that a
learning automaton with a changing number of actions is absolutely expedient and
also ε-optimal, when the reinforcement scheme is LR−I . Such an automaton has a
finite set of n actions, α = {α1, α2, . . . , αn}. A = {A1,A2, . . . ,Am} denotes the set
of action subsets and A(k) ⊆ α is the subset of all the actions can be chosen by the
learning automaton, at each instant k. The selection of the particular action subsets
is randomly made by an external agency according to the probability distribution
Ψ (k) = {Ψ1(k),Ψ2(k), . . . ,Ψm(k)} defined over the possible subsets of the actions,
where Ψi(k) = Prob[A(k) = Ai | Ai ∈ A,1 ≤ i ≤ 2n − 1]. p̂i(k) = Prod[α(k) = αi |
A(k),αi ∈ A(k)] is the probability of choosing action αi , conditioned on the event
that the action subset A(k) has already been selected and also αi ∈ A(k). The scaled
probability p̂i(k) is defined as

p̂i(k) = pi(k)/K(k) (5)

where K(k) = ∑
αi∈A(k) pi(k) is the sum of the probabilities of the actions in subset

A(k), and pi(k) = Prod[α(k) = αi].
The procedure of choosing an action and updating the action probabilities in a

variable action set learning automaton can be described as follows. Let A(k) be the
action subset selected at instant k. Before choosing an action, the probabilities of all
the actions in the selected subset are scaled as defined in (5). The automaton then
randomly selects one of its possible actions according to the scaled action probability
vector p̂(k). Depending on the response received from the environment, the learning
automaton updates its scaled action probability vector. Note that the probability of
the available actions is only updated. Finally, the probability vector of the actions
of the chosen subset is rescaled as pi(k + 1) = p̂i(k + 1) · K(k), for all αi ∈ A(k).
The absolute expediency and ε-optimality of the method described above have been
proved in [42].

4 The proposed stochastic MST algorithm

As mentioned earlier, many studies have been conducted on deterministic minimum
spanning tree problem, but the stochastic minimum spanning tree problem has not
received the attention it deserves. On the other side, due to the stochastic nature of
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the real world network applications, deterministic algorithms are not capable of find-
ing the minimum spanning tree in such stochastic networks. Therefore, in this paper,
we propose a learning automata-based approximation algorithm called LASMSTA
(short for learning automata-based stochastic minimum spanning tree algorithm) for
finding the optimal solution of the stochastic minimum spanning tree problem, where
the probability distribution function of the edge weight is unknown. The determinis-
tic case of the optimum spanning tree problem has been well studied, and until now
several powerful polynomial time algorithms have been proposed. But when the edge
weight varies with time, the optimum solution of the MST problem is extremely hard
to find. The aim of this paper is to show the capabilities of the learning automata
for solving such a difficult problem. The proposed algorithm is based on a sampling
method in which at each stage a set of learning automata determines which edges
must be sampled. This sampling method may result in decreasing unnecessary sam-
ples, and hence decreasing the running time of algorithm.

Let G〈V,E,W 〉 denotes the input stochastic graph, where V = {v1, v2, . . . , vn} is
the vertex-set, E = {e1, e2, . . . , em} ⊆ V × V is the edge-set, and matrix W denotes
the weights associated with the edge-set. In this algorithm, a network of learning
automata isomorphic to the stochastic graph is initially formed by equipping each
node of the graph with a LRI

learning automaton. The resulting network can be de-
scribed by a triple 〈A,α,W 〉, where A = {A1,A2, . . . ,An} denotes the set of the
learning automata, α = {α1, α2, . . . , αn} denotes the set of all possible actions in
which αi = {α1

i , α
2
i , . . . , α

ri
i } defines the set of actions that can be chosen by learning

automata Ai (for each αi ∈ α) and ri is the cardinality of action-set αi . Edge e(i,j)

corresponds either to the action α
j
i of the learning automata Ai or to the action αi

j

of the learning automata Aj . That is, each learning automaton can select each of its

incident edges as an action. Choosing action α
j
i by automaton Ai adds edge e(i,j) to

the minimum spanning tree. Weight wi,j is the weight associated with edge e(i,j) and
assumed to be a positive random variable with an unknown probability distribution.

In the proposed algorithm, each learning automaton can be in one of two modes
active and passive. All learning automata are initially set to the passive state. The pro-
posed algorithm consists of a number of stages and at each stage one of the possible
spanning trees is randomly constructed. The proposed algorithm is based on the dis-
tributed learning automata, and to explore the spanning trees, it traverses the distrib-
uted learning automata by the backtracking technique. Each stage of the LASMSTA
algorithm is initiated by choosing one of the graph vertices at random. The learning
automaton corresponding to the selected vertex is activated and chooses one of its
actions based on its action probability vector. The edge corresponding to the selected
action is added to the spanning tree which is currently being formed. The weight asso-
ciated with the selected edge is added to the total weight of spanning tree as well. To
avoid the loops in the tree, each passive learning automaton prunes its action-set (or
scales up its action probability vector) by disabling the actions corresponding to the
edges selected so far or the edges by which a cycle may be formed. Then the learning
automaton which is at the other end of the selected edge is activated. It chooses one of
its actions as the previous activated automata did. The sequential activation process
of learning automata (or selecting tree edges) is repeated until either a spanning tree
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is constructed, or no more actions can be taken by the currently active learning au-
tomaton. In the former case, the current stage is successfully completed by finding a
solution to the minimum weight spanning tree problem (this occurs when the number
of selected edges is greater than or equal to (n − 1), where n denotes the cardinality
of the vertex-set), and in the latter case, the proposed algorithm traces the path in-
duced by the activated learning automata back for finding a learning automaton with
available actions. The learning automaton which is found in the backtracking process
is activated again. The action-set of such an automaton has to be updated by disabling
its last selected action. Now, the reactivated automaton resumes the current stage by
choosing one of its possible actions as described above. The learning automaton ac-
tivation (or reactivation) process is continued until formation a spanning tree. The
backtracking technique proposed in this paper assures that a spanning tree will be
constructed at each stage of algorithm. By the backtracking technique, each learning
automaton may activate more than one of its neighbors at each stage. That is, more
than one action can be chosen by each learning automaton.

As mentioned earlier, the corresponding edge is added to the spanning tree, once
an action is chosen by a learning automaton. The weight associated with the selected
edge is also added to the total weight of the spanning tree. Since the weight asso-
ciated with the graph edge is assumed to be a positive random variable, a particular
spanning tree may experience a different weight at each stage. Therefore, the pro-
posed algorithm deals with the average weight of the spanning trees rather than their
weight at each stage. To do so, at the end of stage k, the average weight of the selected
spanning tree is computed as follows:

We suppose that spanning tree τi is selected at stage k. The average weight of
spanning tree τi until stage k is computed as

w̄k
τi

= 1

ki

ki∑

j=1

wj
τi

(6)

where ki denotes the number of times spanning tree τi is constructed until stage k,
and w

j
τi

denotes the weight of the j th sample of spanning tree τi , which is defined as

wj
τi

=
∑

∀(s,t)∈τi

w
j
e(s,t)

(7)

where w
j
e(s,t)

denotes the weight of edge e(s,t) as a part of the j th sample taken from
spanning tree τi .

To guarantee the convergence of the proposed algorithm to the optimal solution
(i.e., minimum spanning tree), the average weight of the constructed spanning tree
has to be compared with the dynamic threshold, Tk , at each stage. At stage k > 1, the
dynamic threshold is calculated as

Tk = 1

r

r∑

i=1

w̄k
τi

(8)

where r denotes the number of all spanning trees explored until stage k.
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Algorithm LASMSTA The proposed stochastic Minimum Spanning Tree algorithm

01:Input: Graph G〈V,E,W 〉, Stop Threshold S

02:Output: The minimum spanning tree
03:Assumptions
04:Let τ denotes the selected tree
05:Begin Algorithm
06: k ← 0, Tk ← 0
07: Repeat
08: τ ← ∅, wτ ← 0
09: The first automaton is randomly selected, denoted as Aj and activated
10: Repeat
11: If Ai has no possible actions Then
12: Path induced by activated automata is traced back to find automaton with available

actions
13: The found learning automaton is denoted as Ai

14: End If

15: Automaton Ai chooses one of its actions (say action α
j
i

)
16: τ ← τ + {e(Ai ,Aj )}, wτ ← wτ + {we(Ai ,Aj ) }
17: Each automaton prunes its action-set to avoid the loop
18: Automaton Aj is activated
19: Set Ai to Aj

20: Until |τ | ≥ |V | − 1
21: Compute the average weight of the selected spanning tree and denote it w̄τ

22: If w̄τ < Tk−1 Then
23: Reward the selected actions of the activated automata along the spanning tree
24: Else
25: Penalize the selected actions of the activated automata along the spanning tree
26: End If
27: Tk ← [(k − 1)Tk−1 + w̄τ ]/k

28: k ← k + 1
29: Enable all the disabled actions
30: Until the probability of finding a MST is greater than S

31:End Algorithm

Fig. 2 Pseudo code of the proposed stochastic MST algorithm

At each stage, the average weight of the selected spanning tree is compared with
the dynamic threshold. All activated learning automata reward their chosen actions,
if the average weight of the selected spanning tree is less than or equal to the dynamic
threshold. They penalize the taken actions otherwise. Since each learning automaton
updates its action probability vector by using a LR−I learning algorithm, the prob-
ability vectors remain unchanged when the learning automata are penalized. At the
end of each stage, the disabled actions must be enabled again and the action prob-
abilities are rescaled as described on variable action learning automata in Sect. 3.1.
The process of constructing the spanning trees and updating the action probabilities
is repeated until the choice probability of the constructed spanning tree is greater than
a certain threshold S which is called stop threshold. The choice probability of a span-
ning tree is defined as the product of the probability of choosing the selected edges.
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The spanning tree which is selected just before the algorithm stops is the spanning
tree with the minimum expected weight among all the spanning trees of the stochastic
graph. Figure 2 shows the pseudocode of the proposed Stochastic MST algorithm.

5 Experimental results

To study the performance of the proposed stochastic minimum spanning tree algo-
rithm, we have conducted several simulation experiments on four well-known sto-
chastic benchmark graphs borrowed from [10, 13]. The running time of algorithm
and the number of samples taken from the stochastic graph (i.e., sampling rate) are
our metrics of interest. To show the outperformance of our proposed algorithm, the
obtained results are compared with those of algorithms proposed by Alexopoulos
and Jacobson [10] and Hutson and Shier [13]. All algorithms are tested on two sparse
graphs called Alex1 and Alex2 as well as two complete graphs with 5 and 6 vertices
called K5 and K6, respectively. Alex1 comprises 8 nodes and 14 edges, and Alex 2
has 9 nodes and 15 edges. The discrete random variables associated with the edge
weight of Alex1 and Alex2 have two and three states in mode A and B, respectively.
The probability distributions of the random weights assigned to the edges of Alex1
and Alex2 given in [41] tend toward the smaller edge weights. That is, higher prob-
abilities are assigned to the edges with smaller weights. Such a biased distribution
is more pragmatic for modeling the network dynamics than a simple uniform distri-
bution. The other two benchmark stochastic graphs on which we tested the studied
algorithms are two complete graphs K5 and K6 given in [13]. All stochastic MST
algorithms were tested on benchmarks graphs K5 and K6 in two different modes and
the obtained results reported in Tables 1 and 2. In the former mode denoted as E1,
the distribution of the edge weight has a small variance, and in the latter mode spec-
ified as E2 the variance of the distribution associated with the edge weight is large.
The random variables assigned to the edge weight of K5 and K6 have four and three
states, respectively.

In learning automata-based algorithms, choosing the (proper) learning rate is the
most challenging issue. From the learning automata theory, it is concluded that in
our proposed algorithm the costs of the learning process increases and the expected
weight of the spanning tree decreases (converges to the optimal one) as the learning
rate decreases. That is, the solution optimality is inversely proportional to the learn-
ing rate. Such a conclusion can be also drawn from the results shown in Table 1. This
property enables us to make a trade-off between the costs (running time and sampling
rate) of the proposed algorithm and the optimality of the obtained solution by a proper
choice of the learning rate. This means that the complexity of the proposed algorithm
can be accommodated to the required optimality of the solution. To estimate the opti-
mality of the solution, we calculate the percentage of the converged runs (PCR) to the
expected weight of the minimum spanning tree for different values of learning rate.
PCR is measured for 100 independent runs. To find an appropriate learning rate, we
compute the running time (RT) of algorithm (in seconds), the total number of sam-
ples taken from the graph edges (i.e., the sampling rate of algorithm) (SR), and the
percentage of the converged runs (PCR) as the learning rate of algorithm varies from
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Table 1 The performance
evaluation of the proposed
algorithm for different learning
rates

Learning rate RT SR PCR

0.05 5.9029 5890 100

0.06 3.7890 4921 100

0.07 2.3400 3764 100

0.08 1.9097 3118 100

0.09 0.9412 2912 100

0.10 1.0350 2101 100

0.15 0.2100 1623 98

0.20 0.1050 1234 97

0.25 0.0970 1031 96

0.30 0.0783 989 93

0.35 0.0611 711 90

0.40 0.0510 590 88

0.45 0.0123 357 85

0.50 0.0098 210 81

Table 2 The average running
time (RT) of different
algorithms (in seconds)

Graph Vertices Edges ALJA HUSH LASMSTA

Alex1-A 8 14 7.412 3.110 1.035

Alex2-A 9 15 15.70 7.231 1.482

Alex1-B 8 14 19.42 19.45 1.982

Alex2-B 9 15 34.78 28.12 2.609

K5-E1 5 10 18.38 8.450 1.749

K5-E2 5 10 30.29 12.98 2.198

K6-E1 6 15 85.21 53.87 5.054

K6-E2 6 15 101.2 69.44 8.290

0.05 to 0.50 for Alex1. The obtained results are shown in Table 1. Since the proposed
algorithm aims at finding the minimum solution, from the obtained results, it can be
observed that the proposed algorithm always converges to the minimal solution with
the minimum number of iterations and minimum number of samples, if the learning
rate is set to 0.1.

As discussed earlier, the simulation results given in Table 1 reveal that the running
time of the proposed algorithm is inversely proportional to the learning rate. The re-
sults also show that the sampling rate and the convergence rate to the optimal solution
increases as the learning rate decreases.

In learning automata-based algorithms, the convergence rate to the optimal solu-
tion is inversely proportional and the convergence speed is directly proportional to the
learning rate. This is due to the fact that a learning automata-based algorithm with a
small enough learning rate is capable of exploring almost all possible solutions, and
so finds the best one. In fact, the costs of a learning automata-based algorithm (e.g.,
computational or communicational costs) increase as the learning rate decreases. As
shown in Table 1, the running time of algorithm (which is the inverse of the conver-
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Table 3 The average sampling
rate (SR) of different algorithms Graph Vertices Edges ALJA HUSH LASMSTA

Alex1-A 8 14 24,117 10,760 2101

Alex2-A 9 15 35,982 23,412 2760

Alex1-B 8 14 76,980 44,902 3208

Alex2-B 9 15 103,492 80,981 3912

K5-E1 5 10 142,981 53,902 3032

K5-E2 5 10 192,091 62,411 4490

K6-E1 6 15 210,376 60,787 6210

K6-E2 6 15 311,442 71,192 6341

gence speed) increases as the learning rate becomes smaller. From Table 1, it can be
seen that the sampling rate is directly proportional to the running time and increases
as the learning rate increases. On the other hand, the optimality of the response (e.g.,
the percentage of the converged runs (PCR)) increases as the learning rate decreases.
The results given in Table 1 also show that PCR increases as the learning rate de-
creases. This is because the number of stages of algorithm increases and so the algo-
rithm has enough time to find the optimal (or very near to optimal) solution.

In all learning automata-based experiments conducted in this paper, the reinforce-
ment scheme under which the action probability vector of the learning automata is
updated is a linear reward-inaction (LR−I ) algorithm with learning rate 0.1. The stop
threshold S is set to 0.95. This means that the proposed algorithm stops if the prob-
ability with which a spanning tree is selected becomes greater than or equal to 0.95.
Each algorithm is tested on all the above mentioned variations of the stochastic bench-
mark graphs Alex1, Alex2, K5, and K6 and the results are summarized in Tables 2
and 3. The results reported in these tables are average over 100 runs. Table 2 shows
the running time of each algorithm (in seconds), and Table 3 represents the total num-
ber of samples need to be taken from the graph edges (i.e., sampling rate of algorithm)
by each algorithm.

From the numerical results reported in Table 2, it can be concluded that graphs K5
and K6 are more time consuming than Alex1 and Alex2. This is due to the fact that
a larger number of samples must be taken from the large state space of the complete
graphs (i.e., K5 and K6) for convergence to the optimal spanning tree even for smaller
vertex-sets. This is also because of the probability distribution function of the random
variable associated with the edge weight.

Table 2 shows the average amount of time consumed by each algorithm to solve
the minimum spanning tree problem for every above mentioned stochastic bench-
mark graphs. Comparing the running time of ALJA, HUSH, and LASMSTA given in
Table 2, it is observed that the time complexity of our proposed algorithm (LASM-
STA) is significantly shorter than that of HUSH and ALJA. This is because of the
fact that, unlike ALJA and HUSH, the proposed algorithm is not based on the con-
struction of the extremely large state space of the stochastic problem. Furthermore,
LASMSTA removes the non-optimal edges (i.e., the edges that are not along the
branches of the optimal spanning tree) from the sampling process for the next stages.
That is, as LASMSTA proceeds the edges or branches which do not belong to the
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optimal spanning tree are pruned. As mentioned earlier, the process of constructing
the problem state space is extremely time consuming for moderate size or even small
stochastic graphs, and becomes an intractable problem in large networks. Therefore,
ALJA and HUSH take too much time for the state space construction phase. In addi-
tion, finding the optimal tree form the huge state space requires a long time. Hence,
it is expected that the running time of HUSH and ALJA will be much longer than
that of LASMSTA. The obtained results given in Table 1 confirm this, showing that
HUSH lags far behind LASMSTA, and ALJA takes a longer time as compared with
HUSH. This is because HUSH considers only a small subset of all the possible re-
alizations of the stochastic problem state space, and avoids generating unnecessary
and repetitive states. The reduced state space shortens the running time of HUSH in
comparison with ALJA. On the other hand, reducing the number of states may cause
the missing of the optimal state in HUSH. As a result, the probability of finding the
optimal solution in HUSH is smaller than that of ALJA. Form Table 1, it can be ob-
served that LASMSTA always converges to the optimal solution (i.e., spanning tree
with the minimum expected weight) for learning rates less than 0.15, while the rate
of the convergence to the optimal solution is at most 90% for HUSH and at most 94%
for ALJA. Putting together the higher convergence rate and shorter running time of
the proposed algorithm reveals its outperformance better.

We also conducted several simulation experiments to measure the average sam-
pling rate (i.e., the average number of samples need to be taken from the stochastic
graph) of ALJA, HUSH, and LASMSTA on different variations of the stochastic
benchmark graphs Alex1, Alex2, K5, and K6. The obtained results are summarized
in Table 3. Comparing the results given in this table, it is obvious that LASMSTA
considerably outperforms the other algorithms in terms of the sampling rate. This
is because the proposed learning automata-based algorithm removes the edges or
branches of the graph which do not belong to the optimal spanning tree from the
sampling process, and so is concentrated on the edges that construct the spanning
tree with the minimum expected weight. Therefore, the proposed algorithm reduces
the rate of unnecessary samples meaningfully. The results also show that the sam-
pling rate of HUSH is very smaller in contrast with ALJA, specifically for the com-
plete benchmark graphs. This is due to the fact that HUSH reduces the size of the
problem state space by avoiding the unnecessary and repetitive states. However, sam-
pling from the very huge state space of the stochastic problem which is constructed
in ALJA and HUSH causes a much higher sampling rate compared to LASMSTA. In
addition to the lower sampling rate, LASMSTA has a higher convergence rate (to the
minimal solution) in comparison with HUSH and ALJA.

6 Conclusion

In this paper, we first proposed a classification of the minimum spanning tree prob-
lems, and then a learning automata-based heuristic algorithm for solving the mini-
mum spanning tree problem in a stochastic graph where the probability distribution
function of the edge weight is unknown. At each stage of the proposed algorithm,
the edges that must be sampled are determined by the learning automata assigned
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to the graph vertices. As the proposed algorithm proceeds, the sampling process is
focused on the edges by which the spanning tree with the minimum expected weight
is constructed. Therefore, the proposed algorithm significantly decreases the rate of
unnecessary samples. To show the performance of the proposed algorithm, we con-
ducted several simulation experiments and compared the obtained results with those
of the best existing methods. The results show the superiority of our proposed algo-
rithm over the others in terms of the convergence rate to the optimal solution, running
time of algorithm, and the sampling rate.
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