
J Supercomput (2012) 60:301–310
DOI 10.1007/s11227-010-0466-3

A threshold-based dynamic data replication strategy

Mohammad Bsoul · Ahmad Al-Khasawneh ·
Yousef Kilani · Ibrahim Obeidat

Published online: 13 August 2010
© Springer Science+Business Media, LLC 2010

Abstract Data replication is the creation and maintenance of multiple copies of the
same data. Replication is used in Data Grid to enhance data availability and fault
tolerance. One of the main objectives of replication strategies is reducing response
time and bandwidth consumption. In this paper, a dynamic replication strategy that
is based on Fast Spread but superior to it in terms of total response time and total
bandwidth consumption is proposed. This is achieved by storing only the important
replicas on the storage of the node. The main idea of this strategy is using a threshold
to determine if the requested replica needs to be copied to the node. The simulation
results show that the proposed strategy achieved better performance compared with
Fast Spread with Least Recently Used (LRU), and Fast Spread with Least Frequently
Used (LFU).

Keywords Data grid · Replication strategy · Fast spread · Least recently used ·
Least frequently used · Simulation

1 Introduction

A Data Grid consists of a collection of geographically distributed computer and stor-
age resources located in different places, and enables users to share data and other
resources [1, 6, 11].

M. Bsoul (�)
Department of Computer Science and Applications, The Hashemite University, P.O. Box 150459,
Zarqa 13115, Jordan
e-mail: mbsoul@hu.edu.jo

A. Al-Khasawneh · Y. Kilani · I. Obeidat
Department of Computer Information System, The Hashemite University, P.O. Box 150459,
Zarqa 13115, Jordan

mailto:mbsoul@hu.edu.jo


302 M. Bsoul et al.

In the Data Grid, a user located somewhere may need to run an intensive job on
a large data set. This user may choose to get the data from where it exists to the
local computing resource and run the job there. On the other hand, it may be better to
transfer the job to where the data exists, or both the job specification and the data may
be sent to a third location that will perform the computation and return the results to
the user.

When a user requests a file, large amount of bandwidth could be spent to send
the file from the server to the client. Moreover, the delay involved could be high.
Thus, it could be beneficial to create replicas of the same file at different locations.
The main goals of using replication are to reduce access delay and bandwidth con-
sumption [13]. There are two kinds of replication: static and dynamic replication.
Dynamic replication [2, 5, 7, 12, 14, 15, 17, 18] has an advantage over static repli-
cation [4] because it can adapt to changes in user behavior. Some of the well-known
dynamic replication strategies that have already been implemented are No Replica-
tion or Caching, Best Client, Cascading Replication, Plain Caching, Caching plus
Cascading Replication, and Fast Spread [3, 8, 10].

Fast Spread is one of the best replication strategies especially for random request
patterns [13]. In this strategy, which is our main concern in this paper, a replica of
the file is stored at each node along its path to the user. If the storage of one of these
nodes is full, a group of replicas (that contains one or more replicas) needs to be
deleted in order to store the new replica. The problem is if this group of existing
replicas is more important than the new replica. Even in this case, this group must be
deleted. The aim of this paper is to propose a new strategy that is based on Fast Spread
but better than it. This is achieved by using a dynamic threshold that determines if
the replica should be stored at each node along its path to the user. If the decision
taken based on the threshold value is storing the new replica, then the new replica is
considered more important (achieved higher number of requests by its node) than the
group of replaced replicas. This new strategy is named Modified Fast Spread (MFS)
strategy.

The rest of this paper is organized as follows. Section 2 gives a description of the
employed network structure. Section 3 presents the new proposed strategy. Section 4
describes the metrics for measuring the strategies’ performance. Section 5 explains
how the simulation is configured. Section 6 discusses the simulation results. Section 7
concludes the paper and poses future directions.

2 Network structure

The employed network structure consists of a Server node and a number of Client
nodes that interact with each other as appears in Fig. 1. The Server node is the node
with the main storage which contains all the data that belongs to the Data Grid. On the
other hand, Client nodes are the nodes that create the requests. Each of these nodes
includes a storage that is relatively small if compared with the Server node’s storage
and cannot hold all the requested replicas. Thus, some of the requested replicas are
brought from the other nodes.

In this structure, there is a shortest path from each Client node to the Server node.
When a Client node requests a replica, it first searches its own storage. If it is stored



A threshold-based dynamic data replication strategy 303

Fig. 1 Network structure

there, it just uses it. Otherwise, it keeps looking for it on every node on the shortest
path. When it finds it, it brings it backward to itself so it can use it.

3 MFS strategy

As mentioned in Sect. 1, Fast Spread strategy stores a replica of the file at each node
along its path to the user. The problem is if the nodes’ storage is full and there is no
space for storing the replica. In this case, a group of replicas needs to be removed
from the storage in order to store the new replica. But, what if that group of replicas
that needs to be removed is more important than the new replica? Fast Spread strategy
does not take this into account and replaces that group with the new replica even if it
is more important than the new replica.

On the other hand, the MFS takes this into consideration and replaces that group
only if it is less important than the new replica. For a given node, the replica with the
smallest number of requests (NOR) is the least important replica, while the replica
with the largest NOR is the most important one. If two or more replicas have the same
NOR, the replica with the smallest size is considered the most important one. This is
because it occupies less space.

In this strategy, each node stores the NOR of each replica that resides on it. The
node’s NOR for a given replica is increased by one each time it is requested by it.

Pseudocode 1 shows the pseudocode of this strategy. For definitions of variables
used in the pseudocode, refer to Table 1.



304 M. Bsoul et al.

Pseudocode 1 MFS strategy

When a node requests an existing replica, it just uses it. However, if the replica
does not exist on that node, it starts searching for it on every node on the shortest path
from RN + 1 to the main server, where RN + 1 is the requesting node’s successive
node on the shortest path.

When the requested replica is found on one of the nodes on the shortest path, it
is brought backward to the requesting node. In the original Fast Spread replication
strategy, that replica is copied to every node it visits when it is brought backward to
the requesting node. In contrast to Fast Spread, MFS does not necessarily copy that
replica to every node it visits when it is brought backward. It is copied to the visited
node in two cases. The first case is if the visited node has sufficient free storage space
to store the requested replica. The second case is if the node’s free storage space is less
than the size of the requested replica, and this replica was found more important than
a group of existing replicas that their sizes are greater than or equal to the size still
needed to make the node’s storage able to store it. In this case, that group of replicas
is replaced with this replica. The requested replica is considered more important than
that group of replicas if its partial number of requests (PNOR) is greater than the
NOR of that group. PNOR equals NOR in case the checked node’s free storage space
(CNFSS) is equal to zero. PNOR calculation is shown in Pseudocode 1 line 11.



A threshold-based dynamic data replication strategy 305

Table 1 Definitions of pseudocode variables of MFS strategy

Variable Definition

RR Requested replica.

RN Requesting node.

CNFSS Checked node’s free storage space.

NOR Number of requests of RR.

PNOR Partial number of requests of RR.

SOS The variable that contains the sum of sizes of a group of replicas on the checked node.

NSPList The list that contains the nodes on the shortest path from RN to the main server.

ReplicaList The list that contains the existing replicas on the checked node sorted in increasing order
based on their NOR. If two or more replicas have the same NOR, these replicas are
sorted in decreasing order based on their sizes. If they also have the same size, they are
sorted randomly.

SizeList The list that contains the sizes of the corresponding replicas in ReplicaList.

NORList The list that contains how many times each replica in ReplicaList has been requested by
the checked node.

Table 2 Metrics of strategies

M1 = TRT × C1 TRT = Total response time, and C1 is a constant.

M2 = TBC × C2 TBC = Total bandwidth consumption, and C2 is a constant.

4 Comparison metrics

In the current work, there are n nodes N1, N2, . . . ,Nn, m groups G1, G2, . . . ,Gm

and w replicas R1, R2, . . . ,Rw . Each group contains a set of replicas.
In order to determine the best performing strategy, a suitable set of metrics need to

be defined. Two metrics are used to measure the performance of different strategies:
total response time and total bandwidth consumption. Both metrics need to be mini-
mized. Response time is the elapsed time between sending a request for a replica and
receiving the requested replica. If the requested replica exists on the requesting node,
the response time is considered zero. The sum of all response times for the duration of
the simulation is calculated. Bandwidth consumption is the bandwidth consumed for
data transfers that happen when a node requests a replica that does not exist on it. The
sum of all bandwidth consumptions for the duration of the simulation is calculated.

Table 2 shows the metrics used to measure the performance of strategies.

5 Simulation setup

In this paper, an event-driven simulator written in Java is used for evaluating three
different replication strategies which are Fast Spread with LRU [9], Fast Spread with
LFU [16], and our proposed strategy named MFS. Fast Spread with LRU discards the
least recently used replicas first, while Fast Spread with LFU discards the replicas



306 M. Bsoul et al.

Table 3 Simulation parameters

Parameter Value

Number of nodes 20

Number of replicas 1000

Length of each replica Between 100 and 1000 Megabit

Number of generated requests 100,000

The inter-arrival times of nodes’ requests Between 0 and 99

Number of groups 10

Storage space for every client node 50,000 Megabit

Storage space for server node So large so it can hold all the replicas on the Data Grid

Number of replicas within each group 100

Fig. 2 Total response time
achieved by three replication
strategies under three different
scenarios

that are used the least first. The performance of these strategies is measured under
three different scenarios. In the first scenario, the probability of requesting any of the
replicas is the same. In the second and third scenarios, there is a group named the
most wanted group (MWG) that contains 10% of the total number of replicas. Each
node has its own MWG. The probability of making a request for replicas in MWG is
higher than the probability of making a request for the rest of replicas. The probability
of requesting a replica in MWG is 30% in the second scenario, while it is 50% in the
third scenario. The inter-arrival times of nodes’ requests and replicas’ lengths follow
uniform distribution. In each simulation, all the nodes are set to employ one of the
strategies under a specific scenario.

Table 3 shows the simulation parameters and their values.

6 Simulation results and discussion

In this section, the performance of various strategies is measured under the three
different scenarios mentioned in the previous section. Figures 2 and 3 show the total



A threshold-based dynamic data replication strategy 307

Fig. 3 Total bandwidth
consumption achieved by three
replication strategies under three
different scenarios.

response time and total bandwidth consumption, respectively, achieved by various
replication strategies under different scenarios.

6.1 Scenario one

In this experiment, the performance of three replication strategies is evaluated under
the assumption that the probability of requesting any of the replicas is the same. From
scenario one of Figs. 2 and 3 it can be seen that the MFS strategy is the superior one.
This is because, when the node’s storage is full, the MFS strategy only replaces the
old group of replicas with the new one if it is found that it is more important than that
group in terms of NOR. In the other two strategies, when the storage is full, a group
of existing replicas must be replaced with the new replica even if it is less important
than the replaced group of replicas in terms of NOR. Thus, any replica in the replaced
group might be requested in the future and in this case the node must bring it from
another node which takes time and consumes the valuable bandwidth.

6.2 Scenario two

It is assumed in this experiment that the probability of making a request for replicas
in MWG is 30%, while the probability of making a request for the rest of replicas
is 70%. From scenario two of Figs. 2 and 3 it appears that the performance of all
strategies is better than their performance in the previous scenario. The reason is that
most of the replicas kept in each node’s storage belong to MWG, and these replicas
are requested more frequently than the other replicas in other groups. As a result,
the probability of finding the requested replicas locally is relatively high if compared
with the previous scenario. It also appears that the improvement in the performance
of Fast Spread with LFU and MFS is larger than the improvement in the performance
of Fast Spread with LRU. This is because of using NOR in Fast Spread with LFU
and MFS to determine the replicas that will be deleted first. Therefore, the nodes
keep most of the replicas in those MWG that usually have the largest NOR. MFS
also achieved the best performance in this scenario.



308 M. Bsoul et al.

Table 4 MFS percentage
improvement in total response
time

Compared with Fast Spread with LRU

Scenario 1 16.86%

Scenario 2 18.64%

Scenario 3 27.46%

Compared with Fast Spread with LFU

Scenario 1 16.81%

Scenario 2 07.58%

Scenario 3 02.44%

Table 5 MFS percentage
improvement in total bandwidth
consumption

Compared with Fast Spread with LRU

Scenario 1 15.16%

Scenario 2 17.90%

Scenario 3 26.54%

Compared with Fast Spread with LFU

Scenario 1 14.98%

Scenario 2 07.30%

Scenario 3 02.19%

6.3 Scenario three

This experiment differs from the previous experiment in the value of probability. In
this experiment, the probability of making a request for replicas in MWG is 50%,
while the probability of making a request for the rest of replicas is 50%. Scenario
three of Figs. 2 and 3 shows that all the strategies achieved the best performance in
this scenario. This is because of increasing the probability of requesting a replica in
MWG from 30 to 50%. Hence, the possibility of serving the requests locally is higher
in this scenario. MFS keeps it superiority in this scenario, too.

It is clearly seen in the above figures that MFS is the best strategy under all scenar-
ios in terms of total response time and total bandwidth consumption. The reason is
that when the node’s storage is full and a request to non-existing replica is made, the
MFS strategy only replaces a group of existing replicas with this replica if it is more
important (has larger NOR) than that group. In case of replacement, the possibility of
requesting this replica is higher than the possibility of requesting the replicas in the
replaced group, thus reducing the total response time and total bandwidth consump-
tion. When the requested replica is found on the node’s storage, the response time
and bandwidth consumption for this request are both zero.

Table 4 shows the MFS percentage improvement in total response time, while
Table 5 shows the MFS percentage improvement in total bandwidth consumption.



A threshold-based dynamic data replication strategy 309

7 Conclusion

In this paper, a new replication strategy named MFS has been presented. The per-
formance of this strategy has been compared with Fast Spread with LRU and Fast
Spread with LFU by event-driven simulations with different scenarios. The evalua-
tion shows that the MFS strategy is the best strategy in all scenarios in terms of total
response time and total bandwidth consumption.

In future work, there are two main areas of consideration: considering more factors
to determine the importance of different replicas, and undertaking further experimen-
tal investigations.

References

1. Cameron DG, Millar AP, Nicholson C, Carvajal-Schiaffino R, Stockinger K, Zini F (2004) Analysis of
scheduling and replica optimisation strategies for data grids using OptorSim. J Grid Comput 2(1):57–
69

2. Chang RS, Chang HP (2008) A dynamic data replication strategy using access-weights in data grids.
J Supercomput 45(3):277–295. http://dx.doi.org/10.1007/s11227-008-0172-6

3. Chang RS, Chang HP, Wang YT (2008) A dynamic weighted data replication strategy in data
grids. In: AICCSA ’08: proceedings of the 2008 IEEE/ACS international conference on computer
systems and applications. IEEE Comput Soc. Washington, pp 414–421. http://dx.doi.org/10.1109/
AICCSA.2008.4493567

4. Cibej U, Slivnik B, Robic B (2005) The complexity of static data replication in data grids. Parallel
Comput 31(8):900–912. http://dx.doi.org/10.1016/j.parco.2005.04.010

5. Dong X, Li J, Wu Z, Zhang D, Xu J (2008) On dynamic replication strategies in data service grids. In:
ISORC ’08: proceedings of the 2008 11th IEEE symposium on object oriented real-time distributed
computing. IEEE Comp Soc. Washington, pp 155–161. http://dx.doi.org/10.1109/ISORC.2008.66

6. Figueira S, Trieu T (2008) Data replication and the storage capacity of data grids, Springer. Berlin,
Heidelberg, pp 567–575. http://dx.doi.org/10.1007/978-3-540-92859-1_50

7. Hong L, Xue-dong Q, Xia L, Zhen L, Wen-xing W (2008) Fast cascading replication strat-
egy for data grid. In: CSSE ’08: proceedings of the 2008 international conference on computer
science and software engineering. IEEE Comp Soc. Washington, pp 186–189. http://dx.doi.org/
10.1109/CSSE.2008.624

8. Horri A, Sepahvand R, Dastghaibyfard G (2008) A hierarchical scheduling and replication strategy.
Int J Comput Sci Netw Secur 8(8) 30–35

9. O’Neil J, O’Neil P, Weikum G (1993) The LRU-K page replacement algorithm for database disk
buffering. In: Proceedings of the 1993 ACM SIGMOD international conference on management of
data. ACM, New York, pp 297–306

10. Ranganathan K, Foster I (2001) Design and evaluation of dynamic replication strategies for a high-
performance data grid. In: International conference on computing in high energy and nuclear physics,
Beijing, China

11. Lamehamedi H, Szymanski B, Shentu Z, Deelman E (2002) Data replication strategies in grid en-
vironments. In: Proceedings of the fifth international conference on algorithms and architectures for
parallel processing, pp 378–383

12. Park S, Kim J, Ko Y, Yoon W (2003) Dynamic data grid replication strategy based on Internet hierar-
chy. In: Second international workshop on grid and cooperative computing, pp 838–846

13. Ranganathan K, Foster I (2001) Identifying dynamic replication strategies for a high-performance data
grid. In: GRID ’01: proceedings of the second international workshop on grid computing. Springer,
London, pp 75–86

14. Rasool Q, Li J, Oreku GS, Munir EU (2008) Fair-share replication in data grid. Inf Technol J 7(5):776–
782

15. Tang M, Lee BS, Yeo CK, Tang X (2005) Dynamic replication algorithms for the multi-tier data grid.
Future Gener Comput Syst 21(5):775–790. doi: 10.1016/j.future.2004.08.001

http://dx.doi.org/10.1007/s11227-008-0172-6
http://dx.doi.org/10.1109/AICCSA.2008.4493567
http://dx.doi.org/10.1109/AICCSA.2008.4493567
http://dx.doi.org/10.1016/j.parco.2005.04.010
http://dx.doi.org/10.1109/ISORC.2008.66
http://dx.doi.org/10.1007/978-3-540-92859-1_50
http://dx.doi.org/10.1109/CSSE.2008.624
http://dx.doi.org/10.1109/CSSE.2008.624
http://10.1016/j.future.2004.08.001


310 M. Bsoul et al.

16. Prischepa V (2004) An efficient web caching algorithm based on LFU-K replacement policy. In:
Proceedings of the spring young researcher’s colloquium on database and information systems. IEEE,
New York, pp 23–26

17. Wu JJ, Lin YF, Liu P (2008) Optimal replica placement in hierarchical data grids with locality assur-
ance. J Parallel Distrib Comput 68(12):1517–1538. http://dx.doi.org/10.1016/j.jpdc.2008.08.002

18. Zhao W, Xu X, Xiong N, Wang Z (2008) A weight-based dynamic replica replacement strategy in
data grids. In: APSCC ’08: proceedings of the 2008 ieee asia-pacific services computing conference.
IEEE Comput Soc. Washington, pp 1544–1549. http://dx.doi.org/10.1109/APSCC.2008.41

http://dx.doi.org/10.1016/j.jpdc.2008.08.002
http://dx.doi.org/10.1109/APSCC.2008.41

	A threshold-based dynamic data replication strategy
	Abstract
	Introduction
	Network structure
	MFS strategy
	Comparison metrics
	Simulation setup
	Simulation results and discussion
	Scenario one
	Scenario two
	Scenario three

	Conclusion
	References


