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Abstract As cloud-based services become more numerous and dynamic, resource
provisioning becomes more and more challenging. A QoS constrained resource al-
location problem is considered in this paper, in which service demanders intend to
solve sophisticated parallel computing problem by requesting the usage of resources
across a cloud-based network, and a cost of each computational service depends on
the amount of computation. Game theory is used to solve the problem of resource al-
location. A practical approximated solution with the following two steps is proposed.
First, each participant solves its optimal problem independently, without consider-
ation of the multiplexing of resource assignments. A Binary Integer Programming
method is proposed to solve the independent optimization. Second, an evolution-
ary mechanism is designed, which changes multiplexed strategies of the initial op-
timal solutions of different participants with minimizing their efficiency losses. The
algorithms in the evolutionary mechanism take both optimization and fairness into
account. It is demonstrated that Nash equilibrium always exists if the resource allo-
cation game has feasible solutions.
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1 Introduction

Cloud computing becomes more and more popular in large-scale computing and data
store recently due to it enables the sharing of computing resources that are distributed
all over the world. Cloud computing infrastructures break down the physical barriers
inherent in isolated systems, automate the management of the group of resources
as a single entity, and provide computational power and data storage facilities to
users, ranging from a user accessing a single laptop to the allocation of thousands of
computing nodes distributed around the world.

Cloud computing is a natural evolution for data and computation centers with au-
tomated systems management, workload balancing, and virtualization technologies.
Cloud-based services integrate globally distributed resources into seamless comput-
ing platforms. Recently, a great deal of applications are increasingly focusing on
third-party resources hosted across the Internet and each has varying capacity.

In the past few years, many extant systems have the notion that resource, whose
information was hidden by from the user through virtualization, can be acquired and
released on-demand. However, most cloud computing systems in operation are pro-
prietary, and rely upon infrastructure that is invisible to the research community, or
explicitly designed not to be instrumented and modified by systems researchers inter-
ested in cloud computing systems.

It is known that the underlying cloud computing environment is inherently large-
scale, complex, heterogeneous and dynamic, globally aggregating large numbers of
independent computing and communication resources and data stores. In an open
cloud computing framework, scheduling tasks with guaranteeing QoS constrains
present a challenging technical problem.

In large scale, how can resource manager in decentralized cloud computing net-
works efficiently allocate scarce resources among competing interests? Constraints
are used by the inherent architecture of cloud computing systems. These constraints
are counterbalanced by the requirement to design mechanisms that efficiently allo-
cate resources, even when the system is being used by participants who have only
their own interests. For example, users want to get hotel information in a city by
an integrated web search engine. Performing this task includes simultaneous invok-
ing web page search service, map search service, and semantic computing services.
Provisioning of these services must coordinate completion time of these subtasks to
provide unified response to clients. In the background, service provider schedules
the correlated services and allocates different resources for them. Another example,
while users solve scientific computing problems using cloud resources, the task is di-
vided into several parallel subtasks which are computation-intensive and frequently
communicate with each other. Provisioning of this class computing services needs
efficient resources management system and effective scheduling algorithms.

As cloud-based services become more numerous and dynamic, resource provi-
sioning becomes more challenging. A QoS-constrained resource allocation problem
is considered in this paper, where service demanders intend to solve sophisticated
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computing problem by requesting the usage of resources across a cloud-based net-
work, and a cost of each network node depends on the amount of computation. Using
cloud computing platforms to perform QoS-constrained and computation-intensive
tasks is studied. This paper is also focused on the parallel tasks allocation problem
on unrelated machines connected across the Internet. The scheduling problem is one
of the most fundamental challenges in most real cloud-based applications.

The main contributions of the paper include: (1) proposal of a deadline and
budget constrained cost-time optimization algorithm for scheduling dependent
subtasks with considerations of communications between them; (2) a design for
an evolutionary mechanism, which changes multiplexed strategies of the ini-
tial optimal solutions of different participants with minimizing their efficiency
losses; and (3) demonstration of Nash equilibrium in existence in the resource
allocation game with the specialized settings.

2 Related works

Cloud computing systems fundamentally provide access to large amounts of data and
computational resources that can be acquired and released on-demand. As consumers
rely on cloud providers to supply more of their computing needs, they will require
specific QoS to be maintained by their providers in order to meet their requirements.
In fact, cloud computing systems provide best-effort collaborative computation ser-
vice, which is not sufficient for solving engineering and scientific problem in several
aspects: quality of service is not guaranteed and a bounded completion time cannot
be offered.

Various resource management methods with different policies and principles were
published in some papers [1, 2, 6, 9, 14, 17, 19, 24, 28, 30, 32].

Most of the scheduling algorithms assume the tasks are independent of each
other. Under this assumption, the existing algorithms can still work with many loose-
coupling service-integrated applications. However, the majority of complex cloud-
based applications consist of multiple subtasks and require communications among
tasks. The collaboration must be taken into account when allocating resources to
them. Without considering the communications among tasks, algorithms are obvi-
ously limited, and cannot take full advantage of the powerful cloud computing. There-
fore, it is very challenging to schedule general dependent tasks.

The dependent task scheduling problem is NP-hard in its general form
[11, 16, 23]. Many heuristic algorithms have been proposed for near-optimal solu-
tions [3, 7, 12, 18, 20, 21, 29, 31]. Game theory studies the problems in which play-
ers maximize their returns which depend also on actions of other players. Numerous
studies [4, 5, 8, 10, 11, 13, 15, 22, 25] have proposed game-theoretic method to solve
the optimization problem of resource allocation in network systems from the view-
point of resource owners. However, there is still lack of practicable solution for cloud
computing systems because most cloud-based computational services are multiple
QoS-constrained. Therefore, for the first step, the authors try to add some constraints
on communications in order to achieve an improved scheduling algorithm. This pa-
per presents a new game-theoretic method to schedule dependent tasks with time and
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cost constraints. An evolutionary mechanism is designed to fairly and approximately
solve the NP-hard problem.

3 Problem modeling

Suppose that n tasks (users) share m computational resources. Each task Si consists
of k(i) parallel and dependent subtasks with equal amount of computation. Each
resource Rj has a fixed price pj according to its capacity. When multiple subtasks
are assigned to a resource Rj , they proportionally share Rj ’s capacity and expense.
The goal is to assign each subtask to a specific resource in order to minimize the
total “cost”—the expense and the time for completing all these n tasks. Note that the
subtasks in a task would sometimes communicate with each other, which will make
the problem even more complicated.

A solution of the scheduling problem is a non-negative matrix a of n rows, one
for each task, and m columns, one for each resource. The entry aij is the amount of
subtasks of the task Si allocated to resource Rj . Let ai represent the ith row of ma-
trix a. Then allocation vector ai satisfies

∑
aij ∈ai

aij = k(i). Derived from matrix a,
another two n×m matrixes are obtained: completion time matrix T and expense ma-
trix E. The entry tij of T is the turnaround time it takes for resource Rj to complete
aij subtasks of the task Si . Because all subtasks of Si are parallel and dependent, the
completion time of task Si is max{tij | tij ∈ ti}, where ti denotes the vector of the ith
row of matrix T . The entry eij of matrix E is the expense Si pays for resource Rj to
complete aij subtasks. So, the expense of task Si is

∑m
j=1 eij . In general, there is a

trade-off between completion time and expense for each task. Assume that all partic-
ipants have the same views of value towards monetary expense and time. Let wt and
we denote the weights of completion time and expense, respectively. Therefore, the
total “cost” of task Si is wt · maxtij ∈ti {tij } + we · ∑j eij . Let

ui(ai) = 1

wt · maxtij ∈ti {tij } + we · ∑j eij

denote the utility of task Si . The objective of each task is to maximize its utility.
Assume that: (1) the capacity of each resource is inelastic and undividable;

(2) each resource can be allocated to multiple subtasks of different tasks; and (3) all
resources use time-sharing policy to schedule tasks in the operating system level. Let
t̂ij denote the execution time it takes for resource Rj solely to complete one sub-
task of task Si without consideration of communication time. It can be inferred that
tij = ∑

j aij · t̂ij and eij = aij · t̂ij ·pj when only one subtask assigns to one resource.
Without loss of generality, this paper assumes that the price vector of all resources
p = (p1,p2, ..,pm) satisfies p1 < p2 < · · · < pm, and the corresponding execution
time of any subtask of an arbitrary task Si satisfies t̂i1 > t̂i2 > · · · > t̂im.

To illustrate the problem model, a use case is designed as the following.
(1) There are five computational resources (R1 − R5), where the price vector
p = (1,1.2,1.5,1.8,2). And (2) there are three tasks (S1, S2, S3), where S1 has two
subtasks, S2 has three subtasks and S3 has four subtasks. The available resources and
tasks are listed below.
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R1: One node of a supercomputer (SGI Onyx 3900).

R2: One node of a Cluster (TC 4000L).

R3: A workstation (IBM xSeries 255 8685-B1X).

R4: A desktop PC (Intel Core 2 Duo, 3.0 GHz).

R5: A desktop PC (Intel Core 2 Duo, 2.66 GHz).

S1: A parallel computational fluid dynamics program.

S2: A parallel computational solid mechanics program.

S3: A parallel Monte Carlo computational program.
The execution time matrix

t̂ij =
⎛

⎝

6 5 4 3.5 3

5 4.2 3.6 3 2.8

4 3.5 3.2 2.8 2.4

⎞

⎠ .

Assume S1 chooses {R1,R2}, S2 chooses {R1,R2,R3} and S3 chooses {R2,R3,

R4,R5}, i.e., the strategies of S1, S2 and S3 are a1 = (1,1,0,0,0), a2 = (1,1,1,0,0)

and a3 = (0,1,1,1,1) respectively. Then allocation

a =
⎛

⎝

1 1 0 0 0

1 1 1 0 0

0 1 1 1 1

⎞

⎠ .

Since all tasks proportionally share the capacity and expense of allocated re-
sources, according to this allocation, the final execution time matrix

tij =
⎛

⎝

12 15 0 0 0

10 12.6 7.2 0 0

0 10.5 6.4 2.8 2.4

⎞

⎠

and the expense matrix

eij =
⎛

⎝

12 × p1
2 15 × p2

3 0 0 0

10 × p1
2 12.6 × p2

3 7.2 × p3
2 0 0

0 10.5 × p2
3 6.4 × p3

2 2.8 × p4 2.4 × p5

⎞

⎠

=
⎛

⎝

6 6 0 0 0

5 5.04 5.4 0 0

0 4.2 4.8 5.04 4.8

⎞

⎠ .

To simplify the computation, assume wt = we = 0.5; then

u1(a1) = 1

0.5 × (15 + (6 + 6))
� 0.0741,

u2(a2) = 1

0.5 × (12.6 + (5 + 5.04 + 5.4))
� 0.0713,

u3(a3) = 1

0.5 × (10.5 + (4.2 + 4.8 + 5.04 + 4.8))
� 0.0682.
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Let each task be a market participant. ai is the strategy of participant Si . Then allo-
cation matrix a = (a1, a2, . . . , an)

T is the strategy set of all participants. The standard
game-theoretic convention a−i is used to denote what remains from a when its ith
element ai is dropped; similarly, (a′

i , a−i ) denotes the allocation after replacing ai

by a′.
It is considered that the design of market mechanisms is for such settings which

are robust to gaming behavior by market participants. Given complete knowledge
of the system, it would be natural for each participant to try to solve the following
optimization problem:

Maximize ui(ai) (1)

Subject to
∑

aij ∈ai

aij = k(i), (2)

aij ≥ 0. (3)

Unfortunately, it is NP-complete to find optimal allocations for the resource al-
location problem. However, approximated solution with the two following steps is
effective. That Nash equilibrium of the resource allocation game always exists is
demonstrated in the following two steps.

(1) Each participant solves his optimal problem independently and solely without
considering the multiplexing of resources, i.e., assuming tij = t̂ij for all i ∈ [1..n]
and j ∈ [1..m] (Sect. 4).

(2) An evolutionary mechanism is defined, which changes multiplexed strategies of
the initial optimal solutions of different participants with minimizing their effi-
ciency losses (Sect. 5).

4 Independent optimization

4.1 Assumptions

(1) For each single task, while it is assigned to a specific resource in the cloud, the
time spent on it can be known. Many techniques are available to achieve this
[9, 14].

(2) Subtasks are dependent, and communicate with each other. Bandwidth cost in
communications is not taken into consideration. The communication happens
whenever a certain percentage amount of work of every subtask has been com-
pleted for all the tasks. For example, the communication happens when 10% of
work of every subtask has been done, and then, communication happens again
when another 6% work of every subtask has been done, and so on. Before execu-
tion, the value of percentage need not be known, but the times of communication
that happened as well as the scale of communications must be known.

Although this is a constraint, most problems in scientific computing services
and parallel data analysis services satisfy this assumption. For example, com-
putations in computational structural analysis, in computational fluid dynamics,



258 G. Wei et al.

and in DNA sequencing, all satisfy this assumption. Also, a cloud-based service
with independent subtasks can be considered as the service with subtasks that
communicate after 100% of work has been completed. Therefore, the algorithm
works with both independent and dependent cloud-based services.

(3) According to most accounting systems, the charge for a unit of time is propor-
tional to the resource used by the user at that moment. Provided that, for a specific
processor, if its resource used is very close to zero in a period of time, the cost it
charges is very close to zero. Thus, it is reasonable to assume that when waiting
for communication, no money is consumed.

4.2 Algorithm description

4.2.1 Definition of the object function

A proper function to measure the “cost” has been defined. It is good to define the
function as a weighed sum of the expense and the whole completion time [19]. For
example, participants consider one unit of time as valuable as one hundred units of
money, then set wm : wt = 1 : 1, and wm + wt = 1. The participants (or tasks) can
also set the deadline (denoted as T0) and the maximal expense that can be afforded
(denoted as M0). Independent optimization algorithm only concerns one task which
contains multiple subtasks. Let b denote the allocation matrix which consists of k

rows, one for each subtask, and m columns, one for each resource. Based on this
logic, the object function is defined as (4):

minZ = wm ·
(

k∑

i=1

m∑

j=1

pj · t̂ij · bij

)

+ wt · Tturnaround, (4)

where

Tturnaround =
q∑

l=1

tl + max
i,j

{
(
bij · t̂ij

) ·
(

1 −
q∑

l=1

nl

)}

, (5)

and

tl = max
i,j

{
bij · t̂ij · nl

} + max
i,j

{
bij · t lij

}
, l ∈ [1..q]. (6)

Here, q stands for the times of communications that happened during the execution
of the task.

Equation (6) gives the value of the duration from the end of the (l − 1)th com-
munication to the end of the lth communication, and nl is the percentage amount of
work completed during these two communications. For each l, t lij stands for the time
for the lth communication for subtask i assigned to resource Rj (the value of bij de-
termines whether or not subtask i is assigned to Rj ). Equation (6) means that while
another nl (percentage amount) of every subtask is finished, the lth communication
will happen. The reason for using the first “max” is that the communication will not
happen until all the tasks are ready for communication. maxi,j {bij · t lij } stands for
the time spent on the lth communication. Here, “max” is used because the quality of
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network varies from place to place, and it is the slowest network that determines the
time for communications.

Equation (5) has given the value of the task completion time of k subtasks. The
term (1 − ∑q

l=1 nl) is used because after the last communication, (1 − ∑q

l=1 nl) of
each subtask is left.

4.2.2 Constrained conditions

For each pair of i and j , as in the above assumption, t̂ij is known. The partition of
the allocation rule is described using indicator values aij ∈ {0,1} : aij = 1 iff subtask
i is allocated to resource j . Of course, each task is allocated to exactly one machine,
or more formally,

∑m
j=1 aij = 1. The constrained conditions of the optimal problem

are described as (7)–(11):

bij = 0 or 1, for all i ∈ [1..k] and j ∈ [1..m], (7)

Tturnaround ≤ T0, (8)

k∑

i=1

m∑

j=1

pj · t̂ij · bij ≤ M0, (9)

m∑

j=1

bij = 1, for all i ∈ [1..k], (10)

k∑

i=1

bij ≤ 1, for all j ∈ [1..m]. (11)

Inequations (8) and (9) mean “deadline and budget constrained.” Equation (10)
means that each single task should be assigned to one and only one processor.
Inequation (11) means that each single processor should process at most one of those
tasks. That is, because communications cannot happen until each of those tasks has
finished by the same percentage, which has been assumed in Sect. 4.1.

4.3 Problem simplification and solving

Combining (5) and (6), the following equation (12) is obtained:

Tturnaround = max
i,j

{
bij · t̂ij

} +
q∑

l=1

(
max
i,j

{
bij · t lij

})
. (12)

A large proportion of cloud-based computing services is spent most of the time
on computing, and the time for communications is relatively disregarded. (It does not
mean that communications can be ignored, because usually much time is spent on
waiting before communications.) When the time transferring data is very small, the
difference among the networks is ignored, and the term maxi,j {bij · t lij } is replaced
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by tl . Then, (12) is replaced by the following equation (13):

Tturnaround = max
i,j

{
bij · t̂ij

} +
q∑

l=1

tl . (13)

Now, (13) is replaced by the inequation (14) and it is considered a constrain con-
dition. It can be inferred that the replacement will not change the solution. The proof
is omitted here, due to the space limitation.

Tturnaround ≥ (
bij · t̂ij

) +
q∑

l=1

tl , for all i ∈ [1..k] and j ∈ [1..m]. (14)

Except that bij should be binary integers, all the constrained conditions in the
model are linear. Thus, the model is straightforward, and it is reduced to a classical
Binary Integer Programming problem; and a lot of methods can be used.

In fact, some tasks may have some other requirements, for example, reliability.
In such cases, not all the resources in a cloud are suitable for the tasks. If a certain
resource is not suitable for a certain task, set the corresponding term t̂ij to be greater
than T0. In this way, the algorithm can avoid assigning that task to that resource.
Therefore, the algorithm can schedule tasks with QoS requirements.

4.4 Example of problem solving

Based on the example designed in Sect. 3, for the three tasks, the independent
optimization algorithm runs and gets the following results: a1 = (0,0,0,1,1),
a2 = (0,0,1,1,1) and a3 = (1,1,1,0,1).

Then allocation matrix is

a =
⎛

⎝

0 0 0 1 1

0 0 1 1 1

1 1 1 0 1

⎞

⎠ .

The expected utilities of the three tasks are u1(a1) � 0.0633, u2(a2) � 0.0500 and
u3(a3) � 0.0459, respectively. But, they cannot obtain their expected utilities because
there are some resources allocated to more than one subtask. So, actual turnaround
time of some multiplexed subtasks will be longer than their expected time.

According to the allocation matrix a, the actual execution time matrix is

tij =
⎛

⎝

0 0 0 7 9

0 0 7.2 6 8.4

4 3.5 6.4 0 7.2

⎞

⎠ .

The expense matrix is

eij =
⎛

⎝

0 0 0 6.3 6

0 0 5.4 5.4 5.6

4 4.2 4.8 0 4.8

⎞

⎠ .
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The actual utilities of the three tasks are u′
1(a1) � 0.0469, u′

2(a2) � 0.0403 and
u′

3(a3) � 0.0400, respectively. Obviously, u′
i < ui . The strategies a1 = (0,0,0,1,1),

a2 = (0,0,1,1,1) and a3 = (1,1,1,0,1) are only the initial strategies of the three
tasks. As an evolutionary game, the strategy of each task is common knowledge to
every participant. In the next section, evolutionary optimization algorithms are pro-
posed to approximate the utility of each task to its optimal value.

5 Evolutionary optimization

In this game, no one knows what global allocation will be before each task chose its
first strategy. As described in Sect. 4, they all choose the optimal strategy with ig-
noring others. The possible result of initial optimal solutions of all tasks includes the
following two occasions: non-multiplexing and multiplexing. Assume the previous
strategies of all participants are common knowledge. When some resources are mul-
tiplexed, they will begin the next round game based on the result of the first round.
The subsequent strategy change must satisfy the necessary condition: the objective
new strategy of any task must increase all tasks’ utility or all other tasks can choose
corresponding new strategies to increase their utilities. Additionally, the process of
the evolution changes only one subtask assignment at one time and the change should
be known to all participants.

In this section, an evolutionary mechanism is presented by introducing the equi-
librium concept. The concept of Nash equilibrium is in some sense the analog of
centralized optimal design in the context of multiple distributed selfish participants.
The objective of evolutionary mechanism is to achieve final optimization by chang-
ing multiplexed strategies of the initial optimal solutions of different participants. The
two possibilities (non-multiplexing and multiplexing) both leading to market equilib-
rium are to be demonstrated.

5.1 Non-multiplexing

Definition 1 (Non-multiplexing Allocation) Given that a resource allocation game
has n tasks and m resources, each task consists of multiple same subtasks. If an
n × m matrix a satisfies the condition ∀aij : (aij ≤ 1) ∧ (

∑n
i=1 aij ≤ 1), a is a Non-

multiplexing Allocation.

Proposition 1 If a is a Non-multiplexing Allocation in which the vector ai =
(ai1, ai2, . . . , aim) is the unique initial optimal solution of task Si for each i ∈
[1..n], ai is the optimal strategy of task Si for each i ∈ [1..n] and a is the unique
equilibrium of the game.

Proof Because of ∀aij : (aij ≤ 1) ∧ (
∑n

i=1 aij ≤ 1), there is no multiplexed resource
assignment. All strategies of the initial optimal solutions in the game are uncom-
petitive. So the initial optimal solution is the final optimal solution of each task.
Precisely, there does not exist an allocation a′

i which satisfies ui(a
′
i ) ≥ ui(ai) for all

i ∈ [1..n]. �
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5.2 Multiplexing

Lemma 1 Let ai = (ai1, . . . , aip, . . . , aiq , . . . , aim) be the initial optimal alloca-
tion obtained from independent optimization. a′

i = (ai1, . . . , a
′
ip, . . . , a′

iq , . . . , aim)

denotes an evolutionary allocation according to a, where aip 	= a′
ip and aiq 	= a′

iq .
Utility ui(a

′
i ) ≤ ui(ai) for all i ∈ [1..n].

The proof is essentially described in Sect. 4.

Definition 2 (Multiplexing Allocation) Given that a resource allocation game has
n tasks and m resources, each task consists of multiple same subtasks. If allocation
matrix a satisfies the condition ∃j : (aij ≤ 1) ∧ (

∑m
i=1 aij > 1) for i = [1..n], a is a

Multiplexing Allocation.

From Definition 2, the occasion that at least one resource is assigned to two
or more subtasks must exist in a multiplexing allocation. There are two possibili-
ties: (1) Multiplexing Allocation does not influence the utilities of multiplexed tasks
(case 1), and (2) Multiplexing Allocation decreases the utilities of Multiplexed tasks
(case 2).

5.2.1 Case 1

Proposition 2 Given a Multiplexing Allocation a in which the vector ai = (ai1, ai2,

. . . , aim) is the unique initial optimal solution of task Si for each i ∈ [1..n], to an arbi-
trary multiplexing assigned resource Ru, if there exist a v ∈ [1..m] for a multiplexing
allocation vector ai , such as:

(1) aiv = 1,
(2)

∑n
i=1 aiv = 1,

(3) tiv = maxj=[1..m] tij , i.e., tiu < tiv ,

ai is the optimal strategy of task Si for each i ∈ [1..n] and a is the unique equilibrium
of the game.

Proof From the utility function of tasks, it can be inferred that (1) the time cost of
task Si maxtij ∈ti {tij } because of tiv = maxj=[1..m] tij and u 	= v, and (2) the expense∑

j eij has also not changed. Therefore, utility of task Si is not influenced by the
multiplexing. From Lemma 1, it is known that there is no change. The result is the
same for a Non-multiplexing Allocation. �

5.2.2 Case 2

Multiplexing Allocation will decrease the utility of the multiplexed task in which one
of the multiplexed subtasks has the longest completion time. It is possible for the task
to minimize loss by reallocating the multiplexed subtask with the longest completion
time. Definition 3 gives a precise definition to characterize the efficiency loss of a
reallocation in which only one subtask is reassigned compared to its prior allocation.
Our objective is to minimize the efficiency loss of each evolutionary step.
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Table 1

Algorithm 1. SPELR minimization

Input: matrix a; task ID i;p;

Output: q

MinSingle(a, i,p)

{

for all j ∈ [1..m] ∧ j 	= p

compute SPELRralloc(i,p,j);

if min{SPELRralloc(i,p,j)} < 0

q = minj {SPELRralloc(i,p,j)};
else

q = −1;

return q

}

Definition 3 (Single Participant Efficiency Loss of a Reallocation, SPELR): If a task
shifts a subtask from one resource to another, the SPELR is the amount by which its
prior utility is greater than the later one.

For example, let ai be the prior allocation of task Si in which tip = maxj∈[1..m]{tij },
a′
i be the new allocation after a subtask reassigned from Rp to Rq , where a′

ip = 0 and
a′
iq = aip + aiq . And let function ralloc(i,p, q) denote this reallocation. Then, the

SPELR of ralloc(i,p, q) is ui(ai) − ui(a
′
i ).

So, the objective is to find such q which satisfies minq∈[1..m]∧q 	=p{ralloc(i,p, q)}
when performing a reallocation for task Si . Table 1 shows the algorithm of finding a
minimum SPELR.

In the competitive resource allocation game, task’s Si changing strategy will in-
fluence the utilities of other tasks. It is possible that more than one task assign one
subtask to the same resource and the completion time of these subtasks is the max-
imum one of the same class of subtasks respectively. In this special case, in order
to determine which task is reallocated first, the global efficiency losses of their min-
imum SPELR should be compared. The global efficiency loss of a reallocation is
described in Definition 4.

Definition 4 (Global Efficiency Loss of a Reallocation, GELR): If a task shifts a
subtask from one resource to another, the GELR is the amount that remains after the
sum of prior utility of all tasks is subtracted from the later one.

For example, let a = (a1, . . . , ai, . . . , am)T be the allocation matrix before a re-
allocation, ai be the allocation vector of task Si which needs to shift a subtask,
a′ = (a1, . . . , a

′
i , . . . , am)T be the allocation matrix before a reallocation by which

ai changes to a′
i with others unchanged. Then, the GELR of this reallocation is∑

ai∈a ui(ai) − ∑
a′
i∈a′ ui(a

′
i ).
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Table 2

Algorithm 2. GELR minimization

Input: matrix a; Resource j ;

Output: task ID i

MinGlobal(a, j)

{

Get multiplexing task set mts in resource Rj

for all tasks k ∈ mts

{

q = MinSingle(a, k, j);

if q 	= −1

{

ralloc(k, j, q);// suppose reallocate

If uk(ak) − uk(a′
k
) < 0

add k to negative SPELR task set nsts;

}

};

If nsts is null

i = −1;

else

i = mink{GELRk} for all k ∈ nsts;

Return i

}

When there is more than one task with negative SPELR, for the objective of fair-
ness, the task which incurs minimum GELR is chosen to perform reallocation. Ta-
ble 2 shows the algorithm of finding a minimum GELR. When determining which
task should perform reallocation, minimizing SPELR and GELR avoids starvation
and keeps fairness.

Based on Algorithm 2, the evolutionary optimization algorithm (as described in
Table 3) is designed to achieve the final optimal solution for the resource allocation
game.

Note that the deadline of the completion time of each task is given. And the com-
pletion time is the sum of the execution time and the communication time, in which
the execution time varies as task’s resource allocation strategy changes. Assume the
communication time is a fixed value that does not vary as task’s resource allocation
strategy changes. Therefore, it is reasonable to let Ti denote the deadline of execution
time, and Mi denote the maximal expense that can be afforded for task Si .

For all tasks, their deadlines of execution time and maximal expense are the con-
strained conditions of the evolutionary optimization.

Let a be the final optimal allocation of the game. Since tasks’ budgets are not taken
into consideration in the evolutionary optimization process, a may not be a feasible
allocation. If there exists a task Si for which max{tij } > Ti or

∑m
j=1 eij > Mi , the

game has no fairness solution.
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Table 3

Algorithm 3. Evolutionary optimization

Input: matrix a;

EvolOptimize(a)

{

i = 1

flag = True;

while flag{

if i == 1 flag = False;

obtain multiplexing resource vector of task Si , denote as ms;

order ms by tij descent;

for all j ∈ ms{
q = MinGlobal(a, j);

if q 	= −1{
p = MinSingle(a, q, j);

execute ralloc(q, j,p);

flag = True;

}//end of if

}//end of for

if (i == n){
if flag == False exit;

else i = 1;

}//end of if

else

i = i + 1;

}//end of while

}//end of EvolOptimize

Proposition 3 If the final evolutionary solution satisfies the constrained conditions
of all tasks, it forms a Nash equilibrium of the resource allocation game.

Proof Let ai be the strategy of an arbitrary task Si, a−i be the strategies of the remain-
ing ones. Assume Si has another feasible strategy a′

i , ui(a
′
i , a−i ) > ui(ai , a−i ). It is

reasonable to consider a′
i is the evolution of a′

i with only one-step evolutionary opti-
mization. In other words, there is only one subtask assignment which is different from
ai in a′

i . Without loss of generality, let ai = (ai1, . . . , aip, . . . , aiq , . . . , aim), a′
i =

(ai1, . . . , a
′
ip, . . . , a′

iq , . . . , aim). Suppose aip = 1 shifts to aiq . There are two cases
before the shifting.

(1)
∑n

i=1 aip = 1 and
∑n

i=1 aiq = 0.

In this case, resource Rp is solely assigned to task Si since
∑n

i=1 aip = 1. Mean-
while, resource Rq is not assigned to any task since

∑n
i=1 aiq = 0. Since the allo-

cations of Rp and Rq are non-multiplexing, it can be inferred that task Si increases
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its utility without interfering other tasks, i.e. ui(ai) increases while u−i (a−i ) is not
changing, by shifting a subtask from Rp to Rq . Because aip = 1 is the entry of the fi-
nal evolutionary allocation, according to the processes of initial and evolutionary op-
timizations, it is known that there does not exist an Rq which makes ui(a

′
i ) > ui(ai)

and u−i (a
′−i ) = u−i (a−i ) for all {q : q ∈ [1..m] ∧ (q 	= p) ∧ (

∑n
i=1 aiq = 0)}, i.e.

ui(a
′
i , a−i ) > ui(ai, a−i ). It is contrary to the above assumption.

(2)
∑n

i=1 aip > 1 or
∑n

i=1 aiq ≥ 1.

In this case, suppose that shifting a subtask from Rp to Rq increases ui(ai), i.e.
ui(a

′
i ) > ui(ai). It will cause u−i (a−i ) to decrease since

∑n
i=1 aiq ≥ 1. Let �ui(ai)

denote the increment and �u−i (a−i ) denote the decrement. By the process of
the above evolutionary optimization algorithm, |�ui(ai)| < |�u−i (a−i )| is known.
Therefore, ui(a

′
i , a−i ) < ui(ai, a−i ). It is also contrary to the above assumption. �

6 Experiment and performance evaluation

To demonstrate the effectiveness of the evolutionary optimization algorithm, the use
case designed in Sect. 3 is also used along with the initial optimal results obtained in
Sect. 4.4.

It is obvious that initial the result

a =
⎛

⎝

0 0 0 1 1

0 0 1 1 1

1 1 1 0 1

⎞

⎠

is a multiplexing allocation, where resources R3, R4 and R5 are multiplexed. Accord-
ing to this allocation, for each task, its maximum subtask execution time is produced
by multiplexed subtask. In the execution time matrix

tij =
⎛

⎝

0 0 0 7 9

0 0 7.2 6 8.4

4 3.5 6.4 0 7.2

⎞

⎠ ,

ti5 = maxj∈[1..5]{tij } for each row in the tij .

Based on this context, the evolutionary optimization algorithm (as described in Ta-
ble 3) is run to seek a more optimal allocation (or set of strategies). The evolutionary
steps are as below.

Step 1: Find valid SPELR and GELR. If not found, then exit.
From a and tij , j = 5 is chosen to reallocate. To strategy a1, no negative SPELR

can be found after computing minimum SPELR, i.e. current a1 is the best strategy
of task S1. To strategy a2, the valid minimum SPELR and GELR are obtained when
objective i = 2, i.e. when task S2 changes its strategy a2 = (0,0,1,1,1) to a′

2 =
(0,1,1,1,0), the SPELR of task S2 is −0.001 and the GELR is −0.0062. To strategy
a3, no negative SPELR can be found.
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Table 4 Utility comparison
Task Initial Final Initial Final

strategy strategy utility utility

S1 (0,0,0,1,1) (0,0,0,1,1) 0.0469 0.0518

S2 (0,0,1,1,1) (0,1,1,1,0) 0.0403 0.0413

S3 (1,1,1,0,1) (1,1,1,0,1) 0.0400 0.0403

Total utility 0.1272 0.1334

Step 2: Perform reallocation and compute new utilities for all tasks. According to
step 1, the new allocation matrix is

a′ =
⎛

⎝

0 0 0 1 1

0 1 1 1 0

1 1 1 0 1

⎞

⎠ .

And the new utilities are u′
1(a

′
1) � 0.518, u′

2(a
′
2) � 0.403 and u′

3(a
′
3) � 0.412, re-

spectively. It is obvious that the new allocation is approximated more to optimal than
to initial allocation.

Step 3: Go to step 1. Repeat reallocating till no valid SPELR and GELR is found.
In this use case, the allocation matrix

a′ =
⎛

⎝

0 0 0 1 1

0 1 1 1 0

1 1 1 0 1

⎞

⎠

is the final result. The corresponding strategies of the three tasks are a′
1 = (0,0,0,

1,1), a′
2 = (0,1,1,1,0) and a′

3 = (1,1,1,0,1). Table 4 lists the comparison between
the initial and evolutionary allocations.

The result shows that all participants (tasks) increase their utilities after evolu-
tionary optimization. As a′ is an equilibrium state of the resources allocation game
(proved in Sect. 5.2), no task can choose a new strategy a′

i which increases its own
utility but decreases other tasks’ utilities. In this game, the total utility may be not
optimal. But, the evolutionary result is most approximate to optimal results when the
fairness is guaranteed.

The computation of the proposed method in this paper is mainly produced by
the initial optimization and evolutionary optimization. The initial optimization is
a Binary Integer Programming problem. The time complexity for completing the
initial optimization of all tasks is O(mn2). The time complexity of the evolu-
tionary optimization, as described in Sect. 5, is O(mn logm). The two steps’ op-
timizations are serial. Therefore, the time complexity of the whole solution is
max{O(mn logm),O(mn2)}.

The resource allocation problem considered in paper has been studied by Nisan
and Ronen in [26, 27], where it was shown that the approximation ratio of mech-
anisms is between 2 and n. Christodoulou et al. [11] improved the lower bound to
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1 + √
2 for three or more resources. But they all studied this problem from machin-

ery point of view. The approximation mechanism proposed in this paper attempts
to solve practical problem from the user’s point of view The real importance of our
result lies in the fact that it is more practical with acceptable time complexity than
mechanisms in [3, 7, 11, 12, 18, 20, 21, 26, 27, 29, 31]. The approximation ratio is
mainly not concerned in this paper although it is very important for the solutions of
NP-complete problems.

7 Conclusions

A game-theoretic method for scheduling cloud-based computing services with col-
laborative QoS requirements has been presented. In the computational service (or
resource) market, a cost is incurred at each service that depends on the amount of
computation. And each computing task has multiple dependent and homogeneous
subtasks which are sensitive and interested in execution time. Game theory is used
to find approximated solutions of this problem. Firstly, a Binary Integer Program-
ming method is proposed to obtain the initial independent optimization, which does
not take the multiplexing of resource assignments into consideration. Then, based on
the initial result, an evolutionary mechanism is designed to achieve the final optimal
and fair solution. By introducing concepts of SPELR and GELR, three algorithms for
strategy evolution of all participants considering minimizing of their efficiency losses
are designed. It is demonstrated that Nash equilibrium always exists if the resource
allocation game has feasible solutions.

The optimization problem considered in this paper relates to a large proportion
of cloud-based computing services. The method may be a useful analytical tool for
shedding light on seeking optimal scheduling solution for the complex and dynamic
problems that can be divided into multiple cooperative subtasks in many cloud-based
computing and data store services.
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