J Supercomput (2010) 51: 393417
DOI 10.1007/s11227-009-0372-8

A framework for facilitating cooperation in multi-agent
systems

Toktam Ebadi - Maryam Purvis - Martin Purvis

Published online: 23 December 2009
© Springer Science+Business Media, LLC 2009

Abstract This work introduces a multi-agent framework that facilitates coopera-
tion in multi-agent robotic systems. It uses a layered approach based on Coloured
Petri Nets for modelling complex, concurrent conversations among agents. In this ap-
proach each agent employs a Coloured Petri Net model that allows agents to follow a
plan specifying their interactions. It also allows programmers to plan for the concur-
rent feature of the conversation and make sure that all possible states of the problem
space are considered. The framework assists the agents to identify and adapt different
strategies for teammates and task selection dynamically. The agents can change their
strategies in the course of dynamic environments to improve their performance. We
have examined the performance of the agents in this framework by developing some
task selection and teammate selection strategies for agents in a disaster scenario.

Keywords Cooperation - Coordination - Multi-agent systems - Coloured Petri Net -
Robot

1 Introduction

Agent technology is well-suited for coordinated problem solving in virtual organiza-

tions. It can facilitate semi-automated negotiations between distributed elements and
can support the more efficient management of distributed systems.

T. Ebadi (&) - M. Purvis - M. Purvis
Department of Information Science, University of Otago, Dunedin, New Zealand
e-mail: tebadi @infoscience.otago.ac.nz

M. Purvis
e-mail: tehrany @infoscience.otago.ac.nz

M. Purvis
e-mail: mpurvis @infoscience.otago.ac.nz

@ Springer

mailto:tebadi@infoscience.otago.ac.nz
mailto:tehrany@infoscience.otago.ac.nz
mailto:mpurvis@infoscience.otago.ac.nz

394 T. Ebadi et al.

Open distributed multi-agent systems (MAS) are composed of multiple indepen-
dent agents that perform dependent tasks. Multi-agent robotic systems are proactive
distributed parallel systems in which each agent is an autonomous robot and has lim-
ited resources. Typically, agents deployed in open environments may have different
expertise and act as self-interested entities to achieve their corresponding goals. In
such systems, it is not feasible to predict in advance what resources the agents may
require in order to achieve their individual goals. Moreover, it is not possible to spec-
ify a priori the contexts in which an agent might need to interact with another for
its service requirements. In addition, agents may confront different types of domains
and must be able to interact with other agents to build a team.

Agent communication languages (ACLs) have been studied in depth to facilitate
complex multi-agent systems, and such standards define communicative acts and in-
teraction protocols ranging from a simple query to complex negotiations by auc-
tions or bidding on contracts. For instance, the FIPA Contract Net Interaction Pro-
tocol [1] specifies the sequences of the messages that the interacting agents use by
using the Contract Net Protocol for their negotiations. Several formalisms have been
proposed to describe such standards. In particular, AUML (the Agent Unified Model-
ing language) has been used to standardize FIPA interaction protocols [1, 2]. AUML
is suitable for human understanding and visualization. AUML is visually suitable
for the representation of very simple interaction protocols. However for more gen-
eral interactions, it is preferable to use a formalism that is more scalable and is also
amenable to automated analysis, verification, and monitoring. For this reason, there
has been an increasing interest in the employment of Coloured Petri Nets (CPNs)
for the representation of agent interaction protocols. Petri Nets have been used for
analysing the various aspects of the multi-agent systems [3—5], including validation,
testing [6], debugging and monitoring [7] and plan description [8]. CPNs extend the
power and flexibility of the Petri Net notation and also offer the strengths of a high-
level programming language. The programming language element of CPNs provides
the required data types and the manipulations of data values. As a result CPNs are
well-suited for simulating, analysing and modelling distributed and concurrent sys-
tems [9]. They can express a wide range of interactions in a graphical representation
with a well defined semantics. The formal aspects of Petri Nets allow precise mod-
elling and analysis of system behaviour, while the graphical representation of Petri
Nets facilitates intuitive understanding of the proposed solution. In addition, the mod-
ular and hierarchical aspects of the Petri Net models can help in designing solutions
for complex systems [10].

In the application domain, we observe that climate change will lead to the occur-
rence of more disasters in the near future and thus rapid and effective response to dis-
aster situation is very important. Therefore there is a need for modelling frameworks
that simulate real environments in which agents act autonomously in real time. The
current work presents a virtual organization of situated self-interested autonomous
robots that need to coordinate their activities for performing tasks in dynamic envi-
ronments. It introduces an implemented multi-threaded multi-agent framework that
allows agents to cooperate in dynamic environments where there is no central mech-
anism to control the system. The framework allows agents to interact with each
other and facilitates cooperation when required. In this system, various agents co-
ordinate their activities using standardized interaction protocols, or “conversations”.

@ Springer

A framework for facilitating cooperation in multi-agent systems 395

The agents in the system employ the standard FIPA agent communication language
and interaction protocols.

CPN s are used as a modelling language to model the concurrent conversation ac-
tivities among agents. The framework allows the agents to identify various task and
teammate selection strategies and employ them. In addition, the framework accom-
modates agent learning. Under various conditions the agents may change their strate-
gies in a dynamic environment in which the environmental constraints (task density
or task time constraint) change constantly.

In this paper a disaster application scenario is examined for illustration in which
a group of people are trapped in an unsafe area, and a group of robots with different
capabilities may be required to save the victims. The robotic agents have different ca-
pabilities (and at various quality levels) required for different tasks. The capabilities
are designed in such a way that each agent may be expert only in connection with a
single capability, so cooperation of a team of agents is required in order to complete
a task. Tasks are heterogeneous and have various requirements which can be satis-
fied by various capabilities of agents. In addition to capabilities, some of the agents
(“skilled agents”) are assumed to be equipped with some especial devices which can
locate the tasks and recognise the task requirements. Due to the presumed high cost
of these devices, there is a limited number of such agents equipped with these parts.
All the other agents (“helper agents”), without any task-discovery devices, can be re-
cruited by skilled agents to perform the tasks. Skilled agents explore the environment
in order to find tasks. When a skilled agent finds a task, it creates a CPN model of the
task-cooperation interaction and starts executing its model. The skilled agent sends
requests to its neighbouring agents asking for help. When a potential helper agent
receives a message from an initiator, it creates its own CPN model for that interaction
and communicates, and thereby coordinates its activities, by sending messages to the
initiator or other agents if it is required. More details on the CPN models are provided
in Sect. 5.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 describes the agent platform and conversation handling module used in this
work. Section 4 describes how the agents and the environment are modelled. Sec-
tion 5 details the CPN models for representing the conversation protocol. Section 6
describes the different strategies that agents may employ, and a learning and adapt-
ing mechanism is discussed in Sect. 7. Experimental results are discussed in Sect. 8.
Finally, Sect. 9 concludes and outlines future work.

2 Related work

Cost et al. [11, 12] used CPNs for representing Knowledge Query and Manipula-
tion Language (KQML) and FIPA interaction protocols [13]. They studied the use
of CPNs in modelling agent communicative interactions. In their work, transitions
represent events associated with messages. They tested their model for the simpli-
fied KQML Register conversation protocol. Billington et al. [14] showed how CPNs
can be effectively employed to model and analyse the Contract Net protocol [1].
They presented a model of the protocol implemented in CPN tools and analysed it.

@ Springer

396 T. Ebadi et al.

Gutnik et al. [15] proposed a CPN-based representation for overhearing, where an
overhearing agent passively tracked many concurrent conversations involving multi-
ple participants based on their exchanged messages. In their work places represent
valid joint conversation states and messages, and token colour was used to distin-
guish concurrent conversations. In their approach the overhearing agent can moni-
tor the messages. In addition to using tokens in state places, this representation used
message places, where tokens are placed when a corresponding message is overheard.
They showed semantically how their representation covers essential features required
to model multi-agent conversations as defined by FIPA conversation standards [13]
in an overhearing context. Their representation is only suitable for overhearing sce-
narios since each place in their CPNs represents a joint conversation. Dang et al. [3]
used CPNs to represent concurrent negotiations among agents. They introduced a
two-phase commit protocol that supports multi-issue negotiation. In their model each
agent can interact with many agents. All of the above studies focused on Petri Net
representations of simple interaction protocols and the suitability of CPNs as a model
underlying a language for agent conversations. They tested the suitability of their pro-
posed models for simple interactions and did not consider complex interaction proto-
cols. Moreover, their models were primarily conceptual, and they did not present any
results to demonstrate an executable model of an implemented framework.

Autonomy is an important feature of any agent system. Generally there are two
aspects in the agents’ autonomy: the internal and external aspects. The internal aspect
refers to self-governance of the agents, and the external aspect implies that agents’
behaviour cannot be imposed by any other agent, and thus any interactions between
agents must recognise the participants’ autonomy [16]. Although using autonomous
agents can model more realistic and dynamic situations, many studies in multi-agent
systems have not considered agents as autonomous entities [17, 18]. For example,
Holvoet [19] proposed Petri Net agents, but their agents are not autonomous: the
interaction between their agents (via transition synchronisation) is not filtered by an
interface but directly concern transition modelling of the agents’ behaviour.

Chainbi et al. [20] implemented agents’ behaviours in the form of Cooperative
Nets [21], which model the behaviour of objects. In their work the behaviour of an
object is static and is defined by one net and thus cannot be adapted or altered at
run time. Kohler et al. [22] and Duvigneau et al. [23] used reference nets, a special
kind of CPN, to model the structure and behaviour of agents in terms of executable
CPN protocols. Their reference nets were executed using the Renew simulation en-
gine [24]. In [22] agents send their messages via synchronous channels. The syn-
chronous channels do not provide support for situations where agents are hosted on
different platforms. Duvigneau et al. [23] implemented a FIPA-compliant agent plat-
form for multi-agent systems called CAPA which provides support for agents hosted
on different platform to communicate. The work done by Kohler et al. [22] and Du-
vigneau et al. [23] is closer to our approach, since their models allow agents to run
several processes concurrently. However, their work lacks a FIPA-compliant transport
protocol, and there is no indication of adaptation to dynamic situations.

In contrast with the work described above, we have simulated a physical system
where robotic agents are deployed in a physical environment. Our framework em-
ploys FIPA-compliant agents, and the standard FIPA agent communication language

@ Springer

A framework for facilitating cooperation in multi-agent systems 397

and interaction protocols. It can facilitate semi-automated negotiations between dis-
tributed elements and supports more efficient management of distributed systems.
The agents in the system coordinate their activities by sending messages. Since each
robotic agent runs on a separate robot (or platform), all the messages are asynchro-
nous and are sent via the HTTP transport protocol from one agent to another. The
implemented framework allows the agents to deploy complex interaction protocols
in situations when agents are required to coordinate their activities with other agents
in the system. This feature enables the agents to keep track of their conversations
with various agents in complex situations. For example agent A may be involved in a
conversation with agent B and decide to help B. At the same time agent C may ask
agent A to help it with another task. In this situation, agent A may send a message
to agent C saying that it will be available, for example in 10 minutes. In the same
way agent A may hold several other conversations over various topics with various
agents. Using complex interaction protocols allows agents to follow their separate
conversations with other agents efficiently without the need of asking for the past
conversation details every time a message is received. Here each agent has various
threads for managing its conversations, processing its message queues, etc., in a con-
current fashion.

In our framework agents must operate in the context of all the concurrency issues
in real multi-agent environments, where message delivery is not guaranteed. For ex-
ample, our agents have a timeout mechanism. Assume a situation in which an agent
sends a request for help to a number of other agents for an urgent task that needs to
be performed quickly. The requesting agent may not want to wait until it receives all
the responses back from all of the requested agents, but instead it may wait for a short
time and then select from the available agents. Without a timeout mechanism and a
multi-threaded agent platform, one cannot measure the performance of the system
under such realistic constraints. We are not aware of any other work that has con-
sidered such timeout in connection with modelling FIPA-compliant agents. Another
feature of our framework is its adaptability. It allows agents to change their behav-
iours dynamically in order to adapt to different environmental conditions. Agents
may decide to deploy an updated version of their previous models or change their
roles and deploy a completely different CPN model that matches to new situations.
The framework also allows adaptability by introducing various teammate selection
strategies, which can be selected according to the circumstances of various situations.
These strategies can be dynamically selected by the agents in order to maximise their
individual utility. Note that the strategies are put into a separate module which could
easily be replaced with a new module that contains user-defined strategies. Moreover,
in our framework each agent has its own individual model for each conversation and
does not know about the conversation model of the other agents.

3 Agent framework
3.1 OPAL agent and conversation manager

This work employs the OPAL agent platform [25] to support multi-robot cooperation.
OPAL is a FIPA-compliant [13] agent platform, which employs micro-agents in its

@ Springer

398 T. Ebadi et al.

Fig. 1 The interaction between
OPAL agents and OPAL Agent Agent

e
il i

Opal » Opal
platform [« platform

[oma | [cun | [oma] [ama | [[own | [coa]

create/find conversation H
¥} |
1
|

| process the token

[
send request (Message Token)
passthemessage ®——— ___

~—i

]
i
]
i
]
— : send request
L .
i i 1 craate/find conversation
) i h]
i] 1
i ! | ! | process messaga
]
]] H 1 e
i i]
[1 1 ! send response (Message Token)
I ! ! — rl
1 1] 1
| i H | pass the message !]
H]) — |
i ! send response . X L
1" find conversation | | i H '
;—q ' 1 1
I | [PrOcess message E i i i
— : : !
i i i

Fig. 2 Agents’ components interactions

internals. Micro-agents are non-FIPA Java objects which have agent-like properties
and may run in their own thread. A typical OPAL agent could contain numerous
micro agents to perform tasks such as dispatch messages, manage conversations, and
execute planning.

OPAL has a module called the Conversation Manager (CM), and the CM uses
CPNs in handling agent conversations. Figure 1 shows the high-level view of the
OPAL system. In OPAL every agent has its own CM to manage its conversations.
Each CM is capable of handling multiple conversations for a single agent. Each agent
participating in a conversation has a role in that conversation. The role information
allows the CM to find an appropriate Petri Net model for handling that conversation.

For creating a new conversation, the initiating agent must know who is partic-
ipating in the conversation and the role of each participating agent. Each message
contains a conversation id that identifies the CPN model of that conversation. When
a message is sent from an initiator to a helper, if there is already such a conversation
(a conversation with that id) then it finds the CPN model of that conversation and
handles the message, but if not, it creates a new conversation with that conversation
id and handles the message.

Figure 2 shows the interaction between different agents’ components for a simple
request and response. All the inter-agent interactions are asynchronous messages,
while all the intra-agent interactions are method calls on different modules within
the agent. It shows that after finding a task, the CM creates a local instance of a
“conversation”. It also creates a CPN model (based on the interaction protocol and

@ Springer

A framework for facilitating cooperation in multi-agent systems 399

the agent’s role) and puts the token (task and possible teammates information) into
its CPN model. Then the agent executes its CPN which leads to a message to be
sent to available neighbouring agents asking for help. When a helper agent receives a
message, through its CM, similarly it executes its CPN model based on the new token
that was received (the message). This process is the basis of agent communication
in this distributed framework where agents reside on different hosts. After the first
interaction between two agents (for a particular task), if any of the agents receives
a message from the other agent, its CM will find the corresponding “conversation”
based on the message conversation-id and continue its conversation.

3.2 Coloured Petri Net

Place transition Petri Nets (PNs) are a well known formalism for modelling concur-
rent systems. A PN is a directed, connected, bipartite graph in which each node is
either a place or transition. Places contain tokens. If there is at least one token in
every place connected to a transition, then that transition is enabled. Any enabled
transition may fire. If a transition fires then one or more tokens are removed from
each input place and put into output places. The total number of tokens generated
from the transition to the output places may not necessarily match the number of to-
kens consumed by the transition. This is due to the fact that in PNs, tokens represent
the state of the model and not objects, and thus do not need to be conserved [9, 26].

CPNs [9] differ from PNs significantly, because their tokens are not simply blank
markers, but have data states associated with them. A token’s colour is a schema or
type specification. Places are sets of tuples called multi-sets. Arcs specify the schema
that they carry, and can also specify basic Boolean conditions. Specifically, arcs exit-
ing and entering a place may have an associated function that determines which multi-
sets are to be removed or deposited. Simple Boolean expressions, called guards, are
associated with transitions and enforce some constraints on tuple elements. A CPN
can be defined by a 7-tuple:

(X,P,T,A,C,G,E)

where

%: is a finite set of non-empty type specifications also called colour sets. A token is

a value belonging to a type.

is a finite set of places which are sets of tuples, called multi-set.

is a finite set of Transitions.

is a finite set of Arcs, which are directed connectors between places and transi-

tions.

is a colour function.

is a guard function which is a boolean expression. A guard is associated with a

transition and enforces some constraints on tuple elements before the transition

can be enabled.

E: is an arc expression function which specifies the schema it carries. It can also
specify the basic boolean conditions. Arcs directed to or away from a place may
have an associated function that determines what multi-set elements are to be
removed or deposited.

Z 3w

@ Springer

400 T. Ebadi et al.

Fig. 3 The CPN model of start send request out
Fig. 4 The CPN model of in

process request end

The distribution of tokens in the places of a CPN/PN is called marking. The mark-
ing of a CPN determines the state of the system being modeled. An enabled transition
may fire by removing tokens from input places specified by the arc expressions of all
the incoming arcs and depositing tokens in output places specified by the arc expres-
sions of the outgoing arcs.

3.3 JFern

JFern [27] is a lightweight Coloured Petri Net framework with a simulator, written in
Java. We used JFern as the Petri Net simulator to design the CPN models. The CM
requires the JFern engine to run the Petri Net model of each agent. In order for the
CM to work with CPN model, some special CPN places must be created in the PN
model.

e start, in and out: for the initiator of a conversation
e in and out: for the helper agents in a conversation.

The start place: is only required for the initiator role and is used for initiating
the conversation (putting the token which includes the necessary information for the
conversation, such as the conversation id and the name of the interaction protocol).

in place: all incoming messages to the agent are handled by the CM and relevant
information associated with a message will be encapsulated in a token and inserted
directly into this place.

out place: Every token that reaches the output place will have information that it
contains sent as an agent message to the receiving agent. The receiving agent will
take the received message and insert the relevant information into its in place of its
appropriate CPN.

Figures 3 and 4 show how a message token is sent from one agent to another. In
this example agent A sends a “hello” message to agent B. The send request transition
creates a message token and puts the token into out place. The CM of agent A sends
the message to agent B. The CM of agent B receives the message and puts the token
into in place of agent B. Then the process message transition prints the contents of
the message, which is “hello”.

4 Environment and agent model
We simulated a physical environment divided into several spatial regions. A RFID tag
is assumed to be deployed in each region and holds some information with respect

to the geographical coordinates of the region. The tasks information are encoded in

@ Springer

A framework for facilitating cooperation in multi-agent systems 401

RFID tags and are distributed in the environment. There are two types of robots.
Skilled robots which have more computational capabilities and are able to decode the
task information, and helper robots which have less computation capability and thus
cannot retrieve the task details. All the agents are equipped with low-range RFID
readers that allow agents to position themselves in the environment by reading the
coordinate information from environment tags.

Here agents deploy the FIPA [13] protocols for communication. Moreover, the en-
vironment has a task manager agent which produces tasks at certain intervals (which
can vary) and removes the tasks when their time has expired. It also rewards agents
participating in performing a task.

4.1 Agent’s capabilities

Agents are assumed to have different capabilities that are useful in satisfying different
task requirements. The capabilities of each agent are fixed and do not change over
time. In this work each agent has two capabilities but is expert at one of them. The
capability values representing the quality level of the expertise may range from O to 1.
For example an agent may have the following set as its capabilities.

(@=0.6, 8=0.0)

Such an agent is able to satisfy the a-requirement of a task with maximum level
of 0.6.

4.2 Tasks

Tasks are distributed in the environment and have different requirements that should
be satisfied by the different capabilities of the agents. A task is represented as a tuple:

(r,t, p,w)

where r: is the set of requirements. Each requirement is a value between O and 1, #: is
the time constraint of the task, p: is the task priority. The priority is a value between
0 and 9 and represents the task urgency, w: is the basic reward that a team receives by
performing the task. The reward is distributed equally to the agents that participate in
completing a task.

For instance, a task may have the following set as its requirements:

(x=0.2, =0.6)
Such task requires 0.2 of «a-capability of agents for its o« dimension and 0.6 of 8-
capability of agents for its 8 dimension. The agents participating in performing a
task receive the reward if they can perform the task before time expires.

4.3 Agents reward

The agents participating in a task receive a reward that is proportional to the amount
of the task that they had completed. All agents participating in a task receive the same

@ Springer

402 T. Ebadi et al.

reward calculated using the following equation:

R— |:Z Zk_;i(Ak)i] L wxp

; mXn
i=1

where (Ag);: is the capability of the agent Ay for ith requirement, r;: is the ith re-
quirement of the task, w: is the basic task reward, p: is the task priority, n: is the
number of task requirements, m: is the number of agents participating in performing
the task.

In the above equation if

MBI

ri
then
m
AL);
Zk=1(k)z -
ri

1

In some situations agents can be rewarded even if they only perform a portion of the
assigned task. The reward formula assures that the agents’ rewards are proportional
to the completed part of the task. For example consider the following situation. In
this case agent A and agent B have teamed up to perform a task. The capabilities
of agents A and B are (o = 0.3, 8 = 0.0), (¢ = 0.0, 8 = 0.2) respectively, the task
requirements are (o = 0.6, 8 = 0.4), the basic reward is 8 and the task priority is 1.
In such situation the reward of the agents will be:

(0.3 0.2) 8x1

R=—+4+—) % =2

0.6 04 2x2

In this example the agents have performed half of the task requirements, and they
receive half of the reward. The reward is divided by the number of requirements (so
that tasks that have more requirements do not generate higher rewards). In addition,
the reward must be divided by the number of agents (so the teams that have higher
number of participants do not generate higher reward in the system).

In the previous example if the number of teammates is not considered then each
agent receives 4 as reward and the total reward of 8 is generated in the system. In
order to explain the task reward partitioning further we can think of the following
example. Assume that instead of two agents there are three agents, and the respective
capabilities are (¢ = 0.1, 8 =0.0), (¢ = 0.2, § =0.0) and (e = 0.0, =0.2). In this
case each agent will receive reward of 4. Since there are now three agents in the team,
the total reward generated in the system will be 12. Although in both examples the
teams performed half of the requirements, the second example produces a greater

reward in the system. The inverse relation of reward with the number of teammates
will not allow this happen.

4.4 Agents roles

In this work each agent plays a role in each conversation. A role is the identity of a set
of acts executed by an agent. Here we consider scenarios in which cooperation among

@ Springer

A framework for facilitating cooperation in multi-agent systems 403

agents for performing a task is required and the agent’s role in each conversation
depends on the type of the agent. There are two roles: Initiator and helper.

o Initiator: It is a skilled agent which is capable of detecting tasks. If an agent detects
a task, then it may start a new conversation to find teammates.

e Helper: Agents which do not have the task detection device play the helper role.
These agents can be recruited by agents playing the Initiator role.

5 Modelling agent roles

In this work two models are designed based on the roles that the agents could play
in a conversation. Figures 5 and 6 show the CPN models for the initiator and helper
role, respectively. In these models an environmental system time is used to accom-
modate the time delay associated with agents’ responses in a distributed multi-agent
environment. This is to make sure that agents have a timeout mechanism and do not
wait indefinitely for responses from other agents when they are not available.

Figure 5 has three different phases. In the first phase the agent sends requests
to its neighbours and asks whether they could participate in performing the task. In
the second phase the agent tries to form a team based on positive responses that it
receives from requested agents. In the third phase the agent sends a move message
to its selected teammates and a reject message to other agents who had responded
positively but have not been selected by the initiator.

Phase 1: When an agent finds a task, it creates a token and puts it into the start
place. The token has the task information (requirements, time constraint, and reward)

C

rec d responses
rocess timeout

d (G P
o e
T

neighhors S

.
T._Tespgnses

procegs received responses

/

rejected :
IJ-\ send reject message ¢
- {

-

responses accept reswlses select teammatés team formed send movedteantinfo.
oy P N]}‘
|
g —
collect acceptance responses X

\gegrp not formed

\

Fig. 5 The Petri Net model for the initiator role

@ Springer

404 T. Ebadi et al.

time process timeout requests process requests

Fig. 6 The Petri Net model for the helper role

and the name of the interaction protocol for the conversation. The names of the helper
agents in the neighbourhood are put into neighbours place. Then the agent sends help
requests to its neighbours. After sending the requests, the sent time is put into the
time place. The agent waits until the waiting time elapses.

Phase 2: After the waiting time elapses, the agent begins processing all the re-
sponses that it has received from other agents and selects its teammates. The guard
on the arc that connects the in place to the received responses transition filters the re-
ceived messages and only allows messages with the accept or reject performative [28]
to be passed to the process received responses transition.

Figure 5 shows a hierarchical view of the initiator Petri Net for the process re-
ceived responses transition. The transition collect acceptance responses collects all
the positive responses and the transition select teammates processes the positive re-
sponses.

Phase 3: If the agent could find helper agents with the required capabilities, then a
move message is sent to the selected teammate that directs the agents to move. This
message also contains the details of the team. The agent also sends a reject message to
all the agents who have responded positively but have not been selected as teammates,
and informs them that they are not selected. If the agent cannot find agents with the
required capabilities, then it drops its current task and starts searching for new tasks.

Figure 6 shows the CPN model of the helper role. A helper agent receives requests
from various initiators in its neighbourhood (transition receive request). If the agent
is involved in performing another task, then it sends a reject message to the requester
agent (transition send reject). However, if the helper is available, then it may want to
wait for a certain length of time to receive several requests and then select the best
offer. The CPN model of the helper accommodates the waiting time by including the
process timeout transition. After receiving a request, the helper agent puts the current
time as a token into the time place. The process timeout transition compares the time
that the first request was received with the current time.

@ Springer

A framework for facilitating cooperation in multi-agent systems 405

Fig. 7 An example of a request
message

(REQUEST
:sender Initiator A
:content: (request-task task: (32,68)}
:protocol: (robot-cooperation
{role:initiator=initiator A,
participant= helper A,
participant= helper B,
)
{var: task-coordinates=(32,68) }
:receiver helper B
:conversation-id 1223859390825
:language FIPA-SL
:ontology robot-cooperation
:performative REQUEST

)

If the difference is more than the waiting time for helper agents, then it passes all
the received requests to the process request transition otherwise, it puts the time token
back to the time place. When waiting time has elapsed, the process request transition
processes all the requests and selects the best offer. Then it sends a positive response
to the selected initiator and changes its status to unavailable. A reject message is also
sent to all other initiators that have not been selected.

A helper agent with a positive response to a request may be rejected by the initiator
of the conversation if better-suited helpers are available. In this case the rejected agent
changes its status to available and can participate in other tasks (transition process
reject message). When a helper agent receives a move message from an initiator,
it starts moving toward the task. The move message also contains the name of the
teammates. After reaching the task location, it sends a message to its teammates
informing them of its current location. When all the teammates are present at the
task location, then the agents start performing the task. For performing a task, each
agent has to spend some time at the task which is proportional to the part of the task
that is to be completed by the agent.

If the agent does not reach the task location after a certain period of time, then
it sends a message to its teammates informing them about the issue (transition send
not reached). In this situation all the team members cancel their current contract
(transition process not reached message).

Figure 7 shows a request message from Initiator A to helper B. It shows that in this
conversation the initiator is talking to helper A and helper B for a task which is lo-
cated at the coordinates (32, 68) of the grid environment. The conversation-id allows
helper B to retrieve the CPN model of the conversation and continue its conversation
with Initiator A or create a CPN model for this conversation if this is the first time
that it interacts with Initiator A for the task.

@ Springer

406 T. Ebadi et al.

6 Strategies

Various strategies are accommodated and designed for selecting teammates and tasks
in the framework. The aim of these strategies is to show the capabilities of the frame-
work in adapting to the dynamic environments in real multi-agent robotic systems. In
such systems the skills of robotic agents and their distance from tasks have an impact
on agents’ performance. These strategies also allow measuring the performance of the
system in scenarios when time is critical and agents must perform their tasks within a
specified time. Since the framework is separated from the strategies, these strategies
can be easily replaced with other strategies without any changes to the framework.

6.1 Teammate selection strategies

In order to examine and demonstrate the capabilities of the developed agent co-
operation framework, we designed some specific teammate-selection strategies and
performed simulation experiments with them. Some strategies require the agents to
complete the tasks (best possible). However, some other strategies will allow partial
performance of the tasks (best available, nearest available and impatient strategy).
Agents which complete only part of the tasks receive a reward which is proportional
to the completed part of the task but agents which complete the tasks will receive the
full reward for the tasks.

6.1.1 Nearest available strategy

An agent that employs this strategy waits for certain length of time and then selects
the agents that lie at the least distance to the task. These agents can perform some
parts of a task. Agents with this strategy receive partial rewards proportional to the
completed part of the task. The Algorithm 1 shows the Java pseudocode for an agent
that employs this strategy.

The initiator agent ranks all the helper agents that have responded positively to
its request, based on their distance from the selected task. The distance refers to the
number of steps that the agent must take in order to reach to the task location. Please
note that nearest available strategy may lead to selection of redundant helpers (i.e.
the last selected helper may have a high capability so the first selected helpers were
not really needed).

Algorithm 2 shows the pseudocode for calculating the agent distance from the
task.

6.1.2 Impatient strategy

Agents that employ this strategy wait for a short time and select the first agents that
respond to their requests as their teammates. In most cases these agents simply select
all the agents that have responded positively.

@ Springer

A framework for facilitating cooperation in multi-agent systems 407

Algorithm 1 Nearest available strategy

/Iretrieve the task requirements
taskorequirement=task.get(aRequirement);
taskBrequirement=task.get(BRequirement);
availableHelpers =this.getPositiveResponses();
Iterator iterHelper= availableHelpers.Iterator();
//calculate the distance rating for all the available agents
while (iterHelper.hasNext()){

helper = iterHelper.next();

dist = calculateDistanceToTask(helper,task);

if(dist==0)

sortedMap.put(1,helper);
else
sortedMap.put(1/dist,helper);
}
//sorts the agents based on their distance ratings
sort(sortedMap);
foundoCapabilities=0;
foundBCapabilities=0;
Iterator iterSort= sortedMap.values.Iterator();
//select teammates from the sorted collection
while(iterSort.hasNext() &&
(foundaCapabilities < taskorequirement ||

foundBCapabilities< taskPrequirement)){
selectedHelper = iterSort.next();
teammates.add(selectedHelper);
foundaCapabilitiest=selectedHelper.get(aCapability);
foundBCapabilities+= selectedHelper.get(BCapability);

}

Return teammates;

6.1.3 Best available teammate strategy

Agents that employ best available teammate strategy initially wait for certain length
of time. After the waiting time has elapsed, the agent selects helper agents based
on their quality. The quality refers to the potential helper agent’s capabilities with
respect to the task requirement. For each agent A the quality is measured based on

@ Springer

408 T. Ebadi et al.

Algorithm 2 Calculate distance to task

xHelperPosition = helper.get(xPosition);
yHelperPosition = helper.get(yPosition);
xTaskPosition = task.get(xPosition);
yTaskPosition = task.get(yPosition);
//calculate the distance of the agent to the task
distance=|xTaskPosition-xHelperPosition|+
lyTaskPosition-yHelperPosition|

return distance;

the following equation:

n

Voiern)#£0 = Qa =)

i=1

(A))i

ri

where r: is set of task requirements, r;: is the ith requirement of the task, n: is the
number of task requirements, (A ;);: is the capability of agent A ; that corresponds to
ith requirement of the task.

The Q4; indicates the quality of an agent A; for a particular task. For instance
if an agent has the capabilities (¢ = 0.2, 8 = 0.0) and the task requirements are
(¢ =0.3,8 =0.1), then the quality of the agent is % + % = 0.66. If an agent
has a higher capability for a particular task requirement, then the ratio (capabil-
ity/requirement) is considered to be 1, so the agents that have higher quality than
the task requirements are not rated higher than 1.

These agents may select teammates that only have some of the expertise required
for the task, in which case they receive a partial reward for the part of the task that is
completed. Agents with this strategy usually receive a high reward for each task due
to selecting high quality teammates. The Algorithm 3 shows the Java pseudocode for
selecting the best available teammate strategy.

6.1.4 Best possible teammate strategy
An agent that employs this strategy waits for a certain length of time and only selects

other agents as its teammates if they can complete the task.

n
Vrier —/——> Z(Ak)i >
k=1

where r;: is each requirement of the task, r: is the set of task requirements, n: is the
number of agents with a positive response to the initiator request, (Ag); : the capability
of agent Ay that corresponds to ith requirement of the task.

@ Springer

A framework for facilitating cooperation in multi-agent systems 409

Algorithm 3 Best available strategy

foundoCapabilities=0;

foundBCapabilities=0;

availableHelpers = positiveResponses();

//retrieve task requirements

taskarequirementValue = task.get(aRequirement);

taskPrequirementValue = task.get(BRequirement);

Iterator iterHelper= availableHelpers.Iterator();

//select teammates based on their quality

while(iterHelper.hasNext() &&

(foundoCapabilities < taskarequirement ||
foundBCapabilities<taskPBrequirement)){

/*calculate the quality of the agents for the task and
sort them based on their quality*/
sortedListOfHelper=sortBasedOnQuality(
availableHelpers);
selectedHelper = sortedListOfHelpers.get(0);
teammates.add(selectedHelper);
helperaCapability= selectedHelper.get(aCapability);
helperpCapability= selectedHelper.get(BCapability);
foundoCapabilities += helperoCapability ;
foundBCapabilities += helperpCapability ;

// update the task requirements

taskarequirementValue= taskorequirementValue-
helperaCapability;
taskPrequirementValue= taskPrequirementValue-
helperpCapability;

availableHelpers.remove(selectedHelper);

}

Return teammates;

6.2 Task selection strategies

The following describes the strategies that agents could adapt for selecting their tasks.
These strategies correspond to the disaster scenario where new tasks with various
urgency levels may appear at the different locations unpredictably. The aim is to study
the effect of these strategies on the performance of the agents with various teammate
selection strategies and thereby demonstrate how different selection strategies are

@ Springer

410 T. Ebadi et al.

most appropriate for different circumstances. Thus it is advantageous for an agent
cooperation framework to offer flexibility in connection with task selection strategies.

6.2.1 High priority task selection strategy

Agents with this strategy select a task with the highest priority within their vicinity
(task reading range). If there are several tasks with the highest priority value then the
closest one is selected.

6.2.2 Nearest task selection strategy

Agents with this strategy select a task that lies at the least distance away from them.

7 Learning and adaptation

Agents may be required to change their strategies under various circumstances in
order to adapt to dynamic conditions in the environment. Therefore, there is a need
for a mechanism that allow agents to find a strategy that improves the reward for the
agents under varying circumstances. In our experiment a simple learning mechanism
is adapted. Each agent keeps track of its performance and assesses its performance
at certain intervals. Initially agents start exploring with various possible strategies.
Each agent builds a list of different strategies and updates the average reward of
each strategy after each interaction. After exploring for a certain duration, each agent
makes a decision based on the gained reward for each strategy and selects the strategy
that has given the agent the highest reward. After selecting the strategy, then the
agent performs with its selected strategy for another round. If the current reward
(gained during the current period) is less than the previous reward, then the agent
starts exploring its strategies again; otherwise it keeps performing with its current
strategy for another period. This simple learning mechanism allows agents to adapt
to dynamic conditions in the environment.

8 Experiments
8.1 Experimental setup

Note that while the developed framework was empirically examined here by per-
forming computer simulations of agent activity, the framework is ultimately intended
for deployment on real, physical robots. Our multi-threaded simulation environment
comes close to reproducing the concurrency conditions of real distributed multi-agent
robotic systems.

The experimental agent framework was tested by employing OPAL agents on a
simulation grid-type environment where agents are capable of running multiple con-
versations over various tasks concurrently. The simulation environment is a grid of
100 by 100 cells in which each cell refers to one square of the grid. There are 100

@ Springer

A framework for facilitating cooperation in multi-agent systems 411

Table 1 Simulation parameters

Parameter Value
Agents visibility range for other agents 10
Agents visibility range for tasks 5

Task production interval 120000
Waiting time for non-Impatient strategies 20000
Waiting time for Impatient strategy 12000
Waiting time for helpers 500
Time unit 5000
Task priority 0 < random < 10
No. of Initiator agents 16

No. of helpers agents 84

robots with different capabilities. Out of the 100 robots only 16 of them are able to
detect the tasks. Task requirements and agents capabilities are chosen randomly. The
basic reward for each task is 7. The visibility range of all the agents is fixed to 10
cells, but the visibility range for tasks is set to 5. This allows only a few agents to be
within range of a task so that they can see it at any point of time. This reflects the
low visibility range for detecting the tasks. In robotic applications, the sensors that
are used to read the information from the environment (identify the task) have a short
range (i.e. cameras, thermometer). Although the sensory range for task detection is
relatively short, it may be possible in the physical world of robots to employ greater-
ranged WiFi or Bluetooth technology for inter-agent communications. We simulate
these circumstances by making the communication range between agents greater than
the task-identification range. Table 1 shows the simulation parameters.

We used the system time in our framework. Time unit refers to the time required
to move from one cell of the grid environment to the next adjacent cell. For example
if an agent needs to move to a location which is about 8 cells away from its current
location, it takes 8 time units for the agent to reach to its destination. In addition there
is some time associated with performing a task by an agent. For each unit of the task
requirement (0.1), an agent must wait one time unit on the task location. For instance,
if there is a helper agent that is assigned to perform 0.3 of the «-requirement of a task,
then the agent must spent 3 time units on task location before it can leave the location.

In all the experiments agents and tasks are distributed randomly on the grid en-
vironment. All times in this system are in milliseconds and all the simulations were
run for 960000 milliseconds (16 minutes). The results presented in the diagrams are
averaged over ten runs.

The aim of the first two experiments is to show what strategy is suitable under
various environmental conditions. These conditions can vary very much depend on
the number of tasks in the area and also the task time. The task time refers to the time
given to the agents to perform a task.

@ Springer

412 T. Ebadi et al.

Fig. 8 The effect of agents’ 90
strategies on agents reward 20
when task density is low

70

™ Best available

Reward

M Best possible
Nearest available

™ Impatient

30000 40000 50000 70000

Task time (ms))

8.2 The effect of agent’s teammate selection strategy on agent’s reward when task
density is low

The aim of this experiment is to show the effect of various teammate selection strate-
gies on agents’ rewards in situations where task density is not very high and under
various task time constraints. In this experiment the task manager produces 20 tasks
every 120000 milliseconds, and all tasks have the same priority (1). Four groups of
agents were deployed in each simulation run, where each group has one strategy, so
various strategies compete against each other. All skilled agents wait for 20000 milli-
seconds to receive their responses, except impatient agents, which wait 12000 mil-
liseconds.

Figure 8 shows that when the time is tight (30000 ms) the impatient strategy out-
performs other strategies, because agents with this strategy do not wait to receive
their response back from most of the requested agents. Since time is tight, these
agents have time to move toward their tasks and perform them. However, the other
groups that wait for longer period may not be able to reach to the task positions and
perform them before time expires. When the time is a bit less tight (40000 ms), the
nearest available strategy outperforms the other strategies. These agents wait for a
certain length of time and select the closest agents as their teammates to work on
tasks. Since agents with this strategy select the closest agents, they have a higher
chance of performing their tasks on time. The low reward of agents with impatient
strategy is due to performing only small parts of those tasks (since they do not wait
long enough to find agents with the required capabilities). The reward of the best
available strategy is slightly less than the reward of agents with the nearest available
strategy under somewhat more relaxed time constraints (4000 ms). These agents se-
lect teammates with high quality capabilities, which may be farther away from task
position and therefore they may not have enough time to reach the task position on
time. When the task time is further relaxed (50000 and 70000 ms), the best available
strategy starts outperforming other strategies, which is due to their performing greater
portions of the tasks by having high quality teammates.

The agents with the best possible strategy perform worse under various time con-
straints. This is the effect of the perfectionist attitudes of these agents. This approach
is useful when there is more incentive in fully completing a job. For example, if there
were a container full of poisonous and explosive chemicals near to a building which

@ Springer

A framework for facilitating cooperation in multi-agent systems 413

Fig. 9 The effect of agents’ 90
strategies on agents reward 20
when task density is high 70 -
60 —
% 50 ™ Best available
E 40 - —
o« M Best possible
301 Nearest available
20 4
M Impatient
10 +—

o -
30000 40000 50000 70000

Task time (ms)

is on fire and there are people trapped inside the building, then partially removing the
explosive material is insufficient.

8.3 The effect of agent’s teammate selection strategy on agent’s reward when task
density is high

These experiments study the effect of agents’ strategies on their rewards when the
task density is high. The agent manager produces 60 tasks every 120000 ms, and the
other parameters are the same as in the previous experiment.

Figure 9 shows that when time is tight, the result is similar to the previous exper-
iment. However, when time is relaxed (50000 and 70000 ms), the nearest available
strategy outperforms the other strategies. This is due to the fact that agents which
select their nearest neighbours reach the task location more quickly. Since the task
density is high, these agents will perform more tasks and therefore increase their
rewards. The reason that the reward of the impatient strategy is lower than nearest
strategy is that impatient agents form a team with a very small number of agents
which in most cases do not have the required capabilities. Therefore, they are only
capable of performing a small part of each task.

8.4 The effect of agent’s task selection strategy on agent’s reward

These experiments show the effect of various agents’ task selection strategies on
agents reward. Two separate runs of simulation were performed for each teammate
selection strategy. The task manager produces 60 tasks every 120000 ms and task
time is relaxed (70000 ms).

Figure 10 shows that best available strategy performs better when agents select
high priority tasks. These agents perform large portions of high priority tasks and
therefore receive higher rewards. The nearest available strategy performance im-
proves by selecting closer tasks. Since the task density is high, agents with this strat-
egy can perform more tasks by selecting closer teammates and improve their rewards.
The impatient strategy performs well by selecting high priority tasks which gives the
agents a chance to gain a high reward. The performance of the best possible strategy
is not very different under either of the two task selection strategies.

@ Springer

414 T. Ebadi et al.

350

300

250

B 200 4

z

& 150 4 —————————— H(losesttask
100 - High priority task

50 - _ —
o - =i

Best available Best possible Nearest available Impatient

Task selection strategy

Fig. 10 Effect of agents’ task selection strategies on agents reward

50
200 =3

250 //
200 /
150 / == |earning

100 non-learning
50 -J

120000 240000 360000 480000 600000 720000 B40000

Reward

Time

Fig. 11 Effect of agents’ learning

8.5 The effect of agent’s learning on agent’s reward

For this experiment two simulation runs were executed. In one experiment four
groups of agents were formed, where each group deploys a single strategy. The strat-
egy of the agents is fixed for this experiment, and agents do not change their strategies
during the simulation. In the second experiment all the agents are set to be learning
agents and deploy the learning mechanism explained in Sect. 7. A learning agent may
change its strategy if the following condition holds.

Re —a < Rp

where R.: the reward that has been achieved during the current performance period,
Rp: the reward that has been achieved during the previous performance period, a: 10.

In this experiment the task manager produces 60 tasks every 120000 ms, so task
density is high and the task time constraints is very relaxed (70000 ms).

In this situation after the first exploration phase (at 120000 ms), all the learning
agents select their strategies. Since the task density is high and task time constraint
is relaxed, all the learning agents change their strategies to nearest available, which
allows agents to perform a high number of tasks and thus improve their reward. Fig-
ure 11 compares the total reward of agents in the system when agents learn and do
not learn.

@ Springer

A framework for facilitating cooperation in multi-agent systems 415

9 Conclusion

This paper has introduced a general lightweight framework for enhancing cooper-
ation among autonomous agents. The agent robots communicate by employing the
standard FIPA protocols. The framework employed CPNs to model concurrent activ-
ities of the agents. The use of CPNs is useful for modelling and managing multiple
conversations for individual agents. This facilitates the development and use of agent-
based systems in real time situations in which the agents must coordinate with the
agents in a concurrent fashion. The framework allowed agents to execute their CPN
models by using JFern [27] engine. The simulation of running system was animated
by using JFern and can be used for validating the models.

Although we only presented two roles for the agents in this paper but the frame-
work allows the use of multiple roles for various tasks for each agent. In addition,
the system allows agents to adapt to new conditions by altering their CPNs. How-
ever, due to space constraints this feature is not discussed in this paper. Moreover,
the framework can accommodate varying tasks and partner selection strategies. It
also accommodates dynamic situations in which the participating agents may change
their strategies if they learn from their past experiences.

The performance effects of various teammate and task selection strategies has been
empirically evaluated. Our experiments show that under various environmental con-
straints, different strategies may be preferred. When time constraints were tight in
our experimental scenarios, the impatient strategy performed best, regardless of the
task density. However, when time requirements were relaxed and the task density
was low, the best available strategy that performed large portions of tasks performed
better than other strategies. When time requirements were relaxed but the task den-
sity was high, then the nearest available strategy outperformed other strategies, due
to performing a greater number of tasks. In addition, the effect of the task selection
strategy on agents’ reward was investigated (when task density was high and the task
time constraint was relaxed). Under such constraints, the best available and impa-
tient strategies performed well by selecting high priority tasks. However, the perfor-
mance of the nearest available strategy improved by selecting the closest tasks. The
learning experiment shows the adaptation capability of the agents. Overall, the devel-
oped agent cooperation framework supports the efficient design, development, and
physical deployment of multi-agent systems that engage in cooperative behaviour to
perform tasks in spatially-distributed environments.

In future investigations, we will examine situations in which robots alter their
strategies in heterogeneous environments. For instance, in some area of the environ-
ment the task density may be high, while in the rest of the environment the task
density may be low. A richer learning mechanism can also improve the adaptation.
The examined strategies could help in different situations such as natural disaster
where speed is crucial and agents may require different strategies. All of these ex-
perimental strategies could help in the development of agile and adaptive cooperative
agent systems that can vary their activities according to the circumstances. We will
also examine the effect of helper agents’ attitudes and experience toward teammate
and task selection. In situations where initiator agents may adapt different strategies,
the decision of helper agents on selecting a request can affect the performance of the

@ Springer

416 T. Ebadi et al.

helper agents. For instance the helper agents may be interested to work with nearest
available strategy in areas where task density is very high so that they can perform
more tasks and improve their reward. In both of these cases the issue is agent learning
and adaptation in dynamic environments.

References

1. FIPA (2003) FIPA specifications. FIPA contract net interaction protocol specification. Version H.
Available from: http://www.fipa.org/specs/fipa00029/index.html
2. FIPA (2003) FIPA query interaction protocol specification. Available from: http://www.fipa.org/specs/
fipa00027/index.html
3. Dang J, Huhns MN (2006) Concurrent multiple-issue negotiation for Internet-based services. IEEE
Internet Comput 10(6):42—49. http://dx.doi.org/10.1109/MIC.2006.118
4. Damas B, Lima P (2004) Stochastic discrete event model of a multi-robot team playing an adversar-
ial game. In: Fifth IFAC/EURON symposium on intelligent autonomous vehicles IAV2004, Lisboa,
Portugal, 2004
5. Milutinovic D, Lima P (2002) Petri Net models of robotic tasks. In: IEEE international conference on
robotics and automation, Washington, DC, USA, 2002, pp 4059-4064
6. Desel J, Oberweis A, Zimmer T, Zimmermann G (1997) Validation of information system models:
Petri Nets and test casegeneration. In: Proceedings of the workshop on challenges in open agent
systems, Orlando, Florida, 1997, pp 3401-3406
7. Poutakidis D, Padgham L, Winikoff M (2002) Debugging multi-agent systems using design artifacts:
the case of interaction protocols. In: Proceedings of the first international joint conference on au-
tonomous agents and multiagent systems: part 2, Bologna, Italy, 2002. ACM Press, New York
8. Ziparo VA, Locchi L, Nardi D, Palamara H, Costelha H (2008) Petri Net plans. In: Proceedings of
seventh international conference on autonomous agents and multiagent systems, Estoril, Portugal,
2008, pp 79-86
9. Jensen K (1992) Coloured Petri Nets: basic concepts analysis methods and practical use, vol 1.
Springer, Berlin
10. Nowostawski M, Purvis M, Cranefield S (2001) A layered approach for modelling agent conver-
sations. In: Proceedings of the 2nd international workshop on infrastructure for agents, MAS, and
scalable MAS, 5th international conference on autonomous agents, Montreal, 2001, pp 163-170
11. Cost RS, Chen Y, Finin T, Labrou YK, Peng Y (1999) Modeling agent conversations with colored
Petri Nets. In: Proceeding of the third international conference on autonomous agents (Agents’99),
workshop on agent conversation policies, Seattle, Washington, 1999
12. Cost RS, Chen Y, Finin T, Labrou Y, Peng Y (2000) Using colored Petri Nets for conversation mod-
eling. In: Lecture notes in computer science. Springer, Berlin, pp 178-192
13. FIPA (2002) The foundation for intelligent physical agents. Available from: http://www.fipa.org/
repository/index.html
14. Billington J, Gupta AK (2007) Effectiveness of coloured Petri Nets for modelling and analysing the
contract net protocol. In: Proceeding eighth workshop and tutorial on practical use of coloured Petri
Nets and the CPN tools, Aarhus, Denmark, 2007, pp 49-65
15. Gutnik G, Kaminka GA (2006) Representing conversations for scalable overhearing. J Artif Intell Res
25:349-387
16. Nowostawski M, Purvis M (2007) The concept of autonomy in distributed computation and multi-
agent systems. In: International conference on intelligent agent technology. IEEE Computer Society,
Los Alamitos, pp 420-423
17. Weyns D, Holvoet T (2004) A colored Petri Net for regional synchronization in situated multi-agent
systems. In: Proceedings of first international workshop on Petri Nets and coordination, Bologna, Italy
2004, pp 65-86
18. Costelha H, Lima P (2008) Modelling, analysis and execution of multi-robot tasks using petri nets. In:
Proceedings of the 7th international joint conference on autonomous agents and multiagent systems.
International Foundation for Autonomous Agents and Multiagent Systems, Richland, pp 1187-1190.
19. Holvoet T (1995) Agents and Petri Nets. Petri Net Newsletter (49), 3-8

@ Springer

http://www.fipa.org/specs/fipa00029/index.html
http://www.fipa.org/specs/fipa00027/index.html
http://www.fipa.org/specs/fipa00027/index.html
http://dx.doi.org/10.1109/MIC.2006.118
http://www.fipa.org/repository/index.html
http://www.fipa.org/repository/index.html

A framework for facilitating cooperation in multi-agent systems 417

20.

21.

22.

23.
24.
25.
26.

27.
. FIPA (2002) FIPA ACL message structure specification. Available from: http://www.fipa.org/specs/

Chainbi W, Hanachi C, Sibertin-Blanc C (1996) The multi-agent prey/predator problem: a Petri Net
solution. In: Symposium on discrete events and manufacturing systems, CESA’96 IMACS multicon-
ference computational engineering in systems applications (CESA), Citeseer, Lille, France, 1996, pp
291-299

Sibertin-Blanc C (1994) Cooperative nets. In: Lecture notes in computer science, vol 815. Springer,
Berlin, pp 471-490

Kohler M, Moldt D, Rolke H (2001) Modelling the structure and behaviour of Petri Net agents. In:
Proceedings of the 22nd international conference on application and theory of Petri Nets. Springer,
Berlin, pp 224-241

Duvigneau M, Moldt D, Rolke H (2003) Concurrent architecture for a multi-agent platform. In: Third
international workshop on agent-oriented software engineering, pp 59-72

Kummer O, Wienberg F, Duvigneau M (2001) Renew-user guide. Department of Informatics, Uni-
versity of Hamburg, Hamburg

Purvis M, Nowostawski M, Cranefield S (2002) A multi-level approach and infrastructure for agent-
oriented software development. In: First international conference on autonomous agents and multi
agent systems, Bologna, Italy, 2002. ACM Press, New York, pp 88-89

DESIGN/CPN tutorial (2009) Version 5.0, Meta Software Corporation

Nowostawski M (2000) JFern-Java-based Petri Net framework

fipa00061/SC00061G.html

@ Springer

http://www.fipa.org/specs/fipa00061/SC00061G.html
http://www.fipa.org/specs/fipa00061/SC00061G.html

	A framework for facilitating cooperation in multi-agent systems
	Abstract
	Introduction
	Related work
	Agent framework
	OPAL agent and conversation manager
	Coloured Petri Net
	JFern

	Environment and agent model
	Agent's capabilities
	Tasks
	Agents reward
	Agents roles

	Modelling agent roles
	Strategies
	Teammate selection strategies
	Nearest available strategy
	Impatient strategy
	Best available teammate strategy
	Best possible teammate strategy

	Task selection strategies
	High priority task selection strategy
	Nearest task selection strategy

	Learning and adaptation
	Experiments
	Experimental setup
	The effect of agent's teammate selection strategy on agent's reward when task density is low
	The effect of agent's teammate selection strategy on agent's reward when task density is high
	The effect of agent's task selection strategy on agent's reward
	The effect of agent's learning on agent's reward

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

