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Abstract Mesh of trees (MOT) is well known for its small diameter, high bisection
width, simple decomposability and area universality. On the other hand, OTIS (Op-
tical Transpose Interconnection System) provides an efficient optoelectronic model
for massively parallel processing system. In this paper, we present OTIS-MOT as a
competent candidate for a two-tier architecture that can take the advantages of both
the OTIS and the MOT. We show that an n4− processor OTIS-MOT has diameter
8 logn∗ + 1 (The base of the logarithm is assumed to be 2 throughout this paper.) and
fault diameter 8 logn + 2 under single node failure. We establish other topological
properties such as bisection width, multiple paths and the modularity. We show that
many communication as well as application algorithms can run on this network in
comparable time or even faster than other similar tree-based two-tier architectures.
The communication algorithms including row/column-group broadcast and one-to-
all broadcast are shown to require O(logn) time, multicast in O(n2 logn) time and
the bit-reverse permutation in O(n) time. Many parallel algorithms for various prob-
lems such as finding polynomial zeros, sales forecasting, matrix-vector multiplication
and the DFT computation are proposed to map in O(logn) time. Sorting and prefix
computation are also shown to run in O(logn) time.
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1 Introduction

An interconnection network is the heart of an SIMD model of a massively paral-
lel processing system. Node degree, diameter, bisection width, fault tolerance and
decomposability are the common issues that are generally considered for the evalu-
ation of an interconnection network. However, among all, the diameter is the most
important factor that puts the lower bound on the time complexity for many parallel
algorithms, especially for those which require communication between arbitrary pair
of nodes. MOT (Mesh of Trees) is an efficient interconnection network which is well
known for its small diameter, large bisection width and area universality [22, 30, 36].
In the recent years, MOT has created a lot of interest among researchers. MOT has
been shown as an efficient interconnection network for single-chip parallel processing
by Balkan [3–5]. It has also been studied for FPGA [27] and MFPGA [28] architec-
tures by Marrakchi et al. This network can provide logarithmic time algorithms for
many problems such as matrix-vector multiplication, sorting, packet routing, prefix
computation, minimum spanning trees, convex hull and so on [16, 22, 30]. Algo-
rithms for other computations, including image compression, broadcasting and gos-
siping and Euclidean distance [1, 21, 37], have been efficiently developed on this
architecture.

OTIS (Optical Transpose Interconnection System) [29] is an efficient model of op-
toelectronic parallel computers that has drawn enormous attention. This network (also
known as swapped interconnection network [31]) uses both the electronic and the
optical links. Several parallel algorithms have been developed on different models of
OTIS for various operations such as matrix multiplication [39], polynomial interpola-
tion and root finding [17], prefix computation [19], conflict graph construction [23],
image processing [40], basic operations [41], BPC permutations [34], randomized
routing, selection and sorting [33]. Topological properties of various OTIS-networks
have also been studied by several authors that can be seen in [9, 10, 31, 32, 35, 44].

In this paper, we present OTIS-MOT as efficient two-tier architecture that bridges
between the OTIS and the MOT network. We show that several parallel algorithms
can be efficiently mapped to run in comparable or even faster time than other two-tier
similar architectures. We do not propose here the OTIS-MOT as a new interconnec-
tion network as it has already been referred to in [35, 42]; rather, we further study
to explore many interesting topological properties of the OTIS-MOT. However, our
primary contribution of this paper is to map various communication and application
algorithms on this architecture. To the best of our knowledge, no separate research
papers either on the topological properties or on the parallel algorithms have been
published for OTIS-MOT except for the parallel prefix [26] and the parallel enumer-
ation sorting [24] reported by us.

Many two-tier architectures such as Mesh-Connected Trees [12], Multi-Mesh of
Trees [18] and OMULT [38] have been proposed that are built around binary trees.
However, processor interconnectivity following the transpose rule of OTIS (discussed
later) can make the OTIS-MOT more significant than other tree-based networks in
terms of topological properties and algorithm mapping. We show that the diame-
ter of an n4-processor OTIS-MOT is 8 logn + 1 and the single-node fault diameter

is 8 logn + 2. The total number of links is n2(5n+1)(n−1)
2 and the bisection width
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is n4

4 . The decomposition of the network is shown as a result of removal of n2(n2−1)
2

links. We develop various communication as well as application algorithms on OTIS-
MOT as follows. The communication algorithms such as row/column-group broad-
cast, one-to-all broadcast are all shown to run in O(logn) time. Other communi-
cation algorithms including multicast and the bit-reverse permutation are mapped
in O(n2 logn) and O(n) time respectively. Many application algorithms including
summation, polynomial root finding, matrix-vector multiplication, forecasting, pre-
fix computation and the sorting are shown to run in O(logn) time.

The paper is organized as follows. The related works are discussed in Sect. 2. The
graph topology of the OTIS-MOT is described in Sect. 3. The topological properties
are discussed in Sect. 4. Communication algorithms and the application algorithms
are presented in Sects. 5 and 6 respectively. Section 7 concludes our paper.

2 Related works

A great deal of work has been carried out on OTIS architecture with respect to topo-
logical properties and algorithm mapping. OTIS architecture was initially proposed
by Marsden et al. [29]. Later Zane et al. [44] showed how the OTIS connections can
be exploited to develop a large-scale parallel processing system with a given network
topology using a small copies of similar topology. Accordingly, they presented the
design of OTIS-Mesh, OTIS-Hypercube and OTIS-expander in their paper. Khaled
Day et al. [9] studied topological properties of an arbitrary OTIS network and devel-
oped one-to-one and optimal broadcasting algorithms. Behrooz Parhami [31] studied
OTIS-networks which he called swapped interconnection networks and developed
routing, Hamiltonicity and other topological properties. A number of parallel algo-
rithms have been reported on OTIS network. However, we report only the works
related to our research in this paper. Wang and Sahni [41] presented various basic
operations on OTIS-Mesh of n4 processors. Their summation algorithm was shown
to require 8(n − 1) electronics moves + 1 OTIS move on the SIMD and 4n elec-
tronic moves + 1 OTIS move on the MIMD model of the OTIS-Mesh, respectively.
Their broadcast and prefix sum algorithms were shown to map in 4(n − 1) electronic
moves + 1 OTIS move and 7(n − 1) electronic moves + 2 OTIS moves, respec-
tively. The authors also proposed various matrix multiplications on the same archi-
tecture, i.e., n4-processor OTIS-Mesh that can be found in [39]. Their matrix-vector
multiplication requires 4(n − 1) electronic moves + 1 OTIS move using GRM and
8(n − 1) electronic moves + 2 OTIS moves using GSM mapping scheme. Their
matrix-matrix multiplication requires (8n2 + O(n)) electronic moves + (n2 + 1)

OTIS moves using GRM and (4n2 + O(n)) electronic moves + O(n) OTIS moves
using GSM mapping. Parallel prefix on optical platform has been reported by sev-
eral researchers. The authors in [41] developed algorithms for n-point parallel prefix
computation with (8n1/4 − 1) electronic moves and 2 OTIS moves for both SIMD
and MIMD models of an n-processor OTIS-Mesh. In the same paper, they also mod-
ified their algorithm to run in (7n1/4 − 1) electronic moves and 2 OTIS moves. Jana
and Sinha [19] reported an improved algorithm with (5.5n1/4 + 3) electronic moves
and 2 OTIS moves on the same model. Sinha and Bandyopadhyay [38] proposed a
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parallel prefix algorithm on optical multi-trees (OMULT) with O(logn) electronic
moves + 5 optical moves for n2 data points using (2n3 − n2) processors. Parallel
sorting algorithms have been also developed on OTIS platform. The sorting algo-
rithm [41] on OTIS-Mesh is based on Leighton’s column sort [22] and was shown to
run in (22n1/2 + o(n1/2)) electronic moves + O(n3/8) OTIS moves for SIMD model
and (11n1/2 + o(n1/2)) electronic moves + O(n3/8) OTIS moves for MIMD model.
Rajasekaran and Sahni [33] developed randomized sorting algorithm on OTIS-Mesh
with (8n1/2 + o(n1/2)) steps. Parallel algorithms for polynomial root finding can be
found in [17]. The algorithms are based on Durand–Kerner method and implemented
on an OTIS-Mesh. For n-degree polynomial, the first version was shown to require
6(n1/2 − 1) electronic moves + 2 OTIS moves per iteration using n2 processors.
However, with the assumption that data points are already stored in the processors,
the same algorithm requires 2(n1/2 − 1) electronic moves + 1 OTIS move. The sec-
ond version requires 4(n1/2 − 1) electronic moves + 1 OTIS move per iteration.
Assuming that the initial data points are already stored, this algorithm was shown to
require 2(n1/2 − 1) electronic moves + 1 OTIS move.

3 Graph topology of OTIS-MOT

An n × n OTIS-MOT is built around n2 groups, each group (also called block) being
an n × n MOT. Therefore, there are in total n4 processors laid in a two-dimensional
lattice as shown in Fig. 1. The processors within each group are connected by usual
electronic links whereas the processors of different groups are interconnected by opti-
cal links. Optical links have larger bandwidth than electronic links and transfer times
including latency along them are different. The links are shown by solid and the
dashed lines respectively in Fig. 1. Let the group placed in the ith row and the j th
column be denoted by G(i, j). Then the processor placed in the kth row and the lth
column within the group G(i, j) is denoted by P(i, j, k, l) for 1 ≤ i, j, k, l ≤ n.

Definition 1 (Intra-block links) These are electronic links that connect the processors
within a group following MOT topology described as follows.

(1) The processors in each row are connected to form a binary tree (called row-tree)
rooted at P(i, j, k,1), i.e., ∀i, j , 1 ≤ i, j ≤ n, P(i, j, k, l) is directly connected to
the processors P(i, j, k,2l) and P(i, j, k,2l + 1), 1 ≤ k, l ≤ n, if they exist.

(2) Similarly, the processors in each column are also connected to form a binary tree
(column-tree) rooted at P(i, j,1, l), i.e., ∀i, j , 1 ≤ i, j ≤ n, P(i, j, k, l) is directly
connected to the processors P(i, j,2k, l) and P(i, j,2k + 1, l), 1 ≤ k, l ≤ n, if
they exist.

As an example, the intra-block connectivity for n = 5 is shown in Fig. 2 in which
two indices are used to show the binary tree connectivity for the row-tree as well as
the column-tree.

Definition 2 (Inter-block links) These are the optical links by which the processors
of a group are connected to the processors of other groups following the transpose
rule, i.e., the processor P(i, j, k, l) is directly connected to the processor P(k, l, i, j).
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Fig. 1 Graph topology of 3 × 3 OTIS-MOT. Each group is labeled with two indices shown above the
group. Similarly, processor nodes within each group are labeled with two indices shown below the nodes.
Optical links and the electronic links are the dashed and solid lines respectively. For cleanness, the optical
links only for the block G(1,1) are shown in this figure

Fig. 2 Interconnectivity of
5 × 5 mesh of trees. For
cleanness, the optical links only
for the block G(1,1) are shown
in this figure
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Definition 3 (Transit node) This is a node v which has an OTIS link with a node
lying inside a group other than v’s group. Note that a node which has the same index
for both the processor and the group fails to be a transit node. Therefore, every block
has a total of n2 − 1 transit nodes.

We assume that all the links are bidirectional. For the rest of the paper, we use
group and block interchangeably unless stated otherwise.

4 Topological properties

4.1 Diameter

Theorem 1 The diameter of an n × n OTIS-MOT network is 8 logn + 1.

Proof Let P(α1, β1, i1, j1) and P(α2, β2, i2, j2) be any two nodes denoting the source
and the destination nodes. Then we term G(α1, β1) and G(α2, β2) as the source and
the destination block respectively. Note that any block in the OTIS-MOT is directly
connected to all other blocks through a single optical link. Therefore, if α1 �= β1
and α2 �= β2, we can reach the destination block G(α2, β2) from the source block
G(α1, β1) just by traversing only one inter-block link (optical). Now each block is
an n × n MOT having diameter 4 logn. Therefore, we can reach from the source
node P(α1, β1, i1, j1) to the transit node P(α1, β1, α2, β2) in 4 logn time. Then from
P(α1, β1, α2, β2), we can reach P(α2, β2, α1, β1) through a single optical link and
eventually reach the destination node P(α2, β2, i2, j2) by traversing another path of
length 4 logn. Thus, it requires traversing a total path of length 8 logn (electronic) +
1 (OTIS) from the source node to the destination node. �

4.2 Fault diameter

Let any source–destination pair be denoted by 〈P(i1, j1, k1, l1),P (i2, j2, k2, l2)〉 and
for the brevity assume i1 �= i2 and j1 �= j2. Then we have the following results.

Lemma 1 If the faulty processor lies on the same row (column)-tree to which
the source processor P(i1, j1, k1, l1) belongs, then the diameter remains same, i.e.,
8 logn + 1.

Proof As the faulty processor lies on the row (column)-tree, we can bypass it by tra-
versing the shortest path between the source and the destination through the column
(row)-tree of the source processor as follows.

P(i1, j1, k1, l1)
Step 1−→ P(i1, j1, i2, j2)

Step 2−→ P(i2, j2, i1, j1)
Step 3−→ P(i2, j2, k2, l2)

where P(i1, j1, i2, j2) is the transit node, and the steps are:

Step 1. Traverse the column (row)-tree followed by the row (column)-tree in 4 logn

electronic moves.
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Step 2. Perform one OTIS move.
Step 3. Traverse the row (column)-tree followed by the column (row)-tree in 4 logn

electronic moves.

Therefore it requires traversing the path of length 8 logn (electronic) + 1
(OTIS). �

Lemma 2 If the transit node P(i1, j1, i2, j2) (defined in the proof of Lemma 1) is
faulty, then the diameter is increased by at most one OTIS link, i.e., the fault diameter
in this case is 8 logn + 2.

Proof As the transit node P(i1, j1, i2, j2) is faulty, we can reach the destination node
from the source node P(i1, j1, k1, l1) via other block to bypass faulty transit node.
The successive steps are as follows.

Step 1. Perform one OTIS move to reach the node P(k1, l1, i1, j1).
Step 2. Traverse the column (row)-tree followed by the row (column)-tree in 4 logn

electronic moves to reach a transit node P(k1, l1, i2, j2) of the block other
than that of the source block.

Step 3. Perform another OTIS move to reach the node P(i2, j2, k1, l1).
Step 4. Finally, traverse the row (column)-tree followed by the column (row)-tree in

4 logn electronic moves to reach the destination node P(i2, j2, k2, l2).

Thus it requires traversing a path of length 8 logn (electronic) + 2 (OTIS). �

Theorem 2 The diameter of the OTIS-MOT in the presence of a single node failure
is 8 logn + 2.

Proof Directly follows from Lemma 1 and Lemma 2. �

4.3 Number of links

Lemma 3 An n × n OTIS-MOT has 2n3(n − 1) intra-block (electronic) links.

Proof Each block of the OTIS-MOT is an n × n MOT with binary tree connection in
every row and every column having n − 1 links for each. There are n such row-trees
and n column-trees in each block; therefore the total number of links is 2n(n − 1) in
each block. However, there are n2 blocks in the OTIS-MOT. Therefore, total number
of intra-block links is 2n3(n − 1). �

Lemma 4 An n × n OTIS-MOT has n2(n2−1)
2 inter-block links.

Proof Each block of the OTIS-MOT has n2 − 1 OTIS links that connect other n2 − 1
blocks. There are n2 such blocks. Therefore, the total number of inter-block links is
n2(n2−1)

2 . �

Theorem 3 There are in total n2(5n+1)(n−1)
2 links in an n × n OTIS-MOT network.
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Fig. 3 Multiple paths from the source P(1,1,1,2) (colored blue) to destination P(3,3,3,2) (colored
violet). Paths through a single OTIS link are shown by green color and the paths via an intermediate block
(through two OTIS links) are shown by pink color

Proof Follows from Lemma 3 and Lemma 4. �

4.4 Multiple paths

Multiple paths between two arbitrary nodes are important to provide fault tolerance
of an interconnection network. To count the multiple paths for the OTIS-MOT, we
proceed as follows (however, we restrict counting these paths going through at most
two OTIS links). Let us consider the source node P(1,1,1,2) and the destination
node P(3,3,3,2) as depicted by blue and violet colors in Fig. 3. Let P(1,1,3,3)

and P(1,1,2,3) be the two transit nodes as shown by red and yellow colors in this
figure. Given a source node, we can reach to any transit node within the same block
by traversing two possible shortest paths. As an example, two such shortest paths
from the source node P(1,1,1,2) to the transit node P(1,1,3,3) are shown by green
colors in Fig. 3. From the transit node P(1,1,3,3) we can reach to the destination
block through a single OTIS link, whereas from P(1,1,2,3) the destination block is
reachable via some other block going through two OTIS links as shown by pink color.

Now, within a block, there exist two shortest paths between any two nodes. There-
fore, there exist four possible paths between any two source and the destination nodes
going through a single OTIS link. In the other case, there exist six possible paths go-
ing through two OTIS links via other block. As every block contains n2 − 1 transit
nodes among which one is directly reachable to the destination block and the others
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can reach using two OTIS links, there are 6(n2 − 2) + 4 possible paths between any
arbitrary pair of source and destination nodes. This leads the following theorem.

Theorem 4 There exist 6(n2 − 2) + 4 possible paths between any two source and
destination nodes going through at most two OTIS links.

4.5 Bisection width

The size of the data set divided by bisection width puts the lower bound on the com-
plexity of a parallel algorithm. Therefore, large bisection width is a desirable property
of an interconnection network. This is especially significant for those computations
which require large amounts of data movement. To compute the bisection width of
the OTIS-MOT, we observe that there are n2 − 1 inter-block links fanning out from
each block of the network. Half of such links are actually connected to half of the

total n2 blocks of the OTIS-MOT. Therefore, we require removing n4

4 optical links to
bisect the whole network, assuming n is even. In other words, the bisection width of
the n×n OTIS MOT is O(n4). This high bisection width along with the low diameter
can make the OTIS-MOT very attractive to manipulate a massive volume of data for
diameter-based algorithms.

4.6 Modularity

Modularity is an important property of an interconnection network that can be ex-
ploited by hardware as well as software implementation. For example, the decom-
position of OTIS-MOT into identical modules (MOTs) can be useful for its VLSI
layout. Moreover, modularity supports concurrency of identical local computations
using MOT interconnectivity to integrate them for obtaining the solution of a given
problem. For the decomposition, we require to remove all the inter-block links from

all the modules (groups). As an n × n OTIS-MOT network has a total of n2(n2−1)
2

inter-block links (refer to Lemma 4), removal of all these links decomposes the OTIS-
MOT into n2 copies of MOT of size n × n.

5 Communication algorithms

In this section, we present some communication algorithms, namely group-row
broadcast, group-column broadcast, one-to-all, multicast and the bit-reverse permu-
tation. These algorithms can be useful to solve various problems including matrix
multiplication, prefix computation, polynomial root finding, Lagrange interpolation,
enumeration sort and DFT computation discussed in the next section. We show that
OTIS-MOT is very efficient in performing such operations. To analyze our proposed
algorithm, we count the number of data movements on electronic channels as elec-
tronic moves and that on optical channels as OTIS moves separately.
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Fig. 4 Contents of A-Registers
after row-group broadcast

5.1 Row-group broadcast (X,A)

This operation stores the data elements xi , 1 ≤ i ≤ n2, in the ith row of the two-
dimensional layout of the OTIS-MOT as shown in Fig. 4 in which data input is indi-
cated by arrows. The steps are as follows.

Step 1. ∀i, j , 1 ≤ i, j ≤ n, do in parallel
A(i,1, j,1) ← x(i−1)n+j /* Data input */

Step 2. ∀i, j , 1 ≤ i, j ≤ n, broadcast the contents of A(i,1, j,1) (stored in Step 1)
row-wise using row-tree link. xi ’s are now stored in all the processors of the
first column blocks of the OTIS-MOT.

Step 3. Perform OTIS move on the contents stored in Step 2. xi ’s are now stored in
all the processors of the first column of each block of the OTIS-MOT.

Step 4. ∀i, j , 1 ≤ i, j ≤ n, broadcast the contents of the A register (stored in Step 3)
row-wise within each block.

Step 5. Perform OTIS move on the data received in Step 4. The data elements are
now stored in the pattern shown in Fig. 4.

Step 6. Stop.

Time complexity: Each of the Steps 2 and 4 requires logn electronic moves. Steps 3
and 5, each requires one OTIS move. Hence the above row-group broadcast takes
2 logn electronic moves + 2 OTIS moves.

5.2 Column-group broadcast (X,B)

This operation stores xj ,1 ≤ j ≤ n2 in the B registers of the j th column of the two-
dimensional layout of the OTIS-MOT as shown in Fig. 5 and can be similarly devel-
oped as follows.

Step 1. ∀i, j , 1 ≤ i, j ≤ n, do in parallel
B(1, i,1, j) ← x(i−1)n+j /∗ Data input */
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Fig. 5 Contents of A-Registers
after column-group broadcast

Step 2. ∀i, j , 1 ≤ i, j ≤ n, broadcast the contents of B(1, i,1, j) (stored in Step 1)
column-wise using column-tree link.

Step 3. Perform OTIS move on the contents stored in Step 2.
Step 4. ∀i, j , 1 ≤ i, j ≤ n, broadcast the contents of the B register (stored in Step 3)

column-wise within each block.
Step 5. Perform OTIS move on the data received in Step 4.
Step 6. Stop.

Time complexity: The above column-group broadcast also requires 2 logn electronic
moves and + 2 OTIS moves as Steps 2 and 4 take 2 logn electronic moves and Steps 3
and 5 take 2 OTIS moves.

5.3 Bit-reverse permutation

Let £[0,1, . . . ,m − 1] be a linear array where m = 2k for some integer k > 0. If we
represent each index i of this array by k-bit binary form as i = bk−1bk−2 · · ·b2b1b0,
where i = ∑k−1

j=0 bj 2j , then the bit reverse is defined by BR(bk−1bk−2 · · ·b2b1b0) =
b0b1b2 · · ·bk−2bk−1. In other words, BR(i) = ∑k−1

j=0 bk−j−12j . As an example, the
bit reverse of BR(19) = (11001)2 = 25 since 5-bit binary form of decimal 19 is
(10011)2. Then the bit-reversal permutation can be defined as an operation which
swaps data elements whose indices in binary representations are bit reverse of each
other [6].

We assume that n4 data points d0, d1, . . . , dn4−1 are initially stored in the OTIS-
MOT such that processor P(i, j, k, l) contains the data dn3i+n2j+nk+l .

Algorithm Bit_Reversal:

Step 1. Perform local bit-reversal on each row-tree.
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Step 2. Perform local data exchange using transpose operation on each block.
Step 3. Perform local bit-reversal on each row-tree.
Step 4. Perform one OTIS move.
Step 5. Perform local bit-reversal on each row-tree.
Step 6. Perform local data exchange by transpose operation on each block.
Step 7. Perform local bit-reversal on each row-tree.
Step 8. Stop.

Theorem 5 The Algorithm Bit_Reversal correctly permutes the n4 data points in
bit-reversed order.

Proof Let the indices i, j, k, l of the processor P(i, j, k, l) be represented in bit
forms as ip−1ip−2 . . . i1i0, jp−1jp−2 . . . j1j0, kp−1kp−2 . . . k1k0 and lp−1lp−2 . . . l1l0
respectively, where p = logn and n is a power of 2. Then the following data move-
ments are taking place on the successive steps.

P(ip−1ip−2 . . . i1i0, jp−1jp−2 . . . j1j0, kp−1kp−2 . . . k1k0, lp−1lp−2 . . . l1l0)
Step 1−→

P(ip−1ip−2 . . . i1i0, jp−1jp−2 . . . j1j0, kp−1kp−2 . . . k1k0, l0l1 . . . lp−2lp−1)
Step 2−→

P(ip−1ip−2 . . . i1i0, jp−1jp−2 . . . j1j0, l0l1 . . . lp−2lp−1, kp−1kp−2 . . . k1k0)
Step 3−→

P(ip−1ip−2 . . . i1i0, jp−1jp−2 . . . j1j0, l0l1 . . . lp−2lp−1, k0k1 . . . kp−2kp−1)
Step 4−→

P(l0l1 . . . lp−2lp−1, k0k1 . . . kp−2kp−1, ip−1ip−2 . . . i1i0, jp−1jp−2 . . . j1j0)
Step 5−→

P(l0l1 . . . lp−2lp−1, k0k1 . . . kp−2kp−1, ip−1ip−2 . . . i1i0, j0j1 . . . jp−2jp−1)
Step 6−→

P(l0l1 . . . lp−2lp−1, k0k1 . . . kp−2kp−1, j0j1 . . . jp−2jp−1, ip−1ip−2 . . . i1i0)
Step 7−→

P(l0l1 . . . lp−2lp−1, k0k1 . . . kp−2kp−1, j0j1 . . . jp−2jp−1, i0i1 . . . ip−2ip−1).

Hence the proof. �

Time complexity: Each of the Steps 1, 3, 5 and 7 requires O(n) electronic moves;
Steps 2 and 6 each takes O(logn) electronic moves using O(n) buffer and Step 4
takes a single OTIS move. Therefore the above algorithm can be implemented in
O(n) electronic moves + one OTIS move.

5.4 One-to-all broadcast

This operation can be developed similarly as described in [41]. The steps are as fol-
lows.

Let P(i, j, k, l) hold the message to broadcast.

Step 1. Perform local broadcast within the block G(i, j) using row-tree and column-
tree links.
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Step 2. Perform one OTIS move so as to send a copy of the message to the processor
P(i, j,1,1) of each block.

Step 3. Perform local broadcast of the copy of the message on each block.
Step 4. Stop.

Time Complexity: Both the Steps 1 and 3 take 2 logn electronic moves and Step 2
takes one OTIS move. Hence one-to-all broadcast requires 4 logn electronic moves
+ one OTIS move.

5.5 Multicast

We consider here the multicast in which each processor holds one message and sends
it to a group of other processors. At the end of the procedure, each processor receives
n2 elements. The multicast can be implemented by repeated invocation of the window
broadcast [41] as follows. Each call of the window broadcast makes a copy of a
specific block (window) to all other blocks of the OTIS-MOT. This is accomplished
by (1) one OTIS move on the contents of the block, (2) one local broadcast on each
block of the data elements received in Step 1, and (3) another OTIS move on each
processor. Now a window broadcast takes 2 logn electronic moves + 2 OTIS moves
and there are n2 blocks in an n×n OTIS-MOT. Therefore, multicast can be performed
using window broadcast of n2 blocks one at a time. This requires a total of 2n2 logn

electronic moves + 2n2 OTIS moves.

6 Application algorithms

6.1 Summation

The summation is the representative of many other basic operations such as aver-
age, minimum, maximum, logical AND, logical OR, which are very useful in many
applications. We assume that all the processors of the OTIS-MOT are initialized
with n4 data elements, a single element per processor. They can be summed up as
follows. Perform the local summation on each group in parallel using row-tree fol-
lowed by column-tree communications and store the partial results in the processors
P(i, j,1,1), 1 ≤ i, j ≤ n. This takes 2 logn electronic moves. Next, bring all the par-
tial sums to the first block G(1,1) by a single OTIS move and then perform another
local summation on the first block in 2 logn electronic moves to generate the final
sum at the processor P(1,1,1,1). Therefore, summing n4 elements is done in 4 logn

electronic moves + one OTIS move.

Remark 1 The above procedure can be easily extended for summing more than n4

data elements as follows. For the simplicity and without any loss of generality, we
assume that kn4 data elements are to be added where k is an integer greater than 1.
Let us first partition the whole data set into k subsets, each having n4 elements. Given
the first data set, each group G(i, j) forms its local sum and stores it in the register
A(i, j,1,1) for 1 ≤ i, j ≤ n. The rest of the data sets are then successively fed. Each
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time a data set is fed to OTIS-MOT, it forms the local sum on each group and updates
the contents of A(i, j,1,1), 1 ≤ i, j ≤ n, by adding the current sum. This is continued
until the last data set is fed. Next, perform the OTIS move on A(i, j,1,1) to bring
them in the first block and add them locally to emerge the final sum from A(1,1,1,1).
However, this requires O(k logn) electronic moves + one OTIS move.

6.2 Polynomial root finding

Durand–Kerner scheme [11] is an efficient method for finding polynomial roots,
which has been studied for parallelization due to the following advantages. The
method has inherent parallelism that can be suitably exploited by an SIMD machine.
Moreover, it has local convergency with quadratic rate. Various parallel algorithms
have been reported for Durnad–Kerner scheme, which can be found in [7, 13, 14, 17].

Let PN(x) = a0x
N + a1x

N−1 + a2x
N−2 + · · · + aN−1x + aN be an N -degree

polynomial, where the coefficients ai,1 ≤ i ≤ N , are assumed real. Then the iterative
scheme for Durand–Kerner method [13] is as follows:

x
(k+1)
i = xk

i − PN(xk
i )

∏N
j=1
j �=i

(xk
i − xk

j )
, i = 1,2, . . . ,N (6.1)

where xk
i denotes the kth approximation of the root. For the sake of simplicity, we

denote PN(xk
i ) by P k

i . Note that
∏N

j=1
j �=i

(xk
i − xk

j ),1 ≤ i ≤ N , is the principal compu-

tation of the Durand–Kerner method, which is the main target of parallelizing it. The
idea is as follows. We first distribute initial data values row-wise and column-wise in
the whole OTIS-MOT network following the row-group broadcast and the column-
group broadcast discussed in Sect. 4. Each processor now subtracts these data values
to create the factor of the form (xi −xj ). These factors are then used to form the local
product row-wise in each group. The partial results (local products) are then brought
by OTIS move to go another round of local products, which in turn forms the final
computation. We now describe the algorithm stepwise as follows assuming N = n2.

Parallel Durand–Kerner Algorithm:

Step 1. Call row-group broadcast (X,A).
The contents of the A registers after this step are shown in Fig. 3.

Step 2. Call column-group broadcast (X,B).
The contents of the B registers after this step are shown in Fig. 5.

Step 3. ∀i, j , 1 ≤ i, j ≤ n, do in parallel
If A(i, j,∗ ,∗ ) �= B(i, j,∗ ,∗ ) then

A(i, j,∗ ,∗ ) ← A(i, j,∗ ,∗ ) − B(i, j,∗ ,∗ )

Else A(i, j,∗ ,∗ ) ← 1
Step 4. Form the local product with the contents of the A registers along the

same row of each group using row-tree links and store it in A(i, j, k,1),
1 ≤ i, j, k ≤ n.

Step 5. Perform an OTIS move on the contents of the A registers stored in Step 4.
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Step 6. Form the local product with the contents of the A registers along the same
row of each group G(∗,1) using row-tree links and store it in A(i,1, k,1),
1 ≤ i, k ≤ n.

Step 7. Perform an OTIS move on the contents of the A registers stored in Step 6.
Step 8. ∀i, k, 1 ≤ i, k ≤ n, do in parallel

Input yn(k−1)+i to D(i,1, k,1)

Input xn(k−1)+i to C(i,1, k,1)

Step 9. ∀i, k, 1 ≤ i, k ≤ n, do in parallel

A(i,1, k, l) ← C(i,1, k,1) − D(i,1, k,1)

A(i,1, k,1)

Step 10. Stop.

Time Complexity: Each of the Steps 1 and 2 requires 2 logn electronic moves +
two OTIS moves. Each of the Steps 4 and 6 takes logn electronic moves. Steps 5
and 7 require one OTIS move for each and the rest of the steps require constant time.
Therefore, the above algorithm requires 6 logn electronic moves + 6 OTIS moves in
total.

Remark 2 Given a set of tabulated values y1, y2, . . . , yN of a function y = f (x) at
some discrete points x1, x2, . . . , xN , the N -point Lagrange formula for polynomial
interpolation is as follows [15].

f (x) = π(x)

N∑

i=1

yi

(x − xi)π ′(xi)

where π(x) = ∏N
i=1(x − xi),π

′(xi) = ∏N
j=1,j �=i (xi − xj ), i = 1,2, . . . ,N .

We note that the computation for Lagrange interpolation is similar to that of the
Durand–Kerner method. Therefore the Lagrange interpolation can be similarly im-
plemented on OTIS-MOT also in O(logn) time.

6.3 Matrix multiplication

Let us first consider the implementation of the following matrix-vector multiplica-
tion:

ci1 =
N∑

j=1

aij bj , 1 ≤ i ≤ N (6.2)

Assume that the matrix (A)N×N where N = n2 is already stored in the A registers in
the row major order over the whole OTIS-MOT network. The vector (b)N×1 can be
stored in the B registers using column-group broadcast (b, B) as described in Sect. 4.
The initialization of the matrix as well as the vector is shown in Fig. 6 for N = 4.

Now, each processor forms the product with the contents of their corresponding
A and B registers in parallel. The products are then summed up to generate the final
resultant vector (C)N×1 by the following steps.
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Fig. 6 Data initialization for
matrix-vector multiplication

(1) Sum up the products row-wise (toward the first processor of each block as shown
by an arrow in Fig. 6) for each group in logn electronic moves.

(2) Perform one OTIS move to bring all the partial sums to the appropriate group
corresponding to ci1.

(3) Again, sum up the partial results row-wise like in the Step 1 to generate the
final ci1s.

(4) Perform another OTIS move to store all the ci1s in their appropriate processor.
Therefore, the whole computation can be done in 2 logn electronic moves + 2
OTIS moves.

The above matrix-vector multiplication can be repeatedly invoked to implement
the matrix-matrix multiplication (C)N×N = (A)N×N × (B)N×N as follows. Like in
the matrix-vector multiplication, we also assume here that the elements of A ma-
trix are already stored in the A registers in the row major order. We now succes-
sively feed the columns of the B matrix using column-group broadcast and invoke
the matrix-vector multiplication. Given the j th column, it produces cij for 1 ≤ i ≤ n

successively. As this is the same task to be repeated n times, it can be completed in
O(logn) + n − 1 time in a pipelined fashion with a period of O(logn).

6.4 Forecasting

Forecasting means prediction of a future event from the knowledge of a set of past
events. In the time series models, given an observed time series, say d1, d2, . . . , dm,
where di represents the data value at the ith time period, 1 ≤ i ≤ m, the prob-
lem of forecasting is to estimate dm+τ , where τ is a small positive integer which
is usually 1. Among various time series models, the weighted moving average is a
widely accepted technique for small-term forecasting in which the plot of the data
exhibits a cyclical pattern around a constant trend. In this method, a set of posi-
tive weight vector, say w1,w2, . . . ,wn, is given for the n most recent observations
dt , dt−1, . . . , dt−n+1. Then the weighted moving average WM(t) is calculated by the
following formula [43] and used as the forecast value at t + τ time:

WM(t) = wndt + wn−1dt−1 + · · · + w1dt−n+1

wn + wn−1 + · · · + w1
(6.3)
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This means that if d̂t+τ denotes the forecast value at t + τ , then WM(t) = d̂t+τ . Note
that given ni weights, there can be m − ni + 1 weighted moving averages by sliding
the window of size ni over a set of m data values. Each time a window size is chosen,
the minimum square error (MSE) is calculated using the following formula:

MSE =
m∑

ni+τ

[dt − d̂t ]2

(m − ni − τ + 1)
(6.4)

The value of ni which produces the least value of MSE is chosen for the forecast
value d̂t+τ . Thus if one assumes τ = 1, m − n + 1 weighted moving averages are
calculated for a single iteration as follows:

WM(n) = w1d1 + w2d2 + · · · + wndn

w1 + w2 + · · · + wn

WM(n + 1) = w1d2 + w2d3 + · · · + wndn+1

w1 + w2 + · · · + wn

WM(n + 2) = w1d3 + w2d4 + · · · + wndn+2

w1 + w2 + · · · + wn

...

WM(m) = w1dm−n+1 + w2dm−n+2 + · · · + wndm

w1 + w2 + · · · + wn

It is shown in [20] that the above calculation can be represented by

WM(n + i) = γ (n + i)

λ(n + i)
for 0 ≤ i ≤ m − n (6.5)

where the denominator λ(n + i) = w1 + w2 + · · · + wm remains same for all the
values of i and the numerator γ (n + i)can be expressed by the following matrix-
vector multiplication:

⎛

⎜
⎜
⎜
⎜
⎜
⎝

γ (n)

γ (n + 1)

γ (n + 2)
...

γ (m)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

d1 d2 · · · dn

d2 d3 · · · dn+1
d3 d4 · · · dn+2
...

...
...

...

dm−n+1 dm−n+2 · · · dm

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

w1
w2
w3
...

wn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(6.6)

Therefore the parallel implementation of the above m − n + 1 weighted mov-
ing averages can be accomplished in O(logn) time similarly to the matrix-vector
multiplication (described in Sect. 6.3), together with the parallel computation of
w1 + w2 + · · · + wn.

6.5 DFT computation

It is shown in [2] that the DFT computation is another form of matrix-vector multipli-
cation and thus can be similarly implemented in 2 logn electronic moves + 2 OTIS
moves.
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6.6 Prefix computation

The prefix computation can be used as a tool to solve many problems like job schedul-
ing, knapsack, loop optimization, evaluation of polynomials, solving system of linear
equations, polynomial interpolation and many others. Given a set of N data values,
d1, d2, . . . , dN , and an associative binary operation o, the problem of prefix is to com-
pute Si = d1od2od3o . . . odi,1 ≤ i ≤ N . We have shown that the prefix computation
on OTIS-MOT for N = n4 data elements requires 13 logn + O(1) electronic moves
+ 2 OTIS moves using n4 processors. For details of the algorithm, the reader is re-
ferred to [26].

6.7 Sorting

We have shown in [24] that the enumeration sort for N = n2 data elements can be
implemented in 4.5 logN electronic moves + 5 OTIS moves. This is further improved
to be 4 logN electronic moves + 3 OTIS moves [25].

7 Conclusion

In this paper, we have presented OTIS-MOT as an efficient interconnection net-
work. We have derived various topological properties such as fault diameter, bisec-
tion width, multiple paths and modularity. We have shown that various communica-
tion algorithms such as row/column-group broadcast and one-to-all broadcast run in
O(logn) time. The multicast and the bit-reverse permutation have been proposed in
O(n2 logn) and O(n) time, respectively. Parallel algorithms for finding polynomial
zeros, forecasting, matrix-vector multiplication and DFT computation have been pre-
sented in O(logn) time. Sorting and prefix computation have been shown to run
in O(logn) time, too. The comparison of the performances of OTIS-MOT with other
similar tree-based two-tier architectures, namely MMT and OMULT, has been shown
in Table 1. It is obvious to note that OTIS-MOT is far better than MMT and OMULT
with respect to topological properties, communication algorithms and parallel algo-
rithms for various problems. Obviously, it is also better than other two-tier architec-
tures, namely OTIS-Mesh [41] and Multi-mesh [8], each having O(n1/2) diameter.
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