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Abstract Interprocess communication (IPC) is a well-known technique commonly
used by programs running on homogeneous distributed systems. However, it can-
not be used readily and efficiently by programs running on heterogeneous distributed
systems. This is because it must be given a uniform interface either by a set of middle-
ware or more efficiently properly ported to the kernel of all varieties of open source
and closed source proprietary operating systems running on heterogeneous nodes of
distributed systems. This is particularly problematic to achieve when the kernel code
of closed source operating systems are inaccessible to third parties. We propose an
alternative nonproprietary approach to enable the use of IPC in heterogeneous distrib-
uted systems by wrapping IPC calls from the kernel of closed source operating sys-
tems, and converting them into equivalent IPC calls that are efficiently implemented
inside the kernel code of open source operating systems. To show the superiority of
our approach, we developed a wrapper for converting MS-Windows IPC calls into
equivalent Linux IPC calls and benched our approach on a hybrid computer cluster
running both types of operating systems.
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1 Introduction

Computer clusters are known as a type of distributed system comprising of homo-
geneous computers networked in a restricted area. This has not stopped researchers
though to offer varieties of clusters for different requirements such as for high avail-
ability (HA) and high performance computing (HPC) on heterogeneous platforms
networked in wider areas [1]. Some researchers have further studied and proposed hy-
brid clusters comprising of as many heterogeneous clusters networked in a restricted
or wider areas, and used different techniques to enable communication between the
disparate and heterogeneous members of a cluster or members of different clusters.
A well-known technique used is the distributed interprocess communication (IPC)
technique that has been implemented at different levels, namely at the user level as a
set of library routines, at the operating system interface level as a transparent middle-
ware, or at the operating system kernel level transparent to users and applications.

User level implementation of distributed IPC is the least efficient and easiest to
do, though hardest to be used by programmers. Kernel level implementation is the
most efficient and easiest to be used by programmers but it has the hardest imple-
mentation. Middleware level implementations are somewhat in between these two
implementation levels considering their efficiencies and their ease of use [2, 3].

Kernel level implementations of distributed IPC become challenging particularly
when heterogeneous platforms run under a combination of open source and closed
source operating systems. Though the implementation of a distributed IPC mecha-
nism within the kernel of an open source operating system is in itself very difficult
and challenging, but a similar implementation inside the kernel of a closed source
operating system may be impractical by many. So one may raise the question of why
bother at all to do such an implementation inside the kernel of a closed source oper-
ating system in the first place. The answer is that most clusters use commercial off
the shelf (COTS) operating systems whose closed source code run on homogeneous
platforms and have no problem as far as they run independently. Problem arises when
several clusters whose underlying platforms and operating systems are heterogeneous
try to provide a single system image to users and applications running on such hybrid
clusters.

Two solutions to the problem of implementing a distributed IPC mechanism on
heterogeneous hybrid clusters can be envisaged. The first solution is that the vendors
of closed source operating systems agree on a common protocol for communicat-
ing processes on heterogeneous platforms and (closed and/or open source) operating
systems. An alternative solution is proposed in this paper that does not need such an
agreement and can thus be provided by any third party, though it may sacrifice some
efficiency and implicate lower efficiency compared to the first solution.

We propose a platform independent distributed IPC mechanism in support of pro-
gramming heterogeneous distributed systems in general and specially hybrid hetero-
geneous clusters. This is achieved by wrapping IPC calls from the kernel of closed
source operating systems and then converting them into equivalent IPC calls that are
efficiently implemented inside the kernel code of open source operating systems. To
be more specific, we have developed a wrapper for converting IPC calls in Microsoft
Windows to equivalent IPC calls in Linux and benched our proposed mechanism on



550 M. Sharifi et al.

a hybrid computer cluster comprising of a Windows cluster and a Linux cluster based
on DIPC 2006 [2]. The wrapper provides two, one for each operating system that
enables developers to develop programs on the hybrid cluster using our proposed
wrapper programming model.

2 Motivation and background

Computer clusters have long since been introduced and deployed to solve scientific
problems with reasonable cost effective performance. The need for affordable higher
performance has been risen ever since too with the requirements and wishes of more
scientists to develop and solve more complex models of their concerned problems.
Avionics is an exemplar field whose scientists have been active in extending their
developed avionics models with more and more affective measurable parameters,
requiring higher performance. There is thus no end to the requirement for growing
higher performance of computer clusters in the foreseeable future.

On the other hand, HPC clusters are mostly comprised of commercially off the
shelf (COTS) computers [4] that run under commercially off the shelf network oper-
ating systems, ranging from closed source ones like MS-Windows and Unix to more
commonly deployed open source ones like Linux. MS-Windows based clusters are
more recent and fewer than Unix and Linux based clusters, on which most of HPC
applications have been mapped. In fact, most HPC applications have long been devel-
oped according to the Unix and Linux programming model in scientific programming
languages like Fortran. Linux based clusters have become the de facto clusters now
in scientific fields due to the open source nature of the Linux operating system.

Given the need for higher performance clusters, would it be possible to cluster
different types of HPC cluster computers running MS-Windows and Linux? Though
logically feasible, this is not readily available. This is because of differences in the
programming models of MS-Windows and Linux, especially in their communica-
tion models, that makes HPC applications developed under these two models not
interoperable. The availability of so many MS-Windows based commercially off the
shelf computers makes the provision of a reasonable solution to interoperability of
MS-Windows and Linux clusters very tempting for providing even higher expected
performances. This is exactly what has initiated our current research reported in this
paper.

One of the challenges of developing an HPC cluster out of ordinary computers is
the implementation level of the system software for the establishment and the man-
agement of the cluster. Library level implementation levels such as in MPI yield a
more stable standard for HPC application developers, but lead to lower performance
compared to implementation levels closer to the kernel of the cluster underlying net-
work operating systems such as in the DIPC2006 solution. The latter approach re-
lieves HPC application developers from many intricacies of cluster programming.
Furthermore, the very mechanisms that are embedded in the kernel of the operating
system in support of cluster computing are also available to all network programs
running on that operating system. This is in fact one of the main strengths of this
level of implementation that enables the interoperability of network and cluster pro-
grams with comparatively less changes to the source code of programs. That is why
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the proposed wrapper mechanism is enabled to map the base RPC mechanism of MS-
Windows to equivalent Linux embedded DIPC2006 system V mechanisms, making
MS-Windows and Linux clusters interoperable.

It is important to note that we have been faced with two operating systems in
the development of our proposed wrapper mechanism that have been designed only
in support of network programs and no specific support for cluster computing. We
neither wanted to modify these operating systems nor wanted to impose changes to
HPC applications already developed base on differing communication mechanisms
of these two operating systems. Instead, the proposed wrapper mechanism tries to
enable the transparent communication of Linux clusters in search of acquiring higher
performance using MS-Windows clusters with these clusters, without changing Linux
cluster programs or the MS-Windows RPC communication mechanism.

The wrapper approach can be thought of as an Inter HPC Cluster Resource Dis-
covery mechanism wherein a Linux cluster as a header cluster machine may utilize
as many Linux or MS-Windows clusters at their disposal to run Linux cluster ap-
plication programs with higher cumulative performance without entangling these
programs with how IPC is handled by MS-Windows clusters. We have success-
fully used the proposed wrapper approach in distributed discovery of resources in
the integrated peer to peer distributed system framework whose principal features
have been presented in [5]. Using this mechanism, all four main types of resources
(processes, input/output, memory, and file) are discovered using Unix System V
interprocess communication mechanisms even when resources are owned by MS-
Windows peers.

The rest of paper is organized as follows. Section 2 presents some notable related
works. Section 3 describes our solution by presenting the architecture of the wrapper
and how the primitives in Linux and MS-Windows operating systems are mapped.
Section 4 compares the wrapper mechanism with other distributed mechanisms using
the time taken to finish remote primitive calls as the benchmark criteria. Section 5
presents a comparative study of the proposed wrapper with respect to DIPC2006 and
highlights the strengths of the wrapper solution. Section 6 concludes the paper.

3 Related work

Wrapper is a software pattern to leverage the capabilities of a component, an object
or even a library without involving the internal complexities of the used component
[6]. We present and use a wrapper in this paper to implement, the compatibility be-
tween IPC mechanisms in two different operating systems on the one hand and, the
simplicity of the programming model for developers on the other hand.

Wrapper can be implemented at different levels, namely the kernel, the application
or the user level. A kernel-level implementation needs modification to kernel that is
not our concern here because we cannot change the kernel of closed source operating
systems. An application-level implementation depends on the types and requirements
of specific applications leading to a solution that will not be reusable. A user-level
implementation of wrapper, which is adopted by us in this paper, provides the trans-
parency and at the same time can be tailored to any known or unpredictable require-
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ments. Having said the chosen level of implementation of wrapper, let us continue
with a brief review of related works.

Condor [7], IPC layer [8], and LAM [9] are amongst the works that are imple-
mented at the user level, without modifying the operating system kernels. This is
why this category of distributed IPC mechanisms can be used with commercially
available closed source operating systems. These systems translate system calls be-
tween the application and the kernel and there is a limitation on porting if there are
no equivalent system calls in the two communicating operating systems.

Condor is a particular type of heterogeneous distributed environment that supports
high throughput computing. Performance is not the main objective of Condor; it tries
to perform long lasting computations by assigning each job to an idle system. It uses
a process migration mechanism that is implemented outside the kernel creating low
transparency and performance but achieving high level of portability [10]. Condor
is not capable to create new processes if multi-programming is needed. It does not
support inter-process communication either. Transparency is virtualized by shadow
processes, one for each process. System calls are performed by Condor on behalf of
remote systems [11, 12].

IPC layer has the required mappings to provide a uniform interface to application
processes. Therefore, each different operating system in a hybrid cluster needs a dif-
ferent interface implementation. The IPC layer communicates with the process on
one hand and the underlying interprocess communication mechanisms of the system
on the other hand. Because the IPC layer interposes between the application layer
and the system layer, system performance is low.

LAM is capable of changing a dedicated computing cluster to a large parallel
computer for solving computationally extensive problems. It uses an MPI (Message
Passing Interface) based message passing mechanism (Burger, 2006). It is in fact an
MPI based programming environment for heterogeneous networked systems. LAM
provides a single daemon as a nano-kernel that is hand-threaded for each system;
daemons are linked together by UDP [9]. MPI based programs comprise of a set of
autonomous processes running their own code in MIMD or SIMD styles. Processes
are executed in their own address spaces but can share memory. Communications be-
tween processes are point to point and are established by MPI-API. Although MPI
is known as a standard for inter-process communication on distributed memory sys-
tems but it does not support platform interoperability and the number of processes is
fixed implying that no process is created or removed [13]. Windows Compute Cluster
Server uses MS-MPI (i.e., Microsoft’s implementation of MPI) in support of commu-
nication between nodes [14].

Although Condor, IPC layer, and LAM provide the means for interprocess com-
munication in their perceived heterogeneous distributed environments, they put re-
strictions on facilities like multiprogramming and dynamic process creation. They
are not concerned with high performance either, which is in contrast to our concern
for high performance in our proposed wrapper approach.

The second category includes solutions whose distributed IPC mechanisms are im-
plemented at the socket level. These implementations include TIPC [15] and Strid-
ing IPC based on TCP/IP [16]. This category uses sockets popularized by Berke-
ley Software Distribution (BSD). They use the communication capabilities of their
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underlying protocols. Therefore, they provide a protocol-independent interface such
that an application that is using an implemented form of socket, just like Winsock,
can communicate with other applications using different socket implementations on
other systems. This is very helpful in implementing communication between hetero-
geneous operation systems. However, different byte sequences of different operating
systems should be converted into a uniform format.

TIPC (Transparent Inter-Process Communication) protocol allows developers to
design distributed applications capable of communicating with each other regardless
of their locations on a clustered network. Various versions of TIPC for different op-
erating systems like Linux®, Solaris, VxWorks®, and MS-Windows® are available.
Applications that are written in C/C++ language and use TIPC can communicate
with each other by a set of addresses defined in AF_TIPC through sockets [15]. In
addition to inter-process communication, it enables kernel-to-process and kernel-to-
kernel communication. The TIPC protocol is interposed between the application layer
and the transport layer like Ethernet, TCP, or ATM. It focuses on transparency rather
than performance [17].

Striding platforms of inter-process communication with TCP/IP protocol is an ex-
perimental solution for power supply control in particular locations [13]. The im-
plemented system follows two objectives: (1) using QNX6.20 to provide real-time
features, and (2) to provide better user interface to WIN2000 for setting control pa-
rameters. WIN2000 is a center for transferring and gathering data to or from con-
trol devices. Communication between two operating systems is based on the socket
(TCP/IP) mechanism. Because of differences in operating systems, variable-host
byte sequences have to be converted into uniform-network byte sequences for data
and control transfer. Although the system implements a central server and multiple
clients, it can be adjusted to become a hybrid cluster. It is designed to transfer data
toward process rather than requesting remote processing on a remote data [16].

The solutions in the above second category have portability problems like byte
sequence conversion for different operating systems and tight bounding to socket
addresses to provide location transparency. In contrast, our wrapper approach tries to
remove such like restrictions by using a remote procedure call mechanism for process
communication and a socket mechanism for communication between processes.

There are also some component-based implementations of distributed IPC mecha-
nism that provide a higher level of abstraction compared to other types of implemen-
tations. An example of this third category is [18].

Microsoft has developed a communication foundation called WCF (Windows
Communication Foundation) for establishing secure and reliable transacted Web ser-
vices with the objective of reducing the complexity of applications by unifying En-
terprise Services, Messaging, .NET Remoting, Web Services, and WSE. It uses and
combines the features and abilities of Microsoft .NET Remoting, Web Services, Dis-
tributed Systems, and Web Services Enhancements [19].

Microsoft has also DCOM for distributed programming. DCOM is an extension
to COM that provides distributed features using the Object Remote Procedure Call
(ORPC) mechanism. However, it does not support multiplatform requirements and
only works well on Microsoft platforms. In contrast, multiplatform distributed com-
ponents like XPCOM do not have this DCOM limitation and it is supported by Win-
dows NT, MacOS, and Linux. The COM limitation still exists wherein the interface of
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one component should be passed to another one on a remote server upon connection
[18].

The above third category of distributed IPC mechanisms have lower communi-
cation complexities and are thus simpler to use because the run-time environment
of components is responsible for handling the communications. However, legacy
applications must be rewritten from scratch to use the features of components and
component-based communication mechanisms. This is quite contrary to the objective
of our wrapper approach that requires the least or even no modification to applica-
tions.

There is another type of distributed IPC mechanism implementation for wider area
networks like World Wide Web that is based on standard document request format [8].
This type of implementation uses an abstraction level at the URL level that makes it
suitable for communication between Web servers. An applet is a sample of code mi-
gration in a distributed environment that uses the Internet features like Web servers
and the HTTP request format to obtain its required documents. The instructions of
an applet are executed within an applet viewer in isolation; disallowing the applet
to communicate with other servers except the server that applet comes from. This
security policy limits the functionality of applets in distributed environments. This
restriction can be obviated by encoding RPC calls in a standard document request
format like URL by using HTTP, and sending the URL to an RPC process. The RPC
process can then parse the URL to find the requested services. Finally, the results can
be sent back to the applet by placing them in a document [8]. Additional handshak-
ing is needed to send the services to an applet by RPC process before forming the
requests by the applet. As a result, the establishment of an IPC in loosely-coupled
heterogeneous distributed environments is simple for developers but has low system
performance because of extra efforts needed to prepare the communication based on
the HTTP protocol. Our proposed wrapper approach uses the same mechanism but at
lower levels of operating system architecture as much as possible to achieve higher
performance.

4 The proposed wrapper

In this paper, we propose a wrapper approach to solve the problem of communica-
tions between processes that run on heterogeneous platforms and operating systems.
We have implemented our wrapper for a cluster running under two operating sys-
tems, namely, MS-Windows that is a closed-source operating system and Linux that
is an open-source operating system. The wrapper provides a library for both operat-
ing systems and enables program developers to design programs using our proposed
wrapper programming model. The Linux members of cluster form a kernel-level high
performance cluster [20]. The wrapper somehow ports processes on these different
operating systems as required by detecting the interprocess communication between
processes, and processes need not be rewritten for communicating with processes
running on a different operating system.

It is almost for the first time that such a wrapper library is included in a high per-
formance computing (HPC) hybrid cluster whose members run on both open-source
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and closed-source operating systems. The distributed IPC mechanism is implemented
at the kernel level of Linux using DIPC2006 [20] that provides a high performance
cluster, while the wrapper gives a simple to use cluster wherein processes running on
MS-Windows can transparently communicate with processes running under Linux
without knowing the differences in the communication protocols.

4.1 Wrapper structure

Our proposed wrapper has two modules, namely, the MS-Windows Wrapper Man-
ager (WWP) and the Linux Wrapper Manager (LWP). We refer to both of them as
Wrapper Manager (WM) unless it is stated otherwise explicitly. Figures 1 and 2 show
the block diagrams of WM modules for MS-Windows and Linux, respectively. WM
consists of three major modules, Converter, Transferring, and Executer. In addition, it
has an Identification Manager that is responsible for tracking the address of the server
to receive the clients’ requests. The Converter module takes an MS-Windows RPC-
based source and converts it to an IPC System V message-based one or vice versa
(we refer to RPC and message for MS-Windows RPC and IPC System V message,
respectively, unless it is stated otherwise explicitly). The Transfer module receives the
converted program and sends it to the Executer module for running. Communication
between the two WMs is done by the Transferring module.

Suppose a distributed program is implemented on a MS-Windows based network
and uses the RPC mechanism for communication between the programs, namely
clients and servers. In normal conditions, a client sends its requests to a server. In
this scenario, we need some criteria to trigger the wrapper module in abnormal con-
ditions and redirect client’s requests to the same server but on another system. The
module that detects the criteria is called the Performance Detector (PD). If PD de-
tects any deficiency that is completely stated in the configuration of PD, it triggers
the WM module, which is described shortly afterward.

WM tries to port the server program into Linux by establishing a communication
between two WMs on two operating systems. The communication is based on socket
mechanism and it is defined as a function for transferring a module. On the other
part, the destination WM on the destination operating system, i.e., LWM, receives
the converted server program. Because the distributed program on the Linux-based
network has been written using the message mechanism, WWM must convert the
program so that it can run on the Linux system based on the message mechanism.
LWM loads and runs the message-based daemon, produces results, and sends back
the results to the requesting system. Results are taken from the message daemon by
WWM on behalf of the RPC client. Finally, WWM converts the results to RPC-based
understandable data for the RPC client.

4.2 Wrapper Dynamics

In this section, we describe how a request is serviced by an RPC client on MS-
Windows step by step as it is shown in Figs. 1 and 2. Figure 3 shows the whole
scenario of our wrapper at a glance. As it was mentioned earlier, the Performance
Detector (in Fig. 3) watches the status of the system based on some defined criteria,
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Fig. 1 The MS-Windows wrapper manager module

e.g., by measuring the CPU load and the available memory space, and enforces the
cluster load balancing rules based on these criteria. If conditions do not meet, it trig-
gers an event in MS-Windows (step 1 in Fig. 1) or sets a flag in Linux to inform the
server (or daemon) program to initialize an appropriate WM, else regular communi-
cation between programs proceeds (Figs. 2 and 3). WM then reads the flag or catches
the event through the listener and retrieves the required information to choose the
server process for porting; it also estimates the amount of required resources to run
the program on the destination system.

In the second step (Fig. 1), the Converter module reads the server process and
converts it to a message-based program using the conversion algorithm (presented
in Sect. 4.3). Step 3 (Fig. 1) shows the converted server source from RPC to mes-
sage. In the next step, step 4 in Fig. 1, the Transferring module takes the converted
program and establishes a communication link to one of the Linux-based systems on
the network using a socket mechanism if such a link has not been established before.
The Transferring module takes the ID of the destination system from its ID manager
and stores it on the local ID manager. The destination ID on the local ID manager is
used by the client program (request initiator) for communication to identify results.
In step 5, the Transferring module sets the new destination address of the server pro-
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Fig. 2 The Linux wrapper manager module

gram in the naming service address database so that the client program can continue
to send requests.

The Transferring module on the destination Linux-based system receives the mes-
sage version of the ported program (step 6 in Fig. 2) and in step 7 sends it to the
Executer module. The Executer module runs the daemon and gets the results from
it and sends the results back to the Transferring module (steps 8 and 9 in Fig. 2).
The results are sent to the WWM Transferring module (step 10 in Fig. 1). Finally,
the Transferring module in WWM converts the results to the RPC-based data module
and sends it to the RPC client (step 11 in Fig. 1). The reverse flow starting from the
Linux platform and initiated by a client’s request, is the same as the flow from MS-
Windows to Linux with a difference in the conversion of the daemon program from
message-base program to RPC-based program and conversion of the retrieved results
from the WWM on MS-Windows platform from RPC to a message understandable
to the client (Fig. 2).

4.3 Primitive mapping

Clusters that use open source operating systems like Linux often provide some
message-passing primitives at the kernel level so that application developers can pro-
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Fig. 3 The wrapper manager
algorithm

gram their communication needs by system calls to these primitives manually. The
necessary details about communication for distributed programming are thus made
available [21] and developers can implement their required high performance clus-
ters [22].

Clusters that use closed-source operating systems like MS-Windows are different.
Communication primitives are provided at the operating system or middleware level
as APIs and developers do system calls using these APIs. Since we consider MS-
Windows for developing a wrapper as a closed source operating system, we choose
the RPC mechanism to develop distributed programs because the RPC mechanism
itself is the building block of the MS-Windows internal communication structure and
MS-Windows supports it very well. Although there are some limitations in this RPC
programming model, like having interface description for both remote procedure call
and procedure itself, and the restriction on the data types of arguments, developers
are not involved in the details and complexities that the message system entails in
the RPC programming model. In spite of these constraints, some distributed pro-
gramming features, like RPC programming system and RPC run-time system, are
provided by programming language. This is why the RPC programming model has
become a good candidate for distributed programming on closed source clusters.

To ease communication in a heterogeneous environment by remote inter process
communication using header wrapper files, we need to convert the communication
primitives of the above two different programming models, namely RPC on the MS-
Windows platform and message on the Linux platform, to each other. A portable inter
process communication is thus needed that is provided by the Wrapper modules. The
Wrapper library defines instructions in its headers that allow the WM converter to
map a required system call to a corresponding one on another system [23]. Two cases
arise in this mapping. System calls that have one equivalent are converted easily with



A platform independent distributed IPC mechanism in support 559

Table 1 RPC functions in MS-Windows operating system

RpcBindingFromStringBinding Returns a binding handle from a string representation of a binding

handle

RpcNsBindingImportBegin Creates an import context for importing client-compatible binding

handles

RpcNsBindingImportNext Looks up an and returns a binding handle

RpcStringBindingCompose Creates a string binding handle

RpcStringFree Frees a character string allocated by the RPC run-time library

Table 2 Message system calls
in Linux operating system msgsnd Delivers a message to a queue

msgctl Performs control operations on a message queue

msgrcv Receives a message from a queue

Table 3 Mapping between RPC
functions in MS-Windows and
message system calls in Linux

MS-Windows Linux

RpcBindingFromStringBinding msgget

RpcNsBindingImportBegin

RpcNsBindingImportNext

RpcStringBindingCompose

msgsnd

msgrcv

RpcStringFree msgctl

some considerations for preparing arguments and taking back the returned results.
Butsystem calls that either have more than one equivalent or do not have any equiv-
alent, just like combination of system calls or deciding on a suitable equivalent, need
more complicated mapping [24]. Tables 1, 2, and 3 show sample system calls of both
systems and their mappings.

As Table 3 shows, the receive (msgrcv) and send (msgsnd) primitives in the mes-
sage mechanism have no explicit equivalents in the RPC mechanism. They are per-
formed by the RPC run-time system. In the RPC mechanism, client calls a remote
procedure regardless of its location and developer is not directly involved in data send
and receive. So, we need to wrap the send and receive system calls in the message
mechanism and simulate them in the RPC mechanism.

Conversion from message to RPC and vice versa is not always done completely. In
our experiments on 100 chosen program codes, conversion from message to RPC was
more successful (85%) than from RPC to message (72%). The mismatch was mostly
due to Win-RPC based program code that used thread facilities. This was in turn due
to the mismatch between different levels of scheduling of threads in the two operating
systems; threads are scheduled at the kernel level in Ms-Windows operating system
but at the user level in Linux using thread libraries like Linux Threads, NGPT, and
NPTL [24].
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Fig. 4 Average times taken for creation and destroying of Wrapper modules

Fig. 5 Average times taken for creation, initializing and destroying of Communication modules

5 Evaluation

To provide an evaluation of our proposed wrapper mechanism with respect to other
types of notable IPC mechanisms, we measured the time taken to completion of a
remote call/request under these mechanisms. We divided these mechanisms into two
groups, namely those that support heterogeneous environments (e.g., ONC-RPC and
wrapper) and those that support only homogeneous environments (e.g., pipes and
shared memory). Experiments were done in two steps.

In the first step, we measured the times taken for creation, initialization and de-
stroying of communication modules (Figs. 4 and 5). Communication modules con-
sisted of all modules that were needed to start data transfer.

It should be mentioned that the creation, initialization, and destroying of the com-
munication modules occurred once in the life cycle of the wrapper. Two distributed
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programs were developed, one running under Linux (representing a homogeneous
platform), and one running under a combination of Linux and MS-Windows plat-
forms. Both programs were executed 50 times with each IPC mechanism and the
values were measured based on the average and Standard Deviation of time spent to
finish a remote call/request. Creation, initialization, and destroying of communication
modules took about 0.5 to 2 milliseconds in different mechanisms. As Fig. 5 shows,
the average time taken for creation, initialization and destroying of communication
modules for ONC-RPC and Wrapper mechanisms were close. The large difference
between the times taken under each group (homogeneous and heterogeneous) rep-
resents the different characteristics of the two groups. However, the low value of
standard deviation shows the stability of the mechanisms.

In the second step, we measured the times taken for marshalling and unmarshalling
operations in addition to data transfer time; 50 KB for small size arguments and 1 MB
for medium size arguments were considered; big size arguments needed more com-
plicated data transfer models that we considered out of scope of the current paper.
Figures 6 and 7 show the average times in case of small size and medium size argu-
ments, respectively. Data transfer between clients and servers were through parame-
ter passing. Data was organized as integer arrays and sent to the server side and an
integer value was returned by the server to the client side as the return value.

The times taken for marshaling and unmarshalling under all mechanisms in case
of small size data were nearly the same and equal to 5000 µs, but the times taken
for data transfer were quite different and equal to 4100–4500 µs for ONC-RPC and
wrapper mechanisms, and 1300–1500 µs for message and pipe mechanisms. This
large difference in data transfer times (about 3000 µs) in the two groups is because the
data transfer in the wrapper and ONC-RPC mechanisms is performed in a distributed
environment requiring more time to completion. A similar pattern was recorded for
1 MB medium size data (Fig. 7), wherein the marshalling and unmarshalling under all
mechanisms took nearly 100 ms, but data transfer times were 70 ms for mechanisms
in the heterogeneous group and 17 ms for mechanisms in the homogeneous group.

6 Discussion

In this section, we present the limitations of current MS-Windows-based cluster so-
lutions in utilizing facilities of Linux-based cluster solutions specially in supporting
dynamic processes by focusing on inability of DIPC2006 as a Linux cluster solu-
tion in serving and communicating with MS-Windows-based cluster solutions, and
discuss the importance of wrapper solution in establishing this communication.

As mentioned before, DIPC2006 enables developers to use existing instructions
to establish communication between processes through local IPC and write programs
that can run on distributed systems. It does this by extending the local IPC mech-
anism for distributed environment. In other words, it is a mechanism that provides
IPC based distributed programming facilities for developers. Wrapper and DIPC2006
can be viewed similar in provision of distributed programming facilities on clusters,
though they are different in their functionalities. DIPC2006 is designed for distributed
programming on Linux clusters that are comprised of member machines powered by



562 M. Sharifi et al.

Fig. 6 Average times taken for marshalling, transfer and unmarshalling of small size data (50 KB)

Fig. 7 Average times taken for marshalling, transfer and unmarshalling of medium size data (1 MB)

Linux. If a cluster wants to use the DIPC2006 features, it has to use Linux with
DIPC2006 installed in the kernel of its operating system.

DIPC2006uses extended IPC programming instructions to create cluster-based
programs on a Linux cluster, while wrapper uses RPC programming instructions
to create cluster based programs running on a hybrid cluster wherein some mem-
ber machines run under Linux and some others run under MS-Windows. The main
difference between DIPC2006 and wrapper is in this respect. Developers who use
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DIPC2006 can run their programs only on DIPC2006 based homogeneous Linux
clusters. In contrast, developers who use the wrapper mechanism can run their pro-
grams on both homogeneous clusters (running under either MS-Windows or Linux)
and heterogeneous clusters (running under a mixture of MS-Windows or Linux). We
can thus conclude that the wrapper mechanism can be used to attain a more scalable
cluster that can deploy more resources at its disposal while the DIPC2006 does not
allow such deployment even in case such resources are available only because they
do not run under Linux.

DIPC2006-based clusters are closer to the rather traditional definition of closed-
world clusters for two reasons. Firstly, a DIPC2006-based cluster consists of ma-
chines that collaborate to run a dedicated designed DIPC2006 based program. Sec-
ondly, the DIPC2006 software is installed on all member machines to enable the clus-
ter to run the program that is written by using the DIPC2006 programming language.
These conditions force developers to narrow their required resources for developing
a DIPC2006 based program to available and existing resources in the cluster without
regard for any disposable external resources. In other words, if A and B are processes
which is written by the DIPC2006 programming language and it is supposed to run
them on the DIPC2006 cluster, then we will have:

Resources of (Process A and Process B) ∈ Resource Set of ClusterDIPC (1)

A and B processes in (1) are only allowed to use resources in the designed clus-
ter which is targeted by a DIPC2006-based program. Clusters like this one that are
designed to run only written programs which use DIPC2006 programming language
are called a Closed Cluster. These are closed because they have to follow two tight
conditions to be able to run a DIPC2006-based program. Firstly, cluster members
need to use the Linux as a local manager. Secondly, the DIPC2006 software should
be installed at the kernel level of the Linux.

Generally speaking, any cluster programming language should have two attributes
to become a favorable language for developers of distributed programs: (1) provide
efficient facilities for establishing communication between processes in the cluster
and (2) have effective resource usage model. In our experiments, DIPC2006-based
programs exhibited an acceptable performance implying that DIPC2006 program-
ming language has an acceptable performance. This was due to the specific imple-
mentation of DIPC2006 programming language and fewer number of required in-
struction translations to run instructions of a program. But it fell behind of wrapper
with respect to effective use of resources external to the current cluster but disposable
to it. This feature is particularly needed for computationally intensive scientific appli-
cations running on clusters. The proposition of Cluster Runtime Library (CRL) that
tries to provide runtime resources required by scientific and engineering programs is
an evidence for such a need [25].

The above discussion becomes more critical when it is combined with the dynamic
process concept. Let us provide an example. Consider a scientific or engineering pro-
gram that consists of only two processes A and B. Developer encodes the general
requirements for hardware and software resources in support of A and B on an as-
sumed cluster at design time. Upon creation of a third process called C at run-time
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by either A or B, we have:

∃Resource ∈ Resourceset(ProcessC)|Resource

� Resourceset(Prosecc A and B) (2)

Equation (2) is a necessary condition and it means there is a resource member of
resources set of process C as its not member of resource set A and B. If this condition
holds, the cluster manager should provide the required resources for C inside the
cluster; if it cannot provide them, the whole program will stop executing. Providing
resources for C and possibility of responding to this process are a function of cluster
size and cluster type, which is:

F(Response Possibility) ∝ (ClusterSize)R(TypeCluster) (3)

R: Relation;∝: Iscommensuratewith

Solving (3) in general case is very difficult or even impossible in some cases, but
one can solve it for special cases. The Wrapper software is a inductive solution for
(3) in a special case. In the wrapper solution, the type of cluster is MS-Windows
cluster. Given the higher number of existing programs developed for Linux clusters,
the number of Linux clusters themselves and the number of Linux cluster members
in comparison with the number of MS-Windows clusters and the number of MS-
Windows-based cluster programs [26], resource density in MS-Windows clusters is
less than Linux clusters.

We can thus expect that Linux clusters are more amenable to deploy extra soft-
ware resources for processes using the vast number of existing programs and projects
on Linux clusters and also extra hardware resources by allowing extra machines to
be added to the list of cluster members. This is to say that the wrapper software en-
ables developers of MS-Windows-based programs for MS-Windows clusters to use
features and resources of Linux clusters, and to create dynamic scientific and engi-
neering programs without exclusively resorting to traditional programming concepts
of the MS-Windows operating system like RPC mechanism.

7 Conclusion

Limitations of homogeneous distributed systems especially clusters in providing re-
sources to fulfill almost unpredictable resource requirements had lead researchers to
provide communication means between two or more homogeneous clusters or het-
erogeneous clusters. Undoubtedly, hybrid heterogeneous clusters have more flexible
facilities to implement distributed programs. But the complexity and difficulty of im-
plementing such communication means depended on their level of implementation.
Kernel-level implementations had shown higher performance compared to user-level
implementations but sacrificed ease of programming that is most favored by users
and supported by user-level implementations.

In this paper, we focused on the problem of providing the means of communi-
cation between those types of heterogeneous clusters whose communication means
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are implemented at the kernel level, but some belong to open source operating sys-
tems and others belong to commercial closed source operating systems. We chose a
high performance Linux cluster called DIPC2006, representing an open source clus-
ter, alongside an MS-Windows based cluster, representing a closed source cluster,
whose communication means had been implemented through IPC at the kernel level
of their operating systems. The challenge was to compose these two heterogeneous
clusters to build a hybrid cluster whose element clusters could communicate with
each other, given our inaccessibility to MS-Windows’ closed kernel source. We pre-
sented a wrapper solution to this challenge.

Since IPC is the communication building block in almost all operating systems,
we selected IPC as a suitable communication mechanism in our wrapper solution. To
achieve closed source heterogeneity in hybrid clusters, we implemented the Wrapper
as a platform independent distributed IPC mechanism in support of programming
heterogeneous distributed systems.

The IPC mechanisms we used for distributed programming were RPC for develop-
ing programs on MS-Windows and message mechanism for Linux-based programs.
In our proposed approach, IPC calls from MS-Windows are wrapped and converted
into IPC calls for Linux using a conversion table to map the IPC calls of the two
mechanisms. Because DIPC2006 had been used on Linux members of the cluster,
IPC calls were efficiently implemented inside the kernel code of Linux and hence,
the cluster had high performance feature.

To present a comparison of the Wrapper with other notable IPC mechanisms, espe-
cially those that support heterogeneous environments, we experimentally measured
the completion time of a remote call/request using each of these mechanisms. The
RPC mechanisms in our experiment included both heterogeneous (like ONC-RPC)
and homogeneous (like pipes) mechanisms. Two types of distributed programs, one
for a Linux cluster using homogeneous mechanisms in communication and one for
a hybrid cluster using heterogeneous one, were developed and tested in 50 runs. We
calculated the average time and standard deviation of marshalling, unmarshalling,
and data transfer activities for small and medium sized arguments.

The results showed that there was a large difference in completion time values
between two groups of mechanisms and that was predictable because of the differ-
ence of characterizes of the two groups. A noticeable result was the closeness of the
measured values in the Wrapper and ONC-RPC. Completion times of marshaling
and unmarshalling in two groups of mechanisms were nearly the same, but different
for data transfer. The large difference in data transfer times in the two groups was
because the data was transferred in a distributed environment using the wrapper and
ONC-RPC mechanisms, requiring more time to convert the primitives in two differ-
ent operating systems to complete a request.

Our proposed Wrapper solution is not restricted to the mentioned IPC mechanisms
we noted in this paper, and it can be extended to other types of mechanisms. Also,
if programming environments use different mechanisms simultaneously, the Wrap-
per solution can be extended to have some detection and decision modules to switch
between them dynamically. The Wrapper solution can be used in other process mi-
gration systems too in order to port sections of an application that uses IPC for its
communication between its different internal processes.
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