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Abstract We present and compare a variety of parallelization approaches for a real-
world case study on modern parallel and distributed computer architectures. Our
case study is a production-quality, time-intensive algorithm for medical image re-
construction used in computer tomography (PET). We parallelize this algorithm for
the main kinds of contemporary parallel architectures: shared-memory multiproces-
sors, distributed-memory clusters, graphics processing units (GPU) using the CUDA
framework, the Cell processor and, finally, how various architectures can be accessed
in a distributed Grid environment. The main contribution of the paper, besides the par-
allelization approaches, is their systematic comparison regarding four important cri-
teria: performance, programming comfort, accessibility, and cost-effectiveness. We
report results of experiments on particular parallel machines of different architectures
that confirm the findings of our systematic comparison.

Keywords Medical image reconstruction · Parallel programming · Parallel
architecture comparison · Positron Emission Tomography (PET) · List-mode OSEM
algorithm · Cell processor · Graphics processing units (GPU) · CUDA

1 Introduction

The research presented in this paper was conducted at the interdisciplinary collabo-
rative research center (SFB) “Molecular Cardiovascular Imaging” at the University
of Münster, Germany.
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We aim at improving the resolution and quality of Positron Emission Tomography
(PET) images. Today, the runtime on an off-the-shelf computer of one of the most
accurate 3D PET reconstruction algorithms (the list-mode OSEM) ranges from one
hour to several days. Therefore, parallelization is crucial in order for such hardware
and software techniques to be used in clinical routine.With more advanced equip-
ment and more precise imaging algorithms, an efficient parallel implementation will
become even more important.

In this paper, we focus on the parallelization of the list-mode OSEM (Ordered Sub-
set Expectation Maximization) algorithm [7] for PET image reconstruction which is
representative for a large class of modern image reconstruction methods. The fore-
most goal of this work is to find the most suitable parallel architecture for this algo-
rithm. The suitability of a particular architecture is usually defined using two criteria:
(1) the algorithm’s parallel performance, and (2) the usability of available program-
ming environments for this particular architecture. In medical imaging, the medical
personnel will be reluctant to use parallel software if it requires a high administrative
effort like searching for a free time-slot on a number of cluster computers. There-
fore, our third comparison criterion will be accessibility. Moreover, while a server
with several multi-core processors might provide high performance and can be easily
accessed over a local file system, the purchase cost of such a server might limit its
usage. Thus, we introduce cost-effectiveness as our fourth criterion.

The contribution of this paper is threefold: (1) It gives an overview of parallel im-
plementations of the list-mode OSEM algorithm for the 3D PET image reconstruc-
tion on practically all currently available modern parallel architectures, including:
shared-memory multiprocessors, multi-core processors, cluster computers, graphics
hardware (GPU) and the Cell processor. (2) It identifies the most suitable parallel ar-
chitecture for typical image reconstruction tasks by analyzing the parallel implemen-
tations for performance, appropriateness of programming environments, accessibility
of the corresponding architecture and cost-effectiveness. (3) It outlines our distributed
grid-like system which chooses the most suitable of the available parallel machines
for a given imaging task and thus frees the medical personnel from all administrative
efforts.

2 Iterative PET image reconstruction

In Positron Emission Tomography (PET), a radioactive substance is injected into a
human or animal body. Afterwards, the body is placed inside a PET scanner that
contains several arrays of detectors. As the particles of the applied substance decay,
positrons are emitted (hence the name PET) and annihilate with nearby electrons.
During one such annihilation, two photons are emitted in opposite directions. The
“decay events” are registered by two opposite detectors at the same time. The scanner
records these events in a list with each record comprising the positions of those two
detectors.

For our comparative study, we consider the following representative algorithm for
creating an image from the events. List-Mode Ordered Subset Expectation Maxi-
mization [7, 14] (called list-mode OSEM in the sequel) is a block-iterative algorithm
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f o r ( i n t l = 0 ; l < s u b s e t s ; l ++) {
/∗ r e a d s u b s e t ∗ /

/∗ compute c _ l ∗ /
f o r ( i n t i = 0 ; i < s u b s e t _ s i z e ; i ++) {

. . . }

/∗ compute f _ l +1 ∗ /
f o r ( i n t k = 0 ; k < i m a g e _ s i z e ; k ++) {

i f ( c _ l [ k ] > 0 . 0 )
f [ k ] ∗= c _ l [ k ] ;

} }

Listing 1 Sequential code comprises an outer loop with two nested inner loops

for 3D image reconstruction. List-mode OSEM takes a set of events and splits them
into s equally sized subsets.

For each subset l ∈ 0, . . . , s − 1, the following computation is performed:

fl+1 = flcl; cl = 1

At
N 1

∑

i∈Sl

(Ai)
t 1

Aifl

. (1)

Here f ∈ R
n is a 3D image in vector form with dimensions n = (X × Y × Z),

A ∈ R
m×n, element aik of row Ai is the length of intersection of the line between the

two detectors of event i with voxel k of the reconstruction region, computed using

Siddon’s algorithm [15].
1

At
N 1

is the so-called normalization vector. Since it can be

precomputed, we will omit it in the following. Note that the multiplication of flcl

is performed element-by-element. Each subset’s computation takes its predecessor’s
output image as input and produces a new, more precise image.

The overall structure of the sequential list-mode OSEM implementation comprises
three nested loops: one outer loop with two inner loops. The outer loop iterates over
the subsets. The first inner loop iterates over a subset’s events to compute the sum-
mation part of cl . The second inner loop iterates over all elements of fl and cl to
compute fl+1 (Listing 1).

The algorithm studied here can be used to reconstruct data from virtually every
PET scanner if a conversion method from the scanner data to world coordinates is
available. In our experiments, we use data acquired by the quadHIDAC scanner and
employ the conversion method for this scanner introduced in [7].

List-mode OSEM is a rather time-consuming algorithm. A typical 3D image re-
construction processing 6 × 107 input events for a 150 × 150 × 280 PET image takes
more than two hours on an off-the-shelf PC. To reduce the algorithm’s runtime we
developed several parallel implementations [4, 11] which we systematically compare
with respect to the four criteria formulated in the introduction.
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3 Parallel image reconstruction

Because of the data dependency between the subsets’ computations in (1), implied by
fl+1 = flcl , the subsets cannot be processed in parallel. The computation of cl and
fl+1 is parallelizable, using the following idea.

For the computation of cl , all parallel implementations distribute the events among
the processing units (either processors or cores, from now on called PUs). Now each
PU computes a partial sum of cl . Afterwards, all partial results are summed up over
the communication link. For the computation of fl+1 = flcl , the image is distributed
among the PUs, thus each PU computes fl+1 = flcl for its sub-image in parallel.

Parallelization on shared-memory processors On shared-memory multiprocessors
and multi-core processors, we developed an OpenMP implementation following the
parallelization idea described above.

To parallelize the computation of cl and fl+1, we have to parallelize the two inner
loops of the list-mode OSEM algorithm. We use the parallel for directive of
OpenMP that declares the succession for loop to be executed in parallel by a team
of threads for both loops. Apart from the additional compiler directives, no consider-
able changes were made to the sequential program. Thus, an OpenMP-based parallel
implementation of the list-mode OSEM algorithm is easily derived from a sequential
implementation.

Within the first inner loop (summation part of cl), all threads perform multiple
additions to arbitrary voxels of a common intermediate image. We prevent race con-
ditions using a mutex that declares the summation part mutually exclusive, such that
only one thread at a time is able to work on the image. In OpenMP, mutexes are
declared by using the critical construct which specifies a mutual exclusion for the
successive code section.

Parallelization on cluster computers On distributed-memory clusters, we use MPI
(Message Passing Interface) for the parallel implementation. Here, every process first
reads “its” events from the remote file system. All processes compute their partial
sum of cl simultaneously; then the result is summed up using MPI_Allreduce.
Finally, before the next subset is started, all processes compute fl+1. Note that for
the computation of fl+1 the image is not distributed among the processes, because
the resulting network communication is more time-consuming than the actual com-
putations.

On hybrid machines (clusters), where each node is either a shared-memory multi-
processor or a multi-core processor, we combine the MPI distributed-memory imple-
mentation with the OpenMP shared-memory implementation. Thus the partial sums
of cl and fl+1 are computed simultaneously by all PUs of the shared-memory ma-
chines.

Parallelization on graphics processing units (GPU) Modern GPUs (Graphics
Processing Units) can be used as mathematical coprocessors: they add computing
power to the CPU. A GPU is a parallel machine that consists of SIMD (Single In-
struction Multiple Data) multiprocessors (ranging from 1 to 32). The stream proces-
sors of a SIMD multiprocessor are called shader units. The GPU (also called device)
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has its own fast memory with an amount of up to 4 GB. On the main board, one to
four GPUs can be installed and used as coprocessors simultaneously.

With CUDA (Compute Unified Device Architecture) [2], the GPU vendor
NVIDIA provides a programming interface that introduces the thread-programming
concept for GPUs to the C programming language. A block of threads executing the
same code fragment, the so-called kernel program, runs on one multiprocessor. Each
thread of this block runs on one of the shader units of the GPU, each unit executing
the kernel on a different data element. All blocks of threads of one application are
distributed among the multiprocessors by the scheduler. The GPU’s device memory
is shared among all threads.

The calculations for one subset in our GPU implementation proceed as follows:

1. The CPU reads the subsets’ events and copies them to the GPU device memory.
2. Each thread computes a partial sum of cl and adds it directly to the device mem-

ory. The amount of events per thread is chosen according to the following con-
siderations: Firstly, as many threads as possible should be started in order to hide
memory latency efficiently [8]. However, each thread needs to save partial results
in the device memory, which requires too much memory if one thread is started
per event. Therefore, the maximum number of threads is started so that all partial
results still fit into the device memory.

3. Each thread computes one voxel value for fl+1 = flcl .
4. fl+1 is copied back to the CPU.

Note that during the computation of cl (step 2), the threads write, as in the shared-
memory implementation, directly to the shared vector cl . In order to avoid race condi-
tions, we again have to protect cl with a mutex. Since this is not directly possible with
CUDA (necessary mechanisms are lacking, only atomic integer operations exist),
we decided to allow race conditions in the GPU implementation in cases where quan-
titative results are not required (see [13] for details). For quantitative experiments, we
can use a thread-safe shared-memory or Cell processor reconstruction.

When we use two GPUs at the same time, we have two separate device memories.
The computations proceed as above, with each GPU computing half of the events
during the forward-projections (step 2) and half of the sub-images during the com-
putation of fl+1 (step 3). After all forward-projections, the two cls residing on the
device memories need to be summed up.

Parallelization on the cell processor The Cell Broadband Engine is a multiproces-
sor developed jointly by Sony Computer Entertainment Inc., Toshiba Corp. and IBM
Corp. It consists of one PowerPC Processor Element (PPE) and eight processing
cores called Synergistic Processor Elements (SPEs). Communication is performed
through the Element Interconnection Bus (EIB). To program applications for the Cell
processor, IBM provides a Software Development Kit (SDK) [1] which contains the
GCC C/C++-language compilers for the PPU and the SPU.

The calculation of one subiteration of our example algorithm on p SPEs proceeds
as follows:

1. The PPE reads the subsets’ events and stores them in the main storage. Afterwards,
the PPE sends each SPE a message to start computations.
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2. Each thread computes a partial sum of cl and adds it directly to the device memory.
Since all threads write simultaneously to the shared cl , we use an atomic operation.

3. The reconstruction image is divided into sub-images f j . Each SPE computes
f

j

l+1 = f
j
l c

j
l on its sub-image.

Note that for the forward projection (step 2), the programmer has to organize trans-
ferring the required voxels of fl and cl from main storage to the SPEs’ local store.
Since the minimum DMA transfer size is 128 bytes, then 128 bytes instead of 4 bytes
for one float have to be transferred for each voxel of fl , when computing cl,j and
cl + cl,j . Since a path, in almost all cases, crosses through several y- and z-planes of
the 3D image, the bulk of additional transferred voxels of fl cannot be used in the
following computations. Using the minimum transfer size of 128 bytes, an average
of 1.6 of the 32 transferred voxels, i.e., 5% of each DMA transfer, are used.

When using two Cell processors, i.e., two PPEs and altogether sixteen SPEs, we
have two main storages, such that each PPE only communicates with its SPEs. The
communication between both main storages and the SPE management is transparent
to the programmer and thus the programmer can develop his code as if there were
only one PPE with sixteen SPEs.

Grid system for PET reconstruction MIRGrid (Medical Image Reconstruction
Grid) [10] is an experimental grid system that we have developed to integrate in a
single application all steps of the imaging process, which are traditionally performed
by the user using different software tools: from reading the raw data acquired by the
scanner, over transparent parallel reconstruction to the visualization and storage of
reconstructed images.

After the user has chosen the raw data previously collected by the scanner and
the parameters for reconstruction, the client sends the data and the parameters to the
scheduler. Transparently to the user, the MIRGrid scheduler then assigns the recon-
struction to an HPC, and the runtime system starts and monitors the reconstruction
on that HPC. When the reconstruction is finished, the result images are sent back to
the client where they are visualized and stored.

The MIRGrid system currently supports shared-memory machines and cluster
computers. The system is installed at the nuclear medicine clinic in Münster and
is currently tested before going into productive use in a few months. We plan to inte-
grate support for GPUs on MIRGrid in the near future.

4 Runtime experiments and architecture comparison

Since the image size of the list-mode OSEM on all four architectures presented in
the previous section has only little influence on scalability [6, 12], we restrict our
considerations to the typical image size of N = (150 × 150 × 280). We use 107

events in 10 subsets acquired during a 15-minute mouse scan of the quadHIDAC [9]
small-animal PET scanner.

We use the following parallel machines in our experiments:
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Fig. 1 Left: Runtime comparison of hybrid cluster (curve); quad-core processor, two GPUs and two Cell
processors (bars). Right: Speedup comparison of hybrid cluster (units =̂ processors), quad-core processor
(units =̂ cores) and two Cell processors (units =̂ SPEs)

Quad-core Processor: Intel Core 2 Quad processor with four cores running at
2.83 GHz. Two cores share 6 MB level 2 cache and all cores share the 4 GB main
memory. The memory throughput is up to 11 GB/s.

Hybrid Cluster: 200 Dual INTEL Xeon 3.2 GHz 64 bit nodes, each with 4 GByte
main memory, connected by an InfiniBand network. To exploit the fast InfiniBand
interconnect (point-to-point throughput of up to 900 MB/s), we used the Scali MPI
Connect implementation on this machine.

GPU: Two NVIDIA GeForce 8800 GTX which have 16 SIMD-multiprocessors,
each with 8 shader units running at 1.35 GHz. The device memory is 768 MB.
The measured throughput between device and CPU main memory is 1.5 GB/s. The
multi-processor to device throughput is 86 GB/s.

Cell Processor: A QS21 Blade Center equipped with two Cell processors. Each Cell
processor consists of one PPE running at 3.2 GHz with 512 KB L2 cache and 1 GB
main memory and 8 SPEs running also at 3.2 GHz equipped with 256 KB local stor-
age. The EIB supports a peak bandwidth of 204.8 GB/s and the integrated memory
controller (MIC) provides a peak bandwidth of 25.6 GB/s to the DDR2 memory.

Performance In the following, we analyze the performance of the parallel imple-
mentation in terms of total runtime (Fig. 1a) and scalability (Fig. 1b).

The hybrid cluster outperforms all other architectures with a minimum reconstruc-
tion time of ≈15 seconds on 64 processors. However, the implementation does not
scale well: the speedup on 16 processors is ≈7 and thus less than 50% of the ideal
speedup. Moreover, runtime deteriorates for 128 processors. Refer to [4] for a de-
tailed scalability analysis.

The two GPUs are only 1.6 times slower than the 64-processor cluster. However,
runtime only decreased from 33 seconds to 24 seconds when going from one to two
GPUs. Since this is less than 50%, we can only expect little speedup by adding more
GPUs over the main board’s PCI Express slots. Furthermore, since only an insuffi-
cient profiling tool exists, it is quite difficult to assess what the current performance
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Table 1 Average measured
runtime of the list-mode OSEM
algorithm for 107 events in 10
subiterations and estimated
purchase price for the
corresponding architecture

Architecture Multi-core Hybrid GPU Cell

4 cores 64 processors 2 devices 2 cell procs

Runtime: 72.6 s 14.8 s 24.4 s 99.8 s

Est. Price: €1.500 €1.500.000 €2.000 €5.500

bottleneck is. Therefore, we cannot determine if more shader units or increased mem-
ory bandwidth would speed up our application.

The quad-core processor is ≈5 times slower than the 64 processors of the hybrid
cluster. The main limiting scalability factor on the quad-core processor is, as on the
cluster, the restricted memory bandwidth.

Although four times as many cores are available in two Cell processors with over-
all 16 SPEs as on the quad-core processor, two Cells still provide the worst runtime.
As described in Sect. 3, only 5% of each 128 byte DMA transfer is actually used in
computations. Therefore, a lot of time is spent in transferring large amounts of un-
used data. Hence, the minimum size of 128 bytes per DMA transfer is an important
limiting factor of the Cell architecture in our application.

Programming comfort Today, all four programming tools we use to implement the
parallel algorithm, can be seen as the standard to program the according architectures.
Therefore, comparing the programming tools allows us to compare the architectures
with respect to their programmability. In [13] we explain why the Cell SDK provides
the lowest abstraction level. We also show why CUDA provides a higher abstraction
level, but its lack of sufficient debugging tools makes programming GPUs with this
framework more tedious than programming with MPI. Finally, OpenMP provides the
highest abstraction level and is the easiest to use.

Accessibility Multi-core computers, workstations with CUDA-enabled GPUs and
a Cell blade can be run in a local network. Therefore, accessibility is high for all
three. This is especially true for multi-core processors, because they are available in
virtually every off-the-shelf computer today. On the contrary, buying a cluster for a
medical clinic will most likely be too expensive (Table 1). Furthermore, accessing
a remote cluster results in two problems: (1) additional administrative effort is nec-
essary in order to reconstruct images on a remote cluster, e.g., the locating of free
resources, and (2) input and output data have to be transferred over the Internet from
and to the cluster. While the first problem can be solved with the grid system we
introduced in Sect. 3, the second problem leads to considerably longer runtime.

Cost-effectiveness The Cell processor demonstrates rather poor performance for our
algorithm and is not cheaper than GPUs and multi-core processors; thus, it is less
cost-effective. We estimate a workstation equipped with a high-end CPU and a low-
cost GPU to be about as expensive as a workstation with a medium-cost CPU and
two high-end GPUs. But since the GPU outperforms the multi-core CPU by a factor
of two, the GPU is more cost-effective. Buying and maintaining a cluster is quite
expensive (about 1.5 million euros for the cluster used in our experiments). Therefore,
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a cluster is definitely less cost-effective than the other options. Summarizing, GPU
proves to be the most cost-effective parallel architecture, followed by the multi-core
CPU.

5 Conclusion

Our comparison of different parallelization approaches for an important medical
imaging application has brought several important findings. The GPU proved to be
the most cost-effective architecture. Since it is also quite well accessible, it is suit-
able for standard image reconstruction tasks. However, if very accurate quantitative
reconstruction results are required, then multi-core processors or hybrid clusters are
to be preferred, because, in contrast to the GPU, they allow to prevent race condi-
tions. Also, programming for the GPU is quite tedious and error-prone; therefore, for
research code that is continuously enhanced and tested, multi-core processors with
OpenMP are to be preferred.

Currently, new algorithms are being developed in our collaborative research group
that are even more compute-intensive than the standard list-mode OSEM. For exam-
ple, we estimate that the so-called EM-TV algorithm [3] applied to 3D PET and an
advanced scatter correction method [5] will both be one to two orders of magnitude
more compute-intensive than the current algorithm. In order to use such algorithms,
clusters of multi-core processors will probably be the architecture to target.

Our analysis and experiments demonstrated that the Cell processor is not very
useful for the list-mode OSEM reconstruction, because it provides poor performance
and is quite difficult to program.

Finally, our MIRGrid system transparently chooses the most suitable architecture
for a given reconstruction task from the set of available parallel machines.
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