J Supercomput (2011) 56: 106128
DOI 10.1007/s11227-009-0345-y

A hybrid fault tolerance technique in grid computing
system

Kalim Qureshi - Fiaz Gul Khan - Paul Manuel -
Babar Nazir

Published online: 19 January 2010
© Springer Science+Business Media, LLC 2010

Abstract In order to achieve high level of reliability and availability, the grid in-
frastructure should be a foolproof fault tolerant. Fault tolerance plays a key role in
order to assert availability and reliability of a grid system. Since the failure of re-
sources affects job execution fatally, fault tolerance service is essential to satisfy QoS
requirement in grid computing.

In this paper we proposed two hybrid fault tolerance techniques (FTTs) that are
called alternate task with checkpoint and alternate task with retry. These proposed
hybrid FTTs inherit the good features and overcome the limitations of workflow level
FTT and task level FTT. We evaluate the performance of our proposed FTTs under
different experimental environments. Finally, we conclude that alternate task with
checkpoint improves the reliability of a grid system more significantly than alternate
task with retry.

Keywords Grid computing - Workflow level fault tolerance technique - Task level
fault tolerance technique - Alternate task with checkpoint - Alternate task with retry

1 Introduction

Grid is an infrastructure that enables the integrated, collaborative use of high-end
computers, networks, databases, and scientific instruments owned and managed by
multiple organizations. Grid environment provides computing resources made avail-
able to the user as needed. The characteristics of grid infrastructure are cost, per-

K. Qureshi () - P. Manuel
Information Science Dept., Kuwait University, Kuwait City, Kuwait
e-mail: qureshi @sci.kuniv.edu.kw

F.G. Khan - B. Nazir
COMSATS Institute of Information Technology, Abbottabad, Pakistan

@ Springer

mailto:qureshi@sci.kuniv.edu.kw

A hybrid fault tolerance technique in grid computing system 107

formance, security, scalability, interoperability, reliability, flexibility, transparency,
accuracy.

In short, the grid computing vision is to achieve a system which is automatically
scalable, easy to use, secure, autonomic and fault tolerant. In modern computing
world, corporate users emphasize on availability and reliability. In grid architecture
with dozens of grid services, it is important for each of these services to be highly
available since each service can affect most/all of other grid services. For each gri-
dlet, reliability guarantees complete job execution, Guaranteed Delivery, Duplicate
Elimination, and Message Ordering. In order to achieve high level of reliability and
availability, the grid infrastructure should be a foolproof fault tolerant. Fault toler-
ance plays a key role in order to assert availability and reliability of a grid system.
Since the failure of resources affects job execution fatally, fault tolerance service is
essential to satisfy QoS requirement in grid computing. Some known domain-specific
fault tolerance techniques such as checkpointing, master—worker and replication are
briefly explained in the following.

Checkpointing scheme: A common method of ensuring the progress of a long run-
ning application is to take a checkpoint, i.e., to save its state on stable storage periodi-
cally. A checkpoint is an insurance policy against failures in the event of a failure; the
application can be rolled back and restarted from its last checkpoint thereby bounding
the amount of lost work to be recomputed. In case of any failure, Grid Checkpoint-
ing Architecture recovers the checkpointed application to the point where the last
checkpoint was taken [1].

Snapshot scheme: The state of a distributed application consists of the instantaneous
snapshot of the local state of processes and communication channels. However, in an
asynchronous distributed system with no global clocks or shared memory, we can
only devise algorithms to approximate this global state [2]. A snapshot is deemed
consistent if it could have occurred during the execution of an application [2, 3]. To
yield a consistent snapshot, an algorithm must ensure that all messages received by a
process are recorded as having been sent.

Replication scheme: A fault-tolerant scheduling policy that loosely couples job
scheduling with job replication scheme has a propose [4].

The fault tolerance or graceful degradation is the property of distributed comput-
ing system which distinguishes it from sequential computing. This property enables
distributed system to carry on its computation even on individual component’s failure
without terminating the entire computation [5, 6]. Due to the diverse nature of grid
and large-scale applications on Grid, fault tolerance becomes a challenge on devel-
oping, deploying and running applications on grid environments [7, 8].

Due to high level of complexity and heterogeneous nature of grid as compared to
traditional computing systems, existing FTTs of traditional systems are not sufficient
to manage faults in grid computing. Therefore we require special FTTs that could
work well in complex and heterogeneous environments of grid. Consequently, over
the years researchers have yielded a considerable body of theoretical and practical
knowledge of fault detection, handling, and recovery techniques [6, 10].

@ Springer

108 K. Qureshi et al.

Task level techniques refer to recovery techniques that are applied at the task level
to mask the effect of faults irrespective of fault types [9, 12]. Task level FTTs [11]
include the following:

1. Retry—Retry technique for fault tolerance [10] is the simplest technique being
used. After a failure it retries the task on the same grid resource regardless the
cause of failure up to some threshold value with the expectation that there will be
no failure in successive attempts.

2. Alternate resource—The alternate resource technique works just like the retry
technique except it retries on an alternate resource rather than retrying on the same
resource again and again [12, 14].

3. Checkpoint—The checkpoint technique [15, 16] periodically saves the state of
an application. On failure it moves the task to another resource and starts the
execution from the last saved checkpoint.

4. Replication—The replication technique in fault tolerance [9, 17] runs different
replicas of same task on different grid resources simultaneously expecting that at
least one of them will complete successfully.

Because of the simplicity of implementation, retry and alternate resource tech-
niques are being mostly used [14] as compared to replication and checkpointing [13]
techniques. Workflow level FTTs [8] change the flow of execution on failure based
on the knowledge of task execution context. Workflow level FTTs [10] are classified
as follows:

1. Alternate task—is similar to retry technique. The only difference is that it ex-
changes a task with different implementation of same task with different execution
characteristics on failure of the first one [12, 14].

2. Redundancy—The redundancy technique [17] requires different implementations
of same task with different execution characteristics which run in parallel as op-
posed to task level replication technique, where same tasks are replicated on dif-
ferent grid resources.

3. User defined exception handling—In user defined exception handling technique
[10, 17], user specifies the particular treatment to workflow of a task on failure.

4. Rescue workflow—The rescue workflow technique [10] allows the workflow to
continue even if the task fails until and unless it becomes impossible to move
forward without catering the failed task.

In grid computing, resource management and job scheduling are classified into
two broad categories: (a) system-centric and (b) user-centric. The system-centric ap-
proach [18] aims to maximize the overall system utilization by considering the para-
meters such as throughput, turnaround time, transmission delay, waiting time, etc. On
the other hand, user-centric approach focuses on meeting the QoS requirements such
as duration and cost of computation. As most of the grid resource management and
scheduling systems, such as Condor, AppLeS PST, PUNCH, and Netsolve, working
on system-centric approach [18, 19], we also identify system-centric parameters for
measuring performance in our proposed strategy.

A gridlet is a package that contains all the information related to the job and its
execution management details such as job length expressed in MI (Millions Instruc-

@ Springer

A hybrid fault tolerance technique in grid computing system 109

tion), the size of input and output files, and the job owner ID. Individual users model
their application by creating gridlets for processing them on grid resources.

The rest of the paper is organized as follows. In Sect. 2, we discuss the problem
statement along with the proposed solution to the problem. Section 3 contains the
methodology that we have adopted. Section 4 comprises the experimental results
along with their discussion, while in Sect. 5 we draw conclusion of our study.

2 Fault tolerance in grid computing
2.1 Problem definition

Alternate task technique is one of the important FTTs at workflow level. Alternate
task technique exchanges a task with other implementations of the same task but
with different execution characteristics on failure of the first one. For example, sup-
pose that a fault occurs due to memory overflow. Then the alternate task technique
will resubmit the second implementation of the same task which would require less
memory load as compared to the first one. Here while initiating the second imple-
mentation, alternate task technique assumes that this task will not fail again and it
has no mechanism to handle a fault the second time. But the resubmitted task can fail
again due to some other reason such as thread conflicts or out-of-disk space on that
resource. In this case, alternate task technique does not provide any mechanism to
handle a failure that occurs the second time due to some other reason or even due to
the same reason because it has only one alternative implementation of that task which
it has already applied.

On the other hand, checkpoint technique being the task level FTT does not con-
sider the reason of a failure. Suppose that a resource available to us does not have the
capability to handle a specific type of a fault such as out-of-memory or disk space to
execute the task. In this case, simple checkpoint technique will never be able to finish
the execution of the task.

In this paper we consider the problems of workflow level alternate task technique
and task level checkpoint technique. We provide a novel and efficient FTT combining
the two techniques. We call it alternate task with checkpoint. This technique over-
comes the limitations of alternate task and checkpoint FTTs and inherits the best
features of both, as is shown in Fig. 1. It shows a significant improvement over other
techniques under different conditions considered in our experiments, such as differ-
ent workloads with different percentages of faults injected in a system. In our study,
we consider different performance parameters such as throughput, turnaround time,
waiting time and network delay.

2.2 Alternate task with retry
The simplest solution to this problem is to hybrid a task level FTT and workflow
level FTT. This is to avoid failures at both task level and workflow level separately.

Alternate task with retry is a hybrid of “alternate task” FTT at workflow level and
“retry” FTT at task level. After the failure of an alternate task, alternate task with

@ Springer

110

K. Qureshi et al.

FTT Name

Alternate Task

Checkpoint

Fig. 2 Framework of alternate

task with retry

Saves Consider Multiple Consider Multiple Consider Alternate
Intermediate Implementations Resubmissions Resource
Results
No Yes No No
Yes No Yes Yes
Alternate Task | | Checlkpoint
Best features of Alternate tas Best features of Checkpoint
Alternate Task with Checkpoint
Fig. 1 (Color online) Features of alternate task with checkpoint

Alternate

Task
Manager

4
A

Fault A Status Grid

Manager | Collector Resource
A
B
y

Retry » 7 ob

Manager Dispatcher
A
A

o >

: When gridlet fails first time
: When alternate gridlet fails

retry FTT simply retries the failed alternate task on the same resource up to a certain
threshold value which is in our case three. In this way we can overcome failures of
a system to a certain extent. However, it is not an efficient solution to this problem,
as our results show in the following sections. Figure 2 shows the framework of this
technique and different steps involved in it. The process is given in Algorithm 1.

Algorithm 1 Alternate_Task_with_Retry ()

1. STATUS COLLECTOR: Collects the status of failed gridlet from the grid resource
and forwards the gridlet_ID to the fault manager

@ Springer

A hybrid fault tolerance technique in grid computing system 111

2. FAULT MANAGER: Receives the failed gridlet_ID. If a gridlet fails the first time,
it interacts with alternate task manager. If it is an alternate gridlet, it interacts with
the retry manager.

a. ALTERNATE TASK MANAGER: If the gridlet fails the first time, then it is
forwarded to the alternate task manager. The alternate task manager selects an
appropriate alternative gridlet and sends it to the job dispatcher.

b. RETRY MANAGER: If itis an alternate gridlet, then it is forwarded to the retry
manager. The retry manager verifies the number of submissions of the alternate
gridlet. If it is within the threshold value, it forwards the alternate gridlet to the
grid dispatcher.

3. JOB DISPATCHER: Receives the gridlet and resubmits it to the same grid re-
source.

2.3 Alternate task with checkpoint

In this FTT we choose task level checkpoint FTT with workflow level alternate task
FTT in order to minimize the failures. When a task fails the first time, alternate task
manager finds an appropriate alternate task and forwards it to the job dispatcher. The
job dispatcher submits the alternate task to the same resource. When the alternate task
fails the first time, the checkpoint manager applies checkpoints to the task and for-
wards it to the job dispatcher. The job dispatcher submits it to the same grid resource.
When the alternate task fails again, the checkpoint manager retrieves the intermedi-
ate results of the last saved checkpoint from the checkpoint information server (CIS)
and forwards the incomplete gridlet with intermediate results to the job dispatcher.
The job dispatcher in turn submits the incomplete gridlet and intermediate results to
another suitable grid resource. The details are in Algorithm 2.

Algorithm 2 Alternate_Task_with_Checkpoint ()

1. STATUS COLLECTOR: Collects the status of failed gridlet from the grid resource
and forwards the gridlet_ID to the fault manager

2. FAULT MANAGER: Receives the failed gridlet_ID. If the failed gridlet is not an
alternate gridlet, it interacts with alternate task manager. Otherwise, it interacts
with the checkpoint manager.

a. ALTERNATE TASK MANAGER: When a gridlet fails the first time, it is for-
warded to alternate task manager. The alternate task manager selects an appro-
priate alternative gridlet and sends it to the job dispatcher. The job dispatcher
in turn submits to the same grid resource.

b. CHECKPOINT MANAGER: When an alternate gridlet fails the first time, it is

forwarded to the checkpoint manager. When the alternative gridlet is received
the first time, the checkpoint manager assigns appropriate checkpoints to the
alternative gridlet and forwards it to the job dispatcher. The job dispatcher in
turn submits to the same grid resource.
When the alternate gridlet fails again, the checkpoint manager retrieves the
intermediate results of the last saved checkpoint from CIS and forwards the
incomplete gridlet with intermediate results to the job dispatcher. The job dis-
patcher in turn submits the incomplete gridlet and intermediate results to an-
other suitable grid resource.

@ Springer

112 K. Qureshi et al.

Fig. 3 Framework of alternate
task with checkpoint Alternate
asK with checkpoin | Task
Manager
A
A
A
Fault P Status P Grid
Manager | Collector | Resource
C B A A 44
\ \ Job
B Dispatcher B
Cll\l/fckpomt Another
anager cT " c” Grid
Resource

| e

A: When a gridlet fails first time
B: When an alternate gridlet fails first time
C: When the alternate gridlet fails again

Figure 3 shows the framework of alternate task with checkpoint and different steps
involved in it. Alternate task with checkpoint FTT overcomes the limitations of alter-
nate task FTT and checkpoint FTT. Moreover, it inherits the good features of both.
See Fig. 1. Our proposed technique has the following distinct features:

e It saves intermediate results unlike the simple alternate task technique.

o It considers different task unlike the simple checkpoint technique.

e It considers multiple resubmissions unlike the simple alternate task technique.

e It also considers an alternate resource unlike the simple alternate task technique.

3 Experimental methodology

We carry out our study by means of GridSim simulator [19]. GridSim supports mod-
eling and simulation of heterogeneous grid resources, users and application models.
It provides infrastructure for creation of application tasks, mapping of tasks to re-
sources, and their management.

In our study we model workflow level FT'Ts and measure the performance of each
FTTs on parameters defined in Sect. 3.1. The experiment setup is the same for all the
FTTs. In this study we model and create grid resources and applications that model
jobs as gridlets in GridSim environment.

@ Springer

A hybrid fault tolerance technique in grid computing system 113

3.1 Resource and application modeling

In our experiments we model different space-shared resources and use the configura-
tions, characteristics, and capabilities of these resources from WWG testbed [20]. In
our experimental setup, the number of jobs of an application varies from 200 to 1000
and the communication link is 56 Mbps (mega-bits per second). The size of input file
is 300 MB and job length is 10000 MI for all jobs. These specifications remain the
same for all FTTs.

3.2 Performance metrics

Here is the list of performance metrics in our experiments:

1. Average throughput—T7Throughput is defined in general as a number of gridlets
completed per time unit.

Throughput=n/T

where n is number of gridlets submitted and 7 is total amount of time to complete
the n gridlets successfully.

2. Average turnaround time—The interval from the time of submission of a gridlet
to the time of completion is the furnaround time. The average turnaround time is
the average over all gridlets submitted (see Fig. 4).

3. Average waiting time—The waiting time is the amount of time between submit-
ting a gridlet to a grid resource and starting the execution of the gridlet by the grid
resource (see Fig. 4).

e———» delay time after

resubmission delay after

resubmission

Begin of End of
Execution Execution
Submission Begin of End of Resubmission after after
Time Execution Execution Time Resubmission Resubmission Exit

I I I I I I I
I I I | I I I
| I I I I I I
I I I I I I I
| Waiting ! I I I I I
I I : I I s I I
| time I EXe.cutlon I Transmission ! Waiting time Exccution ! I
time | : after : : Transmission :
I I I
I I
I

| l¢——p! resubmission

| | ———p!
| |
| |
| |
| |
|

I
Turnarm‘nd time withoqt failure

>
| g

A

I
I
I
I
| I

I I I I
| I I I
| I I I
I I I I
| I I I
i T I I I
I I I I I I
I I I I I I
I I I I I I
I I I . . o I I
) | | Turnaround time with failure | |

A
\

Fig. 4 Definition of timing parameters

@ Springer

114 K. Qureshi et al.

4. Transmission delay—Transmission delay is the amount of time required to push
all of the output files (in bits) back to the grid user. Transmission delay [21] is a
function of the size of output file. It is given by the formula:

Dr=N/R

where, Dr is the transmission delay, N is the size of output file (bits), and R is
the rate of transmission (bits per second).

4 Experimental results and discussion

In this section we present the results of our simulation. Average throughput, average
turnaround time, average waiting time, and average transmission delay of a system
are recorded from different experiments under different conditions using both alter-
nate task with retry and alternate task with checkpoint FTTs.

4.1 Average throughput

Throughput is an important parameter for determining the performance of different
FTTs. It becomes more important when a user has to wait for the completion of all
jobs before proceeding further. Figures 5, 6, 7, 8, 9 depict average throughput of
alternate task with retry and alternate task with checkpoint FTTs.

Figures 5-9 depict throughput of both FTTs with different percentage of faults
injected in a system, and different number of gridlets. With different percentage of
faults injected and different number of gridlets submitted, the overall difference be-
tween these two FTTs for average throughput is a little more than 32%.

In general, the average throughput of both techniques decreases with increase in
the percentage of faults injected and with the increase in the number of gridlets sub-
mitted to the system. Figures 5-9 show that the throughput for alternate task with

Fig. 5 (Col line) Total

'2 b (fo O.rd;m m.e)b ota —&— Alternate task with Retry
number of gridlets/jol —— Alternate task with Checkpoint
submitted = 200

Throughput [jobs\hour]

3 T T T
0% 10% 20% 30% 40%

Percentage of faults injected

@ Springer

A hybrid fault tolerance technique in grid computing system 115

Fig. 6 (Colqr onliqe) Total —4&— Alternate task with Retry
number of gridlets/job —li— Alternate task with Checkpoint
submitted = 400
— 12
>
o
£ 11
[}
Qo
S 10
3 9
<
o
e
<
[= 7
6 4
5 T T T
0% 10% 20% 30% 40%

Percentage of faults injected

Flg'g (Clcolqr(ii)nllqe)bTotal —4&— Alternate task with Retry
number of gridlets/jol —l—Alternate task with Checkpoint
submitted = 600

55
5
o
<
0
Q
o
=
5
o
<
(o)}
>
o
<
|_
2 T T T
0% 10% 20% 30% 40%
Percentage of faults injected
Fig. 8 (Colgr onhn.e) Total —&— Altemate task with Retry
number of gridlets/job —l— Altemate task with Checkpoint
submitted = 800 43
T)
[e)
<
» 3,8
Qo
[s]
o |
3 33
-y
(o]
>
S 281
c
}_
2,3 4
1,8 T T T
0% 40%

10% 0% 30%
Percer%tage of %uﬁs injected °

@ Springer

116 K. Qureshi et al.

Fig. 1 li Total -

'2 3 (Cfo q:ﬁ)n ‘m.e)b ota —&— Alternate task with Retry
number of gridlets/jol —l— Alternate task w ith Checkpoint
submitted = 1000

Throughput [jobs\hour]

1.5 T T

0% 10% 20% 30% 40%

Percentage of faults injected

Fig. 10 (Col'or onh'ne) Total —e— Alternate task with Retry
number of gridlets/job —— Alternate task with Checkpoint
submitted = 200

600 P

550

500 /

450 / A

400 / /./

350 *.'é;’ /./'

300 ' ' '
0% 10% 20% 30% 40%

Percentage of faults injected

Turnaround Time [Sec]

checkpoint is larger in all conditions than alternate task with retry. This trend be-
comes more visible when we increase the percentage of faults injected in a system
and with increase in the number of gridlets submitted to a system.

The increase in throughput of alternate task with checkpoint is due to a failure
of resubmitted gridlet of an alternate task. In case of alternate task with retry, the
resubmitted gridlet has to start its execution right from the beginning on every re-
submission which would ultimately increase the overall execution time, transmission
delay, and waiting time for that particular gridlet. Hence the overall performance of
a system decreases. In the case of alternate task with checkpoint, the resubmitted
task starts its execution from last saved checkpoint. Storing the intermediate results
in case of checkpoint saves the extra execution time and decreases the waiting time
as well as the transmission delay. These entire factors combine together to increase
the overall throughput of a system as depicted in Figs. 5-9.

Table 1 shows the detailed relative throughput in percentage of both FTTs for
different percentage of faults injected in a system with different workloads. From

@ Springer

117

A hybrid fault tolerance technique in grid computing system

(%Y TE) BV M

(%TY0) IV ‘M

(%L'8T) DY ‘M

(%1°SD DY 1M

(%L1 DV 1M

(%928°L) BV M

NV g AV g AT | A | A A 0001

(%81°0¢) 1V M (%1°€0) BV M (%T61) DY M (%991) BV ‘M (%TED) DY M (%5€6'8) IV ‘M
aY g R | AV g AV g R | NV g 008

(%T°60) IV ‘M (%9'97) IV ‘M (%9°CT0) BV ‘M (%ELD) DY 1M (%€1) BV ‘M (%Ty'L) DV 1M
AV g AV g AV g ANV g v g AV g 009

(%90°L7) BV ‘M (%E+T) DV 1M (%T0) BV M (%6°91) BV ‘M (%1'TD) DV M (BILY'L) BV M
ay g AV g I Yy g R | AV g 00t

(%1°97) BV ‘M (%E€¥0) IV 1M (%6°81) BV M (%S DY ‘M (%L01) IV 1M (%Tr'S) IV 1M
aqV g Y g R AV g R | NV g 00T

%0¢ %S¢ %0T %81 %01 %S

wIsKs & ur payoafur syney jo agejuadrod

S19[pLIS JO "ON

(Ano1 yiim Yse) AeuIY—NY
QuIodyoYD YIIM YSB) 9)BUId)Y—IY douruLopad js1om AoAane[al—an 159q Aoane[ari—g) indySnoay) aSeroae 03 10adsar yum sI,1J Jo douewioyrad 2ANe[RY [dqEBL

pringer

Qs

118

K. Qureshi et al.

Fig. 11 (Color online) Total
number of gridlets/job
submitted = 400

Fig. 12 (Color online) Total
number of gridlets/job
submitted = 600

Fig. 13 (Color online) Total
number of gridlets/job
submitted = 800

@ Springer

—&— Alternate task with Retry
—l— Alternate task with Checkpoint

— 1175

1075

975

_»

875

P

/

775

_n
675.7.%./
575

Turnaround Time [Sec

475

0%

5% 10% 15% 20% 25% 30% 35%

Percentage of faults injected

—&— Alternate task with Retry
—l— Alternate task with Checkpoint

1575

1475

»

1375

/

1275

e

1175

1075

o

el
P

Turnaround Time [Sec]

975

ad
A

875

775
675

T

0%

10% 20% 30% 40%
Percentage of faults injected

—&— Alternate task with Retry
—l— Alternate task with Checkpoint

1750

1550

1350

/

1150

e

Turnaround Time [Sec]

950 4

750

0%

T T T

10% 20% 30% 40%
Percentage of faults injected

A hybrid fault tolerance technique in grid computing system 119

Fig. ;4 (fC 01.(; Or‘ﬂ l.n?)) Total —&— Alternate task with Retry
number of gridlets/jo —l— Alternate task with Checkpoint
submitted = 1000

2200

2000 //
1800 /
1600

1400 4

Turnaround Time [Sec]

1200

1000 T T T
0% 10% 20% 30% 40%

Percentage of faults injected

Fig. 15 (C01.0r Onh.ne) Total —&— Alternate task with Retry
number of gridlets/job —B— Alternate task with Checkpoint
submitted = 200

Waiting Time [Sec]

0% 10% 20% 30% 40%

Percentage of faults injected

this table we can easily detect the improvement in percentage at different sorts of
conditions.

4.2 Average turnaround time

Figures 10, 11, 12, 13, 14 depict turnaround time of both alternate task with check-
point and alternate task with retry FTTs with different percentage of faults injected in
a system and different number of gridlets submitted. The overall difference between
both FTTs is almost 34% for average turnaround time.

In case of alternate task with retry, the resubmitted gridlet has to start its execution
right from the beginning on every resubmission, which ultimately increases the trans-
mission delay for that particular gridlet. In case of alternate task with checkpoint, the
resubmitted task has to start its execution from the last saved checkpoint. Storing the
intermediate results saves the extra execution time and decreases the transmission
delay. As in Figs. 10—14, the turnaround time is reciprocal to throughput.

@ Springer

120 K. Qureshi et al.

Fig. 16 (Color online) Total —&— Alternate task with Retry
number of gridlets/job —— Alternate task with Checkpoint
submitted = 400 510

490
470 4
450 4
430 1
410
390 4
370 4

350 T T T
0% 10% 20% 30% 40%

Percentage of faults injected

Waiting Time [Sec]

Fig. 17 (COl.Or Onh.ne) Total —o— Alternate task with Retry
number of gridlets/job —8— Alternate task w ith Checkpoint
submitted = 600

720
700 -
680 -
660 -
640 -
620 -
600 -
580 1
560 -

540 T T T
0% 10% 20% 30% 40%
Percentage of faults injected

Waiting Time [Sec]

Table 2 shows the detailed relative turnaround time in percentage of both FTTs for
different percentages of faults injected in a system with different workloads. From the
table, the alternate task with checkpoint FTT is superior to alternate task with retry.

4.3 Average waiting time

Figures 15, 16, 17, 18, 19 illustrate ‘Waiting Time’ of both alternate task with check-
point and alternate task with retry FTTs with different percentage of faults injected
in a system and different number of gridlets submitted. With different percentage of
faults injected and number of gridlets submitted, the overall difference between both
FTTs is almost 18% for average waiting time. Table 3 shows the detailed relative
waiting time in percentage of both FTTs for different percentage of faults injected in
a system with different workloads. From this table we can easily conclude that the
alternate task with checkpoint is a better choice.

@ Springer

A hybrid fault tolerance technique in grid computing system 121

Fig. 18 (COI.()r onl i.ne) Total —&— Alternate task with Retry
number of gridlets/job —ill— Alternate task with Checkpoint
submitted = 800
975
2
n 925 4
Q
=
= 8754
(o]
£
.‘C;“'
< 825 A
775 4
725 T T T

0% 10% 20% 30% 40%

Percentage of faults injected

Fig. 19 (COI.Or Onh.ne) Total —&— Alternate task with Retry
number of gridlets/job —— Alternate task with Checkpoint
submitted = 1000
3 1165
»n
o
£ 1115 1
[
g’ 1065 -
B
= 1015 -
965 -
915 T T T

0% 10% 20% 30% 40%
Percentage of faults injected

4.4 Average transmission delay

Figures 20, 21, 22, 23, 24 depict an average transmission delay of both FTTs. With
different percentage of faults injected and number of gridlets submitted, the overall
difference between both FTTs is more than 14% for average transmission delay. Ta-
ble 4 shows the detailed relative transmission delays in percentage of both FTTs for
different percentages of faults injected in a system with different workloads.

5 Conclusion
The relative performance of both FTTs under different conditions that we have con-

sidered in our investigation is given in the form of a summary in Tables 1, 2, 3 and 4.
In each table the performance is examined with respect to parameter specified.

@ Springer

K. Qureshi et al.

122

(%LEE—) BV ‘M (%97-) BV ‘M (%TT—) BV ‘M (%07—-) DY ‘M (%91-) BV ‘M (%9C1-) BV ‘M
AT NV g NV g AV g R A 0001
(%L'TE—) DV :M (%LT—) DY ‘M (%TT—) BV ‘M (%TT—) BV ‘M (%91—) BV ‘M (%Y 11-) DY :M
A A AV g AV g AV g AV g 008
(%Y'87—) IV ‘M (%ST—) IV ‘M (%¥T—) DY ‘M (%¥T—) DY ‘M (%TT—) DV ‘M (%8€1—) DY ‘M
I AT NV g AV g Ny g AV g 009
(%8'LT—) BV M (%LT—) DV M (%LT—) BV ‘M (%LT—) BV ‘M (%€T—) BV ‘M (%1'81—) BV ‘M
A A A AV g A | A | 00t
(%€TT—) BV ‘M (%TT—) BV ‘M (%TT—) BV ‘M (%07—) BV ‘M (%91-) DV ‘M (%S01—) BV ‘M
Y g Y g AV g AV g Ny g RN | 00T
%0€ %ST %0T %81 %01 %S

waIsAs & ul pajosfur syinej Jo agejuadiod

S19[pLIS JO "ON

(Ano1 i Yse) AeuIY—NY
u10dyoYD YIIM JSB], eI Y—I)Y doueuLo}dd 1s10m A[oAnR[aI—A 159q A[oANR[aI—¢) QW) punoseuin], 93eIdAy 03 192dsal yiim ST, Jo doueuriofiod oAne[oy 7 dqeL

pringer

A's

123

A hybrid fault tolerance technique in grid computing system

(%9°L1—) BV ‘M

(%S1-) DY ‘M

(%¥1-) DY ‘M

(%E€1-) DY ‘M

(%11-) DY ‘M

(%60°6—) BV ‘M

AT RIAT I A | Y g A 0001
(%€ LT—) DV :M (%€1—) DY ‘M (%TI—) DY ‘M (%01—) BV ‘M (%€8—) IV ‘M (%19'9—) BV ‘M
A AV g AV g AV g A A 008
(%6'91—) BV ‘M (%€1-) DY ‘M (%11-) DY ‘M (%6'6—) BV M (%8—) 1V :M (%S—) BV 1M
I I | R | AV g Ay g Ay g 009
(%891—) BV ‘M (%91-) BV ‘M (%€1—) DY ‘M (%TI—) DY ‘M (%01—) DY M (%TS'L—) BV M
A A A | AV g A A 00t
(%E'ST—) BV 1M (%¥1—) DY ‘M (%E€1—) DY ‘M (%11-) BV ‘M (%01—) DY ‘M (%95°6—) BV ‘M
Y g Y g RN | AV g R R | 00T
%0€ %S¢ %0T %S1 %01 %S

wAISAS B ul pajoafur syjney jo a8ejudoiod

S19[pLIS JO "ON

(Ano1 i Yse) AeuIY—NY
Qu1odyoyd YIIm Jse) eUI)Y—Oo1y "dduewiofrad 1s10m A[QANR[QI—A “1S9q A[oAnR[aI—¢) dwil], Sunrem d3e1dAe 0) 10adsar yim SI,1q JO 2ourwuioprod 9Ane[dy € JqEL

pringer

Qs

K. Qureshi et al.

124

(%S P1—) BV ‘M

(%T1—) DY ‘M

(%01—) DV ‘M

(%55°6—) IV ‘M

(%€19—) BV ‘M

(%8S+—) BV ‘M

AT | AV g AV g A A AV g 0001
(%1°€1—) DY ‘M (%01—) BV ‘M (%6=) 1V ‘M (%LY'L—) DV ‘M (%96'S—) BV ‘M (%TST—) BV M
A AV g AV g AV g AV g AV g 008
(%6'11-) BV ‘M (%11-) DY ‘M (%S$6—) BV M (%£58—) IV ‘M (%LS9—) IV ‘M (%6T°S—) BV ‘M
Y g NV g Ny g NV g R | Ay g 009
(%€ 11-) DY M (%L'6=) BV ‘M (%6'L—) IV ‘M (%99-) 1V ‘M (%59'9—) BV ‘M (%1°6—) IV M
A A | RIS | RIS | A | A 00t
(%1°01—) BV ‘M (%Y'6—) DY M (%L 'L—) DY M (%509—) DV ‘M (%95°€—) BV ‘M (%LIE-) DY ‘M
WA Y g NV g NV g R | R 00T
%0€ %ST %0T %G1 %01 %S

wAISAs B ul pajoafur sypney jo a8ejudorod

19[pLI3 JO 'ON

(Ano1 i Yse) Aeurdy—any Juiod
-YOUD M YSB], ARUI)[Y—OI1Y "ddueuriofrad 1s1om A[oANR[oI—AN 152q A[2ANR[QI—¢) AB[OP UOISSTWSULT) dFeIdAR 0) 19adsar yim SI1q Jo Qouewtojiad oAne[dy ¢ dqeL

pringer

A's

A hybrid fault tolerance technique in grid computing system 125

Fig. 20 (Color online) Total
number of gridlets/job
submitted = 200

Fig. 21 (Color online) Total
number of gridlets/job
submitted = 400

Fig. 22 (Color online) Total
number of gridlets/job
submitted = 600

—&— Alternate task with Retry
—®— Alternate task w ith Checkpoint

27000
26000

»

25000
24000

Pl

/

23000
22000

¥ o

21000

20000

el

Transmission Delay [Sec]

19000

P

18000
17000

(e

0%

10% 20% 30% 40%
Percentage of faults injected

—&— Alternate task with Retry
—l— Alternate task with Checkpoint

()]
w
A
o
o

48500

S

P

‘= 43500

Transmission Delay [Sec]

38500

o

33500

e

0%

10% 20% 30% 40%
Percentage of faults injected

—o— Alternate task w ith Retry
—8— Alternate task w ith Checkpoint

Sec |

Z 77000

72000

e

A~

62000

Transmission Delay
o
B
o
o
)

57000 +

52000

/./

0%

10% 20% 30% 40%
Percentage of faults injected

@ Springer

126

K. Qureshi et al.

Fig. 23 (C()l.or On]i.ne) Total —&— Alternate task with Retry
number of gridlets/job —— Alternate task with Checkpoint
submitted = 800 o
[0
9 103000 »
> /
% 98000 /
2 93000 / /.
(=]
g 88000 /
£ 83000 /
C
= 78000 .//./
73000 e
68000 T T T
0% 10% 20% 30% 40%
Percentage of faults injected
Fig. 24 (Col.or onli.ne) Total —&— Alternate task with Retry
number of gridlets/job = —@— Alternate task with Checkpoint
submitted = 1000 & 135000
z el
& 125000
a /
c
S 115000 /./l
[}
& 105000
c
E Pl
F 95000 P
85000 T T T T T T
0% 5% 10% 15% 20% 25% 30% 35%

Percentage of faults injected

In this paper we proposed a novel hybrid FTTs and configured its framework in
grid computing. We evaluated the performance of our techniques under different con-
ditions using different parameters such as throughput, turnaround time, waiting time,
and transmission delay. We found out that alternate task with checkpoint yields better
results in all conditions than alternate task with retry.

References

1. Jankowski G, Januszewski R, Mikolajczak R, Kovacs J (2008) Improving the fault tolerance level
within the GRID computing environment-integration with the low-level checkpointing packages.
CoreGRID Technical Report Number TR-0158, June 16

. Chandy KM, Lamport L (1985) Distributed snapshots: determining global states of distributed sys-
tems. ACM Trans Comput Syst (February), 63-75

. Mattern F (1993) Efficient algorithms for distributed snapshots and global virtual time approximation.
J Parallel Distrib Comput, 423-434

. Abawajy JH (2004) Fault-tolerant scheduling policy for grid computing systems. In: 18th International
parallel and distributed processing symposium (IPDPS’04)—workshop 13, 2004, vol 14, p 238b

. Lee H, Chung K, Chin S, Lee J, Lee D, Park S, Yu H (2005) A resource management and fault
tolerance services in grid computing. J Parallel Distrib Comput 65(11):1305-1317

@ Springer

A hybrid fault tolerance technique in grid computing system 127

6.

7.

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.
21.

Hwang S, Kesselman C (2004) A flexible framework for fault tolerance in the grid. J Grid Comput
1(3):251-272. doi: 10.1023/B:GRID.0000035187.54694.75

Abawajy JH (2004) Fault-tolerant scheduling policy for grid computing systems. In: 18th International
parallel and distributed processing symposium (IPDPS’04), Santa Fe, New Mexico, April 26-30,
2004. IEEE Computer Society Press, Los Alamitos, pp 238-244

. YuJ, Buyya R (2005) A taxonomy of workflow management systems for grid computing. J Grid

Comput 3(3—4):171-200. doi:10.1007/s10723-005-9010-8

. Gartner FC (1999) Fundamentals of fault-tolerant distributed computing in asynchronous environ-

ments. J ACM Comput Surv 31(1):1-26

Anglano C, Canonico M (2005) Fault-tolerant scheduling for bag-of-tasks grid applications. In: Ad-
vances in grid computing—EGC 2005. Lecture notes in computer science, vol 3470/2005. Springer,
Berlin/Heidelberg. ISSN: 0302-9743 Print. doi:10.1007/b137919, ISBN: 978-3-540-26918-2,
pp 630-639

Vanderster DC, Dimopoulos NJ, Sobie RJ (2007) Intelligent selection of fault tolerance techniques on
the grid. In: Third IEEE international conference on e-science and grid computing. IEEE Computer
Society Press, Los Alamitos, ISSN: 0-7695-3064-8

Gioiosa R, Sancho JC, Jiang S, Petrini F, Davis K (2005) Incremental check-pointing at kernel level:
a foundation for fault tolerance for parallel computers. In: Proceedings of the 2005 ACM/IEEE SCI05
conference (SC’05)

Hwang S, Kesselman C (2003) Grid workflow: a flexible failure handling framework for the grid. In:
12th IEEE international symposium on high performance distributed computing (HPDC’03), Seattle,
Washington, USA, June 22-24, 2003. IEEE Computer Society Press, Los Alamitos

Buyya R (2002) Economic-based distributed resource management and scheduling for grid comput-
ing, Ph.D. Thesis, Monash University, Melbourne, Australia, April 12

Fahringer T et al (2005) Truong. ASKALON: a tool set for cluster and Grid computing. J Concurr
Comput Pract Exp 17(2-4):143-169

von Laszewski G (2006) Workflow Concepts of the Java CoG Kit. J Grid Comput 3(3—4):239-258
Ludascher B et al (2006) Scientific workflow management and the KEPLER system. J Concurr Com-
put Pract Exp 18(10):1039-1065

Yu J, Buyya R (2004) A novel architecture for realizing grid workflow using tuple spaces. In: 5th
IEEE/ACM international workshop on grid computing (GRID 2004), Pittsburgh, USA, 2004. IEEE
Computer Society Press, Los Alamitos, ISBN: 0-7695-2256-4

Buyya R, Murshed M (2002) GridSim: a toolkit for the modeling and simulation of distributed re-
source management and scheduling for Grid computing. J Concurr Comput Pract Exp 13(13-15)
Testbed WWG (2008) http://gridbus.cs.mu.oz.au/sc2003/list.html [August 2008]

Nazir B, Qureshi K, Manuel P (2008) Adaptive checkpointing strategy to tolerate faults in economy
based grid, J Supercomput. doi:10.1007/s11227-008-0245-6

Kalim Qureshi is a faculty member of Information Science Depart-
ment, Kuwait University and he is adjunct Professor in Computer
Science Department, COMSATS Institute of Information Technology,
Abbottabad, Pakistan. He is an approved supervisor for the M.Sc.
and Ph.D. theses by the High Education Commission, Islamabad,
Pakistan. His research interests include network parallel distributed
computing, thread programming, concurrent algorithms design, task
scheduling, and performance measurement. Dr. Qureshi is a member
of IEE Japan and IEEE Computer Society. His e-mail addresses are
kalim@ciit.net.pk and kalim_qureshi @hotmail.com.

@ Springer

http://dx.doi.org/10.1023/B:GRID.0000035187.54694.75
http://dx.doi.org/10.1007/s10723-005-9010-8
http://dx.doi.org/10.1007/b137919
http://gridbus.cs.mu.oz.au/sc2003/list.html
http://dx.doi.org/10.1007/s11227-008-0245-6

128

K. Qureshi et al.

@ Springer

Fiaz Gul Khan is a Ph.D. student in Wireless Systems and Re-
lated Technologies at University of Politecnico di Torino, Italy.
His research interests include distributed computing, wireless net-
works, network architecture, communication protocols, and simula-
tion tools. He received his Master’s degree from COMSATS Insti-
tute of Information technology Abbottabad, Pakistan. Contact him at
fiazgul.khan @studenti.polito.it.

Paul Manuel is Associate Professor in Information Science in Kuwait
University. He graduated with a M.Sc. in Computer Science from the
University of Saskatchewan, Canada, and has a Ph.D. in Computer Sci-
ence from the University of Newcastle, Australia. His second Ph.D. is
in Mathematics from the Indian Institute of Technology, Chennai, In-
dia. His research area includes grid computing, software engineering,
and graph theory. He has published more than 50 research papers in
internationally reputed journals.

Babar Nazir currently is a Ph.D. student at University of Teknologi
PETRONAS, Malaysia. He is a faculty member of COMSATS In-
stitute of Information Technology, Abbottabad Campus, Pakistan.
He received his M.Sc. in Computer Science from COMSATS In-
stitute of Information Technology, Abbottabad Campus, Pakistan, in
2007. He published three international conference papers and two
journal papers in reputed journals. His research interests include re-
source management and job scheduling in grid computing, parallel
and distributed computing, wireless sensor networks and mobile ad
hoc networks. His e-mail addresses are babarnazir@ciit.net.pk and
babarnazir @gmail.com.

	A hybrid fault tolerance technique in grid computing system
	Abstract
	Introduction
	Fault tolerance in grid computing
	Problem definition
	Alternate task with retry
	Alternate task with checkpoint

	Experimental methodology
	Resource and application modeling
	Performance metrics

	Experimental results and discussion
	Average throughput
	Average turnaround time
	Average waiting time
	Average transmission delay

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

