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Abstract When the workflow application is executed in Service-Oriented Grid
(SOG), performance issues such as service scheduling should be considered, to
achieve high and stable performance in execution. However, most of the prior works
on workflow management neither study the performance issues nor provide evalua-
tion methodologies on the performance of Grid Services. Therefore, it is infeasible
to apply for the service scheduling problem in SOG. In this paper, we propose and
model evaluation metrics for the Grid Service performance. The metrics are extracted
based on common properties of Grid Services and are used to quantify and evaluate
the performance of an individual Grid Service. With these metrics, we develop a
service scheduling scheme with a list scheduling heuristic, to choose proper and opti-
mal Grid Services for tasks in workflow applications. It ensures high performance in
the execution of the workflow applications. In addition, we propose a low-overhead
rescheduling method, referred to as Adaptive List Scheduling for Service (ALSS),
to adapt to the dynamic nature of a grid environment. ALSS provides stable per-
formance for workflow applications, even in abnormal circumstances. Finally, we
design an experimental environment with actual traces and perform simulations to
quantify the benefits of our approach. Throughout the experiments, we demonstrate
that ALSS outperforms conventional scheduling methods. Our scheme produces a
scheduling performance that is superior to AHEFT by 50.2%, SLACK by 50.8%,
HEFT by 68.3%, MaxMin by 72.0%, MinMin by 71.0%, and Myopic by 69.8%.
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1 Introduction

Recently, the Service-Oriented Grid (SOG) architecture has emerged as a new stan-
dard platform in a grid system. The central concept of SOG is based on the Service-
Oriented Architecture (SOA), in that all entities are defined as a group of services, and
it inherits many advantages from Web services, including open standards, scalability,
and flexibility. SOG provides greater interoperability among various grid platforms
than traditional non-SOG, because it is developed on top of standard specifications.
The key concept in SOG is that all entities in the grid environment are handled in
the form of Grid Services that are supported by Web service standards. Open Grid
Service Architecture (OGSA) [1, 2] is a grid specification based on Web Services
standards. In OGSA, shared resources and tasks in the application are exposed as an
extensible set of networked Grid Services. Then the networked Grid Services are ag-
gregated to create applications. In order to create the grid applications in SOG, it is a
key to providing the ability to integrate basic Grid Services.

The integration process necessitates a method to describe required tasks, their ex-
ecution orders, and data flow among tasks. In general, a workflow is used to describe
the control and dataflow patterns among Grid Services of the target application. Con-
structing a grid application as a workflow has attracted growing interest and is the
subject of many grid research projects [3–7]. Especially, scientific applications are
increasingly dependent on complex workflows of tasks that involve a huge volume
of data analysis [8, 9]. Grid Services are reusable from one application to another
when applications are dynamically constructed based on workflows, since tasks can
share common Grid Services. Tasks in the workflow do not necessarily correspond
to a fixed set of Grid Services. Thus, the workflow management system provides
service orchestration [10] to construct the workflow-based grid application. Service
orchestration is managed such that Grid Services can be loosely integrated via clearly
defined interfaces. In this environment, achieving high and stable performance in ex-
ecution is not straightforward. Nevertheless, most of the related research on work-
flow lacks the studies on the performance issues and focuses on workflow languages
and user-interfaces. The prior works discuss how to describe applications in terms of
tasks and its dependencies [3, 5, 6] or investigate simple mapping schemes based on
semantic knowledge of Grid Services. In this paper, we focus on performance issues
in workflow management to achieve high and stable performance in the execution of
the workflow application in SOG.

The performance evaluation of the workflow application is not straightforward,
since the application is constructed from tasks that are mapped to loosely-coupled,
widely distributed sites. This requires measuring the effect of executing the applica-
tion on heterogeneous resources, with a dynamic load and communication conditions;
especially, when the application is executed on SOG, the evaluation is more compli-
cated since tasks are mapped to Grid Services. The Grid Service is an abstract entity
exposed to multiple types of resources in a system. Thus, the hardware information
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collected from a system, such as CPU utilization and network latency, does not neces-
sarily satisfy the requirements for evaluating the performance of Grid Services. Even
though several scheduling methods [11–13] have been developed to deal with perfor-
mance issues in the workflow context, they are not directly applicable to SOG since
they lack the evaluation criteria for Grid Services. Another important characteristic
of SOG is its unpredictability and dynamicity. For example, service providers can be
disconnected during execution, or new service providers can become available during
execution.

There are two usage models in SOG: the economic model and community model.
In the economic model such as utility computing [14, 15], a customer utilizes services
when necessary, and pays for the usage, and Grid Service providers supply consistent
and stable performance to the customer. On the other hand, the community model
does not guarantee stable performance. In fact, the performance of the Grid Service
fluctuates widely in the community model since Grid Services are freely accessi-
ble to all users, and a grid system can be used by local users simultaneously. Most
Grid systems are based on the community model, except for some commercial Grid
versions. An adaptive strategy often ensures high performance in execution under un-
reliable and dynamic circumstances. Rescheduling [16–18] is a well-known strategy
in grid computing for adapting to dynamic performance variations, and it is proven
to provide a higher performance. Nevertheless, the overhead caused by rescheduling
events can adversely affect performance, and a strategy without rescheduling some-
times provides a higher performance. Therefore, the overhead must be considered
during the rescheduling times.

In this paper, we propose a novel performance management method for the work-
flow application in the community model. We first define and model metrics for the
performance evaluation of Grid Services. With these metrics, we develop service
scheduling methods with a list scheduling heuristic [19] to construct applications with
Grid Services. To adapt to the community model and avoid the high overhead caused
by frequent rescheduling events, we propose a low-overhead rescheduling method,
referred to as Adaptive List Scheduling for Service (ALSS). In ALSS, rescheduling
is considered only for Grid Services on the critical path of the workflow. With var-
ious experiments, we demonstrate that our novel rescheduling scheme successfully
reflects the dynamically updated information of grid systems, and provides high and
stable performance in execution.

The remainder of this paper is organized as follows. Section 2 discusses the re-
lated works. In Sect. 3, we describe our system architecture. Section 4 introduces the
methodology for the performance evaluation. In Sect. 5, we describe how to schedule
Grid Services based on our proposals. Section 6 presents our experimental results.
Finally, we provide concluding remarks and discuss future works in Sect. 7.

2 Related works

A workflow is a model that represents complex problems with structures such as
Directed Acyclic Graphs (DAG). The workflow has been widely used to model the
target problem, not only in the previous heterogeneous systems but also in the recent
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grid systems [9]. There are several studies on workflow management in Grid such as
Condor DAGman [5], Pegasus [6], GridFlow [20] ASKALON [4], and Kepler [8].
DAGman uses user-driven ranking expression for allocating resources and performs
meta-scheduling for Condor jobs. The scheduling outcome is provided to the Condor-
G [21]. DAGman also manages execution orders among dependent tasks [5]. Pegasus
focuses on converting the abstract workflow that is composed of target tasks into the
concrete workflow where the tasks are mapped to available resources. Then the con-
verted workflow is executed using DAGman and Condor-G. Pegasus evaluates can-
didate resources with historical data based on analytical model [6]. However, both
approaches lack the studies on performance metrics to systematically evaluate Grid
Services. GridFlow proposed hierarchical resource management with three layers,
addressing service-level scheduling and workflow management. In GridFlow, a work-
flow can be split into sub-workflows, which are executed on local grids. ASKALON
supports performance-oriented development of distributed Grid applications and it is
well applied to the SOA. Kepler proposed the actor-oriented workflow management
scheme for web services. The system is based on independent components (referred
to as actors).

There are many studies on workflow scheduling in heterogeneous systems. Since
the computing resources are diverse in that environment, scheduling should consider
system variations such as computation and communication costs. The scheduling
heuristics in the heterogeneous system are classified into three categories. The first is
list scheduling, where tasks are arranged in a list based on priorities [22–24]. In this
category, a workflow graph (DAG) is converted to the list of tasks. To achieve high-
performance in the list scheduling, it is imperative to provide a proper ranking scheme
to make a decision on the scheduling order of tasks. The second is duplication-based
scheduling, where tasks are duplicated and deployed in different resources simulta-
neously, to shorten the makespan [25, 26]. In this scheduling, a performance tuning
is feasible through assigning dependent tasks to the same resource, reducing com-
munication delay. The third is clustering-based scheduling where tasks with heavy
communication are grouped together, allocated to the same cluster, and then assigned
to the same resource in a cluster [27]. The basic idea is to segregate tasks with heavy
communication and to allocate the tasks to the same cluster. It is known that algo-
rithms in list scheduling provide a high quality at a lower scheduling cost, while the
performance is comparable to the other categories [19].

Due to the fact that grid system is larger-scale, more dynamic, and less reliable
than traditional heterogeneous systems, scheduling of the workflow application has
been actively studied. GrADS [18] schedules tasks in a workflow based on three pop-
ular heuristics such as MinMin, MaxMin, and Suffrage [28]. It provides a schedul-
ing scheme for the tasks that are not dependent on each other. A similar study has
been performed in Pegasus [29] using the MaxMin heuristic. Nevertheless, the pre-
vious studies assume a deterministic (predictable) execution time in each shared re-
source and a lot of independent tasks in the workflow. DAGman adopts the simplest
scheduling method such as Myopic [11]. This method concerns only individual tasks
and assigns each task to a resource with which the task is expected to complete as
early as possible. Thus, these studies hardly satisfy high performance since work-
flow applications typically have a lot of tasks dependent upon each other and Grid
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systems exhibit nondeterministic characteristic. ASKALON [4, 11] has used HEFT
[23] and Genetic Algorithm (GA) to consider the tasks’ dependencies in the work-
flow. In ASKALON, the ranking scheme based on the mean value is used to arrange
tasks. Although the ranking method provides good quality in the scheduling, the per-
formance can differ significantly from one application to another [30]. Additionally,
GA incurs a relatively longer execution time compared to other scheduling meth-
ods due to the time-consuming iterations. Therefore, ASKALON is unsuitable for
the SOG environment. Workflow scheduling in SOG involves mapping tasks to Grid
Services rather than mapping directly to the system resources. Hence, Grid Services
play critical roles in the overall performance of the workflow application and it is
imperative to provide a methodology quantitatively evaluating Grid Services for the
proper scheduling of workflow applications. For the evaluation of the Grid Services’
performance, He et al. [31] proposed metrics based on the response time. However,
the proposed metrics are not sufficient to estimate the performance, since they do not
represent the general properties of Grid Services.

In the economic model, the Quality of Service (QoS) [32] of the Grid Service is
guaranteed via the Service Level Agreement (SLA) [33]. However, in the community
model, the Grid Service might not guarantee a reliable performance as mentioned.
Most Grid systems are based on the community model, except for some commercial
Grid versions. The community model is more well aligned with grid philosophy,
which represents Grid as a collection of dynamic, multiinstitutional, heterogeneous
resources shared in Virtual Organization (VO) [34]. In the community based SOG, the
rescheduling-based adaptive scheme provides a means to adapt to the performance
fluctuation of SOG.

GrADS proposed a rescheduling mechanism based on the performance contract
between a user and resource providers. A rescheduling is initiated when the contract
can not be met, and it makes a decision on whether the job migration is necessary.
If a performance benefit is expected via the job migration, unexecuted jobs are mi-
grated to newly selected resources. Since GrADS focuses on the iterative workflow,
the rescheduling could be activated only at each interaction [18]. From the work-
flow scheduling aspect, there are two typical rescheduling methods, SLACK [16] and
AHEFT [17]. SLACK is based on the maximum allowable times of the tasks that do
not affect the makespan of the workflow application. If the allowable time is exceeded
and the makespan is longer than expected, the rescheduling event is triggered [16].
In SLACK, MinSpare and Slack of a task are used to measure the allowable maxi-
mum delay of each task. MinSpare is the maximal delay in the execution of a task
that will not affect the start times of its dependent tasks [16]. Slack is the maximal
value that can be added to the execution time of a task without affecting the overall
makespan [16]. The downside of this study is that newly available resources are not
considered, and the rescheduling overheads are increased because all the tasks are
candidates for rescheduling. AHEFT takes newly available resources into account.
The study also incorporates the scheduling overhead in rescheduling. The overhead
is considered based on FEA, which is the earliest time when output is available for
dependent tasks at rescheduling time. Based on the FEAs of the remaining tasks, tasks
are executed based on the rescheduling outcome when the performance benefit is ex-
pected. The negative aspect of this study is that rescheduling can be triggered by any
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task, and the initial information is used in the rescheduling phase without reflecting
dynamically updated information.

3 System architecture for adaptive service scheduling

In this section, we present our system architecture for adaptive service scheduling.
As shown in Fig. 1, application layer includes Grid Application, User-Defined Grid
Service, and Workflow Description Language. The Grid Application (workflow ap-
plication) can be composed of the User-Defined Grid Services (Grid Services) using
Workflow-Description Language. User-Defined Grid Service and Grid Application
are introduced in Sect. 4.1. In the middleware layer, the system consists of three main
components: Service Scheduler, Workflow Manager, and Information Management.
The information management includes Service Performance Monitor, Service Infor-
mation Collector, and Service Indexer. These components are implemented based on
system services provided by grid middleware.

The Workflow Manager parses the user workflow to extract tasks, and generates
lists of candidate Grid Services for tasks. To choose appropriate Grid Services, the
Service Scheduler uses the lists in the scheduling phase. Another important function
of the Workflow Manager is the execution management of a service graph that is com-
posed of Grid Services. It initiates and controls Grid Services during their lifetime.
To reflect newly updated information in the grid environment, the Workflow Manager
makes a request to the Service Scheduler for rescheduling.

The Service Scheduler is the core component of our work. Using our schedul-
ing scheme, it generates a graph that connects Grid Services according to their de-
pendencies. Scheduling is based on the candidate service lists from the Workflow
Manager and the services’ performance information collected by the Service Infor-
mation Collector. The Service Scheduler also performs rescheduling. It recomposes
Grid Services for the remaining tasks to adapt to the newly updated environment and
guarantee stable performance in execution of the workflow application.

Fig. 1 System architecture for service scheduling
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For information management, the Service Indexer provides the mapping semantics
of Grid Services. The Service Information Collector provides the static information
about the Grid Service’s performance. The Service Performance Monitor keeps track
of the Grid Services’ performance at run-time.

To execute a workflow application in SOG, service scheduling generates the ser-
vice graph via system services, as shown in Fig. 2. A grid user describes a workflow
application as a task graph, where the nodes represent tasks and the edges repre-
sent dependencies between tasks. The workflow can also be manually edited with a
workflow description language such as Grid Service Flow Language (GSFL) [35],
Business Process Execution Language for Web Services (BPEL4WS) [36] or any
other user-interfaces in the grid portal. The workflow is then submitted to the Work-
flow Manager. Once the Workflow Manager receives the workflow description, it
looks up the Service Indexer with mapping information for available Grid Services.
The Workflow Manager then sends Grid Services’ lists including DAG to the Service
Scheduler. The Service Scheduler generates a service graph of the workflow applica-
tion, which consists of selected Grid Services. The service graph is delivered to the
Workflow Manager for execution. The Workflow Manager invokes each Grid Service
in the individual Grid Service Provider according to the execution orders in the work-
flow. When a Grid Service is invoked, the Service Performance Monitor is triggered
by the Workflow Manager, to keep track of the Service’s performance at run-time.

Since SOG is inherently dynamic and nondeterministic in nature, an adaptation
strategy is required to achieve high and stable performance in execution. In this paper,
we consider three common situations, and describe how to adapt to these with our
system components.

– Performance fluctuation of the Grid Service: The performance of the Grid Ser-
vice is sensitive to the local workload in a grid system. The local workload results

Fig. 2 Sequence diagram for service scheduling
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in performance degradation of the workflow application. To adapt to this situation,
we trigger rescheduling to select other Grid Service when the local workload is
heavier than expected.

– Volatility of the Grid Service provider: A Grid Service provider may leave a
virtual organization (VO) [34], since it is neither dedicated nor reserved for the
Grid Services. If the Grid Service is executed on a vulnerable provider, it may
not complete its execution. The Workflow Manager sends a periodic message to
check the aliveness of the provider. In addition, the Service Scheduler gives a low
priority to highly vulnerable providers, so that more reliable providers are chosen
in the scheduling phase.

– Appearance of a new Grid Service provider: By contrast to volatility, it is also
possible that new Grid Service providers suddenly appear and join in a VO. If the
new providers have the capability to provide high performance in execution of Grid
Services, it is very likely to increase the performance of the workflow application.
To reflect this situation, we make new providers notify the Service Indexer of their
existence. The Service Indexer then builds a list of Grid Services from the new
providers.

We use a rescheduling strategy to adapt to dynamicity. While Grid Services are
performing tasks in the workflow application, the Workflow Manager makes a deci-
sion on whether rescheduling is necessary or not. When rescheduling is beneficial, the
Service Scheduler invokes rescheduling for the remaining tasks, as shown in Fig. 3.
After the new service composition is generated via rescheduling, the new workflow
of Grid Services is delivered to the Workflow Manager, and the newly selected Grid
Services continue their execution for the remaining tasks.

Fig. 3 Sequence diagram for rescheduling
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4 System models

In this section, we define and model the SOG system to represent the environment of
the study. Based on common properties of Grid Services, we define evaluation metrics
for Grid Services’ performance measurement. The performance of each candidate
Grid Service can be measured based on the metrics at the scheduling time. Lastly,
we define the performance criteria of the workflow application, so that each service
graph generated by the service scheduling can be evaluated.

4.1 SOG system models

The SOG is composed of Grid Service providers, Grid Services, workflow appli-
cations, and the middleware components (including the information service, the
scheduling service, the execution management service), etc. Grid Service providers
manage Grid Services on their grid sites. A Grid Service executes each task in the
workflow application. The workflow application executes its tasks using the Grid
Services, and it is described by DAG. The detailed description of each component is
as follows.

– Grid Service Provider (GSP): In general, a GSP resides in a grid site that provides
its capability to a VO. It is possible that more than one GSP exists in a grid site.
The communication among remote GSPs is achieved via communication channels
between grid sites. To simplify our study, we assume only one GSP is located in
a grid site, and a virtual communication channel exists between two remote GSPs.
Let P denote a set of GSPs in the VO. The providers (p1,p2, . . . , pn) are elements
of P . If |P | = n, an n × n matrix B maintains the communication information,
where bi,j is the network information from pi to pj such as bandwidth and data
transfer rate. This information is collected from the information service.

– Grid Service: There are two types of grid services in SOG. The first type is the
system service provided by the underlying grid computing platform, such as grid
middleware. Examples of system services are a resource management service, data
management service, grid information service, and grid security service. The sec-
ond type is a user-defined service or an application service. For example, a docking
service and folding service in biochemistry are included in this category. Grid users
implement user-defined services on top of system services to satisfy their needs.
Our discussion focuses on the user-defined service. Note that the term “Grid Ser-
vice” used in this paper represents the user-defined service. Grid Services are de-
ployed on the GSP in advance, run as demons, and waits for an execution request.
Since grid users such as chemists and physicists have insufficient knowledge of
Grid Services, we assume that grid users only invoke the Grid Service via a grid
portal or broker service, instead of deploying their own Grid Services directly. We
also assume that at least one Grid Service exists to execute each task in SOG. Let
Si denote a set of Grid Services. We define the Grid Service si

m ∈ Si where si
m

means that a Grid Service s executes a task ti deployed on a GSP pm.
– Workflow Application: A user application is represented by a workflow composed

of tasks and their dependencies. The DAG is a well-known model for describing
the workflow. It is represented by the graph GT = (T ,E), where T is a set of tasks
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(tn) and E is a set of edges between the tasks. The edge represents the dependency
between two tasks. That is, if ei,j ∈ E exists, a task tj has to wait until its preceding
task ti completes its execution. In the task graph, if ta ∈ T exists and ei,a /∈ E for
all ti ∈ T , then the task ta is an entry task of the workflow. If tz ∈ T exists and
ez,i /∈ E for all ti ∈ T , then the task tz is a terminal task. In SOG, there tends to be
a huge volume of data transfer between tasks when tasks are executed. To represent
and quantify the variations in the data transfer, the edges of the DAG are weighted
according to the volume of data transferred between tasks. If |T | = n, an n × n

matrix V contains a volume of data communications where vi,j is a volume of data
transferred from a task ti to a task tj . In this paper, the workflow application and
the workflow’s DAG are used interchangeably.

– Service Scheduling: A service scheduling performs a mapping between tasks in
DAG and Grid Services in GSPs. It converts a task graph GT to a service graph.
The service graph is represented by graph GS = (S,D) where S is a set of cho-
sen Grid Services (sn) and D is a set of edges among the Grid Services. The edge
represents dependencies. That is, if task ti and tj are scheduled with Grid Services

si
m and s

j
n in the GSPs pm and pn, respectively, and ei,j ∈ E exists in the work-

flow graph, the Grid Service si
m must be executed before the Grid Service s

j
n . If a

task ti is scheduled and mapped to the Grid Service si
m via service scheduling, we

represent the task as t im.

Figure 4 shows a simple example of service scheduling for the workflow appli-
cation. This example has four GSPs, and the workflow application has seven tasks
with eight dependencies. Each GSP provides various Grid Services for tasks in the
workflow. As shown in the figure, the service scheduler converts the task graph (a)
in Fig. 4 to the service graph (c) in Fig. 4. The service graph is composed of Grid
Services that can perform each task in the task graph. After proper Grid Services are
selected, the workflow application is executed with Grid Services according to the
service graph. In the prior studies on workflow management, the conversion process
is referred to as service composition or service orchestration In this paper, we refer
to it as service scheduling to emphasize the fact that our focus is on the performance

Fig. 4 An example of (a) a workflow represented by DAG, (b) Grid Services in the service provider, and
(c) a service graph generated via service scheduling
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issues of Grid Services. The previous works lack investigations on performance is-
sues. Service scheduling guarantees that the scheduler’s outcome tends to be optimal
in terms of performance metrics such as the application’s completion time, system
utilization, and total execution cost.

4.2 Evaluation metrics for Grid Services performance

Many previous studies on grid scheduling are based on the predicted execution time
in a traditional grid that is not service-oriented. Therefore, the execution time with
high-performance resources is less than that with low-performance resources. This
trend is clearer in a computational grid, since the hardware configuration and capa-
bility directly affects the performance of tasks that mainly require the CPU and main
memory during execution. On the other hand, in the case of Grid Services, it is not
proper to relate the performance solely to the hardware configuration because vari-
ous resources are abstracted via Grid Services; especially, in the community model,
since local workloads can be executed with Grid Services in a multitasked manner, a
higher hardware configuration does not necessarily translate to superior performance
of Grid Services. To evaluate the performance of the grid services practically and
quantitatively, we propose and model the evaluation metrics. The metrics consider
the common properties of Grid Services, and the scheduler uses these metrics to
choose more optimal Grid Services in the scheduling phase.

While modeling the lifetime of general Grid Services, we discovered that Grid Ser-
vices have three common properties. First, the Grid Service uses the factory/instance
pattern for enhancing manageability and efficiency when performing its task. The
factory/instance pattern is well known in software design. In this pattern, an instance
of the Grid Service cannot be created directly. Instead, a factory service is used to
create the instance. Second, for each execution request, the Grid Service (instance)
tends to perform the same task with varying volumes of input data during its lifetime.
This property implies that the Grid Service can be evaluated based on its throughput.
The last property of the Grid Service is related to the nature of the community model.
In the community model, the Grid Service does not monopolize system resources
during its execution. As mentioned, the local workload can run on the same system
in a multitasked manner. The performance of the Grid Service is affected by the local
overhead on the shared resources. Since the GSPs are not fully reliable and dedicated,
the GSP’s faultiness and/or the withdrawal from VO also delays the completion of the
Grid Service. To reflect these properties in the performance measurement, we define
the time-based metrics as follows.

Once the task (ti )’s execution request for a Grid Service arrives at a GSP pm, the
request is delivered to the factory service f i

m. The factory service is responsible for
obtaining the required system resources such as CPU time slots and main memory
to initiate the Grid Service instance. After all prior requests are processed and the
required resources are available, the factory service initiates an instance service si

m,
and then the instance service executes its task. This process is depicted in Fig. 5.
As expressed in (1), the completion time (timeC ) of the Grid Service is the sum of
the initiation time (timeI ) in the factory service and the execution time (timeE) in
the instance service. If a Grid Service does not use the factory/instance pattern, the
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Fig. 5 A scenario of Grid Service execution based on factory/instance pattern

completion time of the service is equal to the execution time, since the initiation time
is zero.

timeC(si
m) = timeI (s

i
m) + timeE(si

m). (1)

For the time-based execution model, we define the following metrics.

– FactoryTime (F T ): This metric is used to evaluate the time required to invoke the
instance services. It is the same as the initiation time (timeI ). The contention of
the Grid Service is represented by this metric. A higher F T means that several
workflow applications are competing for the Grid Service. The Grid Service si

m’s
F T of the kth request is calculated by (2).

F T (si
m)k = timeC(si

m)k − timeE(si
m)k. (2)

In our work, we use the average and maximum of F T calculated in (3) and (4),
respectively, in the service scheduling phase.

F TAV E (si
m) =

∑N
k=1 F T (si

m)k

N
, (3)

F TM AX (si
m) = max

{
F T (si

m)1, F T (si
m)2, . . . , F T (si

m)N
}
. (4)

– ThroughPut (T P ): The Grid Service si
m’s T P of the kth request can be defined

by the execution time (timeE(si
m)k) and the volume of input data ((di

m)k). T P is
calculated in (5).

T P(si
m)k = (di

m)k

timeE(si
m)k

. (5)



Adaptive service scheduling for workflow applications in SOG 265

The average and minimum of T P are calculated by (6) and (7), respectively. These
are used in the scheduling phase to compare the performance of Grid Services.

T P AV E (si
m) =

∑N
k=1 T P(si

m)k

N
, (6)

T P M I N (si
m) = min

{
T P(si

m)1, T P(si
m)2, . . . , T P(si

m)N
}
. (7)

– Reliability (RL): We define Reliability (RL) to reflect the behavior of the Grid
Service during its execution, such as the performance degradation, completion de-
lay, and unexpected termination caused by provider failure and/or rescheduling.
The reliability of the Grid Service is defined by the ratio of the number of ter-
minated executions to the number of execution requests. A larger RL indicates a
higher probability of successful executions. RL is calculated by (8),

RL(si
m) = 1 − Si

m

Ni
m

. (8)

Ni
m and Si

m denote the number of execution requests and the number of terminated
requests for the Grid Service si

m, respectively.

4.3 Workflow application performance metrics

The performance of the workflow application is highly dependent on the Grid Ser-
vices’ performance and data transfer rate between tasks. In our study, we assume that
the evaluation metrics for all Grid Services in VO are measured and collected by the
grid information service. The network information is also provided via the grid in-
formation service upon request. We also assume that two Grid Services can not be
executed simultaneously on the same GSP. In the previous studies, the performance
of the workflow application was measured by the expected completion time of each
task on each resource. While these studies may provide reasonable scheduling or a
plan for workflow application, it is not straightforward to predict accurate comple-
tion times in an actual environment since the grid is dynamic and not fully dedicated.
Hence, we use the evaluation metrics collected from real-world systems instead of
using speculation. To measure the performance of the overall workflow application,
we define metrics related to each task and its dependency as follows.

– Computation Cost(Ccomp): The Ccomp of a task ti on the service provider pm is
the completion time of the Grid Service si

m. Ccomp is calculated by (9).

Ccomp(t
i
m) = F TAV E (si

m) + di
m

T P AV E
(si

m). (9)

The t im indicates that the task ti is mapped to the provider pm, and di
m is the volume

of the input data for the task t im.
– Communication Cost (Ccomm): If tasks ti and tj are mapped to the providers pm

and pn, respectively, Ccomm is defined by the network capacity and volume of the



266 S.H. Chin et al.

data transferred to providers as expressed in (10).

Ccomm(t im, t
j
n ) = vi,j

bm,n

, (10)

where vi,j is a volume of data transferred from a task ti to tj and bm,n is a data
transfer rate from a provider pm to a provider pn.

The following metrics measure the performance of the overall workflow applica-
tion. The metrics are execution times of the workflow application.

– The Earliest Start Time (E S T ): The E S T of task ti on pm is a bigger term
between the time when the previous Grid Service completes its execution and the
instance service of the si

m is ready and the time when all required input data are
transferred to the provider. E S T is calculated by (11).

E S T (t im) = max
(
ready(si

m),

max
th∈succ(ti )

(
Ccomp(t

h
l ) + Ccomm(thl , t im)

))
, (11)

where ready(si
m) is the time when Grid Service si

m is instantiated and is ready for
execution, and succ(ti) is a set of tasks followed by and dependent on the task ti .
The inner max term means the most delayed time because of the input data from
tasks in succ(ti).

– The Earliest Finish Time (E F T ): The task ti ’s E F T on the GSP pm is the sum
of E S T and Ccomp of the task t im as shown in (12).

E F T (t im) = E S T (t im) + Ccomp(t
i
m). (12)

– The Overall Performance (O P ): When the terminal task tz of the workflow ap-
plication A is executed on pm, the O P of the A is calculated by (13).

O P(A) = E F T (tzm)
−1

. (13)

5 Adaptive List Scheduling for Service algorithm

Service scheduling selects Grid Services for tasks in the workflow graph and assigns
the proper execution order of the chosen Grid Services on each service provider. The
goal of service scheduling is to increase the overall performance of the workflow ap-
plication, i.e., minimize the makespan of a workflow application. The makespan is
the time period from the start of the entry task to the completion of the terminal task.
In our work, the makespan of a workflow application is equivalent to the inverse of
the overall performance (O P ). The scheduling problem of the workflow application
is NP-complete. Thus, heuristics are used in general to solve the service scheduling
problem. We use the list scheduling heuristic. It is well known that a heuristic out-
performs other alternatives in terms of the scheduling quality. The original version of
list scheduling targets homogeneous parallel systems and is composed of two phases:
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the prioritizing phase and selection phase. The prioritizing phase is responsible for
making a decision on the scheduling priorities of tasks. The selection phase chooses
proper resources for each task.

However, the properties of SOG do not allow for applying the original list schedul-
ing to service scheduling as is. The Grid Services in SOG are provided by heteroge-
neous GSPs. The network connections among these providers are also heterogeneous
in general. For each task, the number of candidate Grid Services for scheduling dif-
fers because the number of deployed Grid Services differs for each Grid Service. For
example, in Fig. 4, four Grid Services are deployed for task 2 and two Grid Services
are deployed for task 4. This variation needs to be considered in the scheduling time
to prevent a potential delay when a task with a fewer number of candidates is sched-
uled later. In order to reflect these properties, we devised a novel weighting phase
and added it to the original list scheduling. The weighting is determined with the
evaluation metrics. The dynamic nature of SOG is another concern in scheduling.
The volatility of the service provider causes unexpected degradation in the execution
performance or even termination of the task’s execution. To overcome this limitation,
we added a rescheduling phase that guarantees high and stable performance in spite
of the volatility of the service provider.

Adaptive List Scheduling for Service (ALSS), our novel service scheduling
method for workflow application, is based on the aforementioned weighting and the
rescheduling phases on top of original list scheduling. Hence, our ALSS consists of
four major steps; the weighting, ranking, mapping, and rescheduling phases.

5.1 Weighting phase

In this phase, we set the weightings for the tasks and edges in the workflow graph.
The original list scheduling sets the weighting simply using the estimations of the ex-
ecution time and communication latency. This is due to the fact that in a homogenous
environment the execution time of a task and the latency of the data communication
tend to be relatively constant. However, since the resources in SOG are heterogeneous
entities, the weighting process should consider the different capabilities of heteroge-
neous resources. In addition, it should consider that each type of Grid Service is not
necessarily allowed for deployment on any service providers in VO. In other words,
the number of the candidate Grid Services can vary for each task. Therefore, it is nec-
essary to assign a higher weighting to a task with fewer candidate services, in order
to prevent a potential delay when the task’s assigned priority is low. We should also
consider unexpected termination and performance fluctuation. This is modeled using
the reliability factor of the Grid Service (RL). We assign a lower weighting to a task
with more reliable candidates. The weighting of the task ti is calculated by (14).

Wtask(ti) =
∑

pk∈Pi
Ccomp(t

i
k)/RL(si

k)

|Pi | · |P |
|Pi | , (14)

where P denotes all GSPs in VO and Pi is a set of the GSPs where the Grid Service
for the task ti is deployed.

The weighting for each edge is calculated with the communication cost (Ccomm).
We use the average communication cost (Ccomm AV E ) between candidate service
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Fig. 6 An example of (a) The evaluation metrics of the Grid Services, (b) The volume of input data for
each task and (c) The data transfer rates between GSPs

Table 1 The weightings of the tasks and edges for the workflow in Fig. 4

Task t1 t2 t3 t4 t5 t6 t7 –

Wtask 16.06 17.79 12.58 5.89 24.5 10.21 12.22 –

Edge t1, t2 t1, t3 t1, t4 t2, t5 t3, t5 t4, t6 t5, t7 t6, t7

Wedge 13.58 8.83 9.07 3.05 9.74 14.02 6.11 6.02

providers where the candidate Grid Services are deployed for target tasks. The stan-
dard deviation of the data transfer rate (Drate S D ) is also taken into account. We assign
a higher weighting for an edge when the average communication cost is higher or the
cost variation among candidate channels is larger. The Ccomm AV E of task ti and tj is
calculated by (15) and the edge’s weighting is calculated by (16).

Ccomm AV E (ti , tj ) =
∑

pk∈Pi,pl∈Pj
Ccomm(t ik, t

j
l )

|Pi ||Pj | , (15)

Wedge(ti , tj ) = Ccomm AV E (ti , tj ) · Drate S D(ti , tj ). (16)

Figure 6(a) shows an example of the evaluation metrics for Grid Services in
Fig. 4(b). The volume of input data for each task in Fig. 4(a) is listed in Fig. 6(b).
The data transfer rates between GSPs in Fig. 4(b) are shown in Fig. 6(c). Since our
algorithm is implemented in a simulation environment, the values in Fig. 6 are syn-
thetically assigned considering SOG circumstances to the best of our knowledge and
they are used to calculate weights. The weights of the tasks and edges in the example
workflow are calculated by the above equations and listed in Table 1.

5.2 Ranking phase

To compare the priority for scheduling, we use the b-level (bottom level) [19] as
the rank. The b-level of a task is the length of the longest path from the task to the



Adaptive service scheduling for workflow applications in SOG 269

Table 2 Tasks’ R V s in the
example workflow Task t1 t3 t2 t4 t5 t6 t7

R V 96.31 68.15 66.67 48.36 45.83 28.45 12.22

terminal task. Therefore, it is bounded by the length of the critical path. The critical
path of a workflow application is the longest path from the entry task to the terminal
task. The ranking phase arranges tasks in descending order of rank. The task with a
higher rank is scheduled first, preempting a task with a lower rank. If more than one
task has the same ranking, the tasks are scheduled at random. The list generated by
the ranking phase keeps the dependencies so that a task is located in the list prior to
its dependent tasks. The ranking phase traverses the workflow graph upwards from
the terminal task because we use the b-level as the rank. The rank of the terminal task
tz is equal to its weighting Wtask(tz). The rank (RV ) of task ti is recursively defined
by (17).

RV (ti) = Wtask(ti) + max
tj ∈succ(ti )

(
Wedge(ti , tj ) + RV (tj )

)
, (17)

where max means the maximum rank of successive tasks.
With the rank, the task graph of a workflow application is converted to a list of

tasks. The rankings in the example workflow are listed in Table 2.

5.3 Mapping phase

The mapping phase assigns appropriate Grid Services for tasks from the list arranged
in the ranking phase. A mapping method, referred to as HEFT, maps a task to the Grid
Service that can finish the task the earliest. However, this method may not guarantee
the maximum O P of a workflow application. For example, even if a Grid Service
with a minimum execution time is chosen, the communication delay to the follow-
ing Grid Services may be severe, resulting in a longer execution time of subsequent
Grid Services. This elongates the overall makespan. We define and express a mapping
value(M V ) of each task for maximizing O P . If a Grid Service is chosen and exe-
cuted for a task, it affects the E S T of its successive tasks, because of the computation
and communication costs. Therefore, proper tuning is required to improve O P . As
expressed in (18), we use the communication costs from the chosen Grid Service to
its dependent Grid Services and the computation costs of successive Grid Services in
the calculation of the mapping value.

M V(t im) = E F T (t im)

+
∑

tj ∈succ(ti )((
∑

pn∈Pj
Ccomm(t im, t

j
n ) + Ccomp(t

j
n ))/|pj |)

|succ(ti)| , (18)

where the second term is the average of the computation and communication costs
caused by dependent tasks when a task ti is mapped to a provider pm.

Until the terminal task is mapped to the proper service provider, the Grid Service
with the lowest mapping value is selected greedily for each task. The critical service
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Table 3 The mapping of the tasks in the example workflow

t1 t3 t2 t4 t5 t6 t7

p1 33.02 55.88a 82.92 67.01 67.66 – 57.1

p2 – – 58.59 59.45 59.1a 102.64 51.66a

p3 32.06a – 48.71a 57.71 – 92.57 93.01

p4 37.13 72.13 – 44.91a – 87.8a –

aChosen Grid Services

set is composed of Grid Services on the critical path of the service graph generated in
the mapping phase. The critical path of the service graph GS = (S,D) can be defined
as below, where S is a set of chosen Grid Services and D is a set of edges among the
Grid Services.

– Critical Path of the service graph: A path s1
p, s2

q , . . . , sn−1
s , sn

t in the graph GS =
(S,D) is a critical path if the following three conditions are satisfied. (1) s1

p and sn
t

are Grid Services for entry task and terminal task, respectively. (2) (sk
x , sk+1

y ) ∈ D

for 1 ≤ k ≤ n − 1. (3) when the services in the path are executed along the path,
the completion time of the sn

t is the same as the makespan of the whole graph.

The Grid Services on the mapped providers are connected to construct the service
graph, and are managed by a workflow manager for execution. Table 3 shows the
mapping of the tasks in the example workflow among four GSPs.

5.4 Rescheduling phase

Since the grid environment is highly dynamic in nature, the initial scheduling may
not satisfy the performance goal. To guarantee consistent and stable performance,
the scheduler should have the ability to adapt to dynamic conditions such as per-
formance degradation of Grid Services, the appearance and disappearance of GSPs,
and dynamic changes in the network conditions. We use a rescheduling strategy to
select new Grid Services for the remaining tasks (i.e., unexecuted tasks), reflecting
the newly updated information. Although this strategy is known to provide guar-
anteed performance, it has a weakness. Frequent rescheduling sometimes adversely
affects the performance, due to the rescheduling overhead. Preventing unnecessary
and redundant rescheduling events is the key to guaranteeing stable performance. To
alleviate the rescheduling overhead, our scheme deals with the Grid Services on the
critical path in the service graph. This means that only Grid Services on the critical
path can initiate the rescheduling. If a Grid Service on the critical path is delayed
beyond the allowable expected start time, the three phases—the weighting, ranking,
and mapping phases are reinvoked, and new Grid Services are reassigned for the re-
maining tasks. We propose the Allowable Delayed Time as a threshold for deciding
whether rescheduling is necessary or not.

– Allowable Delayed Time (A D T ): If the entry task ta is mapped to the service
provider pa , A D T (sa

a ) is the sum of F T MAX (sa
a ) and T P M I N (sa

a ). A D T of
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the task tcn on the critical path is recursively defined in (19).

A D T (sc
n) = F T MAX (sc

n) + dc
n

T P M I N (sc
n)

+ max
sb
m∈prec(sc

n)

(
A D T (sb

m) + Ccomm(tbm, tcn)
)
, (19)

where prec(sc
n) is a set of the preceding Grid Services before the Grid Service sc

n.
In other words, sc

n is dependent on prec(sc
n). The A D T of the terminal task means

the maximum allowable delay of the overall workflow application.

If the E F T of the critical task tcn exceeds A D T (sc
n), rescheduling is invoked for

the remaining tasks. Based on the new performance information collected by the
information service, new Grid Services are assigned for the remaining tasks. The
delay(delay) of the Grid Service sc

n is defined in (20),

delay(sc
n) = (� + E F T (tcn)) − A D T (sc

n) · ω, (20)

where the � is the elapsed time from the start of the application’s execution. ω (0 <

ω ≤ 1) is a constant representing the degree of strictness for rescheduling initiation.
The smaller ω is, the more rescheduling is initiated. The makespanexp is the expected
makespan with the original scheduling. The makespanre is the expected makespan
with rescheduling. Rescheduling is invoked when the condition in (21) is satisfied.

makespanexp + delay(sc
n) > makespanre + Overheadre, (21)

where Overheadre is the overhead caused by rescheduling. As an example of the
overhead, suppose that a task has completed its execution. Then the task is in one
of three states depending on the output’s transmission status; the transmission of the
output is completed for the following Grid Services, the output is being transmitted,
and transmission has not started yet. In the first case, the rescheduling overhead is
due to retransmission of the output to the newly mapped Grid Services. In the second
case, the overhead is due to the fact that transmission is cancelled and retransmission
to the newly mapped Grid Services is required additionally. In the third case, it is
required only to notify the locations of the newly mapped Grid Services.

Our overall ALSS algorithm is described in Fig. 7. Initialization is performed in
line 5. The lines 6–9 show the weighting phase where weights are assigned for each
task (lines 6–7) and for each edge (lines 8–9). The ranking phase is performed in
lines 10–12. The mapping phase (lines 13–20) computes a mapping value for each
provider (lines 14–15) and maps each task to a Grid Service with the lowest map-
ping value (lines 16–17). The expected makespan of a service graph is calculated in
line 20. The lines 34–36 compute the critical path of a service graph and ADT of
each service on the critical path. Grid Services are executed in lines 37–48 where
the execution continues until Grid Service for terminal task completes its execu-
tion; especially, the line 38 makes a decision on whether a rescheduling is neces-
sary. If the current time is bigger than ADT of a service, the delay of the service is
calculated at the current time and the FLAG is set for rescheduling (line 39). Dur-
ing rescheduling, ALSS is recursively called with the remaining part of a service
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Fig. 7 The ALSS algorithm

graph (line 40) and three phases including the weighting, ranking, mapping are per-
formed (lines 5–20). Lines 22–23 compute the rescheduling overhead and expected
makespan of the rescheduled service graph. If the rescheduled service graph indi-
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cates a superior performance to the current one (line 24), the current service graph is
changed according to the rescheduling outcome (lines 25–28).

6 Experiments

In this section, we evaluate the performance of our ALSS algorithm and compare it
with the other algorithms presented in Sect. 2, referred to as AHEFT [17], SLACK
[16], HEFT, MaxMin, MinMin, and Myopic [11]. Our static version of the service
scheduling algorithm, List Scheduling for Service (LSS), is also included in the com-
parison to evaluate the rescheduling performance. In order to evaluate the perfor-
mance, we have developed a simulator based on Simgrid [37]. Our SOG emulation
model is incorporated in the simulator. The simulator has the capability to emulate
the dynamic nature of SOG. We performed simulation-based studies for three rea-
sons. First, although experiments on real-world systems provide more realistic re-
sults, it is not feasible to perform a significant number of experiments to collect sta-
tistics, since real-world applications are executed over a very long period of time.
Second, it is not feasible to perform the experiments with a wide variety of resource
configurations using real-world systems. Third, it is hard to acquire coherent traces
on a real-world machine when repeating the same simulation [37]. Our simulation-
based studies overcome these limitations, provide a means to conduct experiments
and compare the efficiency of various strategies. As inputs of the experiment, we
use both randomly generated task graphs and real-world workflow graphs including
the MDC (Molecular Dynamic Code) workflow [23] and GA (Genomic Annotation)
workflow [24].

6.1 Experimental design

We used actual traces from Network Weather Service (NWS) [38] to reflect the real-
world situation of the grid system and ensure the reliability of the experiment. The
trace includes the CPU utilizations of 54 grid nodes, network bandwidth, and Round
Trip Time (RTT) between grid nodes collected from August to October in 2002.
For the calculation of the evaluation metrics for Grid Services, we used the traces
from August to September, and the trace in October was used for comparing the
scheduling performance. To simulate ALSS with a variety of workflow graphs, we
randomly generated various workflow graphs with the parameters related to the graph
topologies and their characteristics as follows.

– TaskNumber: The number of tasks in the workflow.
– HeightRatio: The height of the generated workflow graph is determined by Height-

Ratio. The height of the workflow graph with n tasks is equal to
√

n · HeightRatio.
– MaxEdge: MaxEdge determines the maximum number of edges for each task, ex-

cept for the entry and terminal tasks.
– CCR: The Communication to Computation Ratio (CCR) is the ratio of the average

communication time to the average computation time of a workflow application.
CCR determines the characteristics of a grid application. That is, a data-intensive
application has a higher CCR, while a computation-intensive application has a
lower CCR.
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To reflect the grid computing environment, we used the following parameters.

– HostNumber: HostNumber is the number of GSPs in VO.
– CpuHetero: CpuHetero represents the degree of heterogeneity of the grid re-

sources. We modeled the heterogeneity in terms of the CPU performance with the
clock frequency. The CPU’s performance is selected from the normal distribution
N(2 GHz,0.2 GHz × CpuHetero). The resources are homogenous if CpuHetero is
zero. The higher CpuHetero is, the more heterogeneous the grid resources are.

– DeployPro: DeployPro represents the number of GSPs where Grid Services are
deployed.

To experiment on the dynamic nature of GSP, we defined the following parameters.

– ChangeInterval: ChangeInterval is the interval of the GSPs’ alteration. A higher
ChangeInterval represents a lower frequency of the provider’s alteration.

– ChangePercent: ChangePercent is the probability that each GSP changes its state,
such as joining and leaving a VO.

The parameter set is listed in Table 4 for the experiment. To verify how each pa-
rameter affects the performance of scheduling, we fix the values of parameters to the
defaults, except the target during the experiment. The median of each parameter range
is defined as the default. For TaskNumber, HeightRatio, MaxEdge, and ChangeInter-
val, we do not set the medians as the defaults, since we found that the medians bias
the experimental results.

With combinations of TaskNumber, HeightRatio, MaxEdge, and CCR, we gener-
ated 40 types of DAGs, and the simulator generates 1,000 different instances for each
type. As a result, we used 40,000 different DAGs for the experiment. The 50 differ-
ent types of system configuration of the GSPs were generated using HostNumber,
CpuHetero, DeployPro, ChangeInterval, and ChangePercent. The simulator gener-
ated 1,000 different instances for each system configuration. The total number of
system configurations used in the experiment was 50,000. Thereby, we conducted
90,000 simulations to evaluate ALSS in total.

We measured the Performance Improvement Rate (PIR) and Number of Qual-
ity Scheduling (NQS) to evaluate the performance of each scheduling algorithm. As

Table 4 Parameter values used in the experiment

Parameter Value Default value

TaskNumber 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 36

HeightRatio 1, 1.3, 1.4, 1.5, 1.7, 1.9, 2.0, 2.3, 2.4, 2.5 1.5

MaxEdge 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 2

CCR 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2.0 1

HostNumber 5, 15, 20, 25, 30, 35, 40, 45, 50 30

CpuHetero 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 6

DeployPro 0, 20, 30, 40, 50, 60, 70, 80, 90, 100 50

ChangeInterval 50, 100, 150, 200, 250, 300, 350, 400, 450, 500 250

ChangePercent 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 25
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the name implies, PIR is the performance improvement rate of ALSS compared to
the other algorithms. It was measured by the difference of the makespans over the
ALSS’s makespan, as shown in (22). The performance gain of ALSS over the other
scheduling algorithm was calculated by the PIR percentage. NQS was measured by
the occurrences that each algorithm produces superior, inferior, and equal quality of
scheduling compared to ALSS.

PIR(%) = makespanother − makespanALSS

makespanALSS
× 100. (22)

6.2 Experimental results and analysis

In our first experiment, we compared NQS according to the strict rescheduling ratio
(ω). The ω ranges from 0.5 to 1.0 and it was incremented by 0.05 to determine the
optimal value with the other parameters set to the defaults. The result is shown in the
Fig. 8(a). We found that 0.6 and 0.85 are the optimal ω values, since it produces the
highest NQSs. With these values, ALSS produces superior scheduling in 612 out of
1,000 simulations. Thereby, we set ω as 0.6 for subsequent experiments since 0.6 is
closer to the median.

The next experiment investigated how the structure of the workflow graph affects
the makespan. The first set of experiments compared PIR according to the number of
tasks. This result is shown in Fig. 8(b). For most cases, PIR increases as the number
of tasks increases. This trend is due to the fact that as the number of tasks increases,

Fig. 8 (a) NQS compared to LSS according to the strict rescheduling ratio (ω), and PIR according to;
(b) the number of tasks, (c) HeightRatio and (d) MaxEdge
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opportunities for rescheduling increase as well. Compared to LSS, ALSS shows the
highest performance improvement when the number of tasks is 80 (6%). When the
number of tasks is 40 and 90, the performance gain decreases because the reschedul-
ing overhead affects more to the makespan than the other cases. Compared to AHEFT
and SLACK, ALSS reports about 6% and 7% PIRs on average across all the cases.

The second set of experiments was conducted to measure the performance impact
of the height of the workflow graph. Figure 8(c) shows the simulation results. For
all heights, ALSS provides superior performance to LSS by about 5%, AHEFT by
6%, SLACK by 8%, HEFT by 14%, MaxMin by 15%, MinMin by 18%, and My-
opic by 14%. The result indicates that ALSS provides a clear performance benefit
via rescheduling. Figure 8(d) describes the relationship between PIR and the edges
among tasks. With respect to LSS, PIR is from 2% to 12%. Compared to AHEFT and
SLACK, PIRs are about 7% and 8%, respectively, across all the cases. Compared to
MaxMin, the performance gain decreases from 28% to 20% as the number of edges
increases. This is because MaxMin concerns less about communication overhead,
and thus makespan is less affected by dependencies among tasks. Compared to the
other algorithms, ALSS reports PIRs increase from 15% to 22%. One interesting ob-
servation is that the performance gain from rescheduling increases as the number of
edges increases. This is because the makespan is more affected by the tasks on the
critical path as the number of edges increases, and ALSS can minimize the tasks’
execution times on the critical path via rescheduling.

In order to investigate the effect of the application’s characteristics on PIR, we
performed experiments varying CCR. Figure 9(a) shows the experimental results.
When CCR is less than or equal to 1.0, PIRs are about 5% over LSS, 6% over AHEFT,
and 7% over SLACK on average. Compared to HEFT, PIR increases from almost 0%
to 12%. Compared to the other algorithms, ALSS provides PIRs from 12% to 23%.
When CCR is greater than or equal to 1.4, the PIRs increase slowly. As CCR becomes
2.0, PIRs reach to 11% over LSS, 12% over AHEFT, and 8% over SLACK. Compared
to the other algorithms, the PIRs approach more than 23% when CCR is 2.0. The
result indicates that ALSS is more efficient than the other scheduling schemes when
the workflow application is more data-intensive.

We also evaluate the performance of ALSS according to various grid environments
including the number of hosts, the deployment probability of the Grid Services, and
the heterogeneity of the service providers. The experiment was first conducted by
varying the number of hosts. The experimental result is shown in Fig. 9(b). Through-
out the experiment, we observed that ALSS becomes more efficient as the number
of hosts increases. This implies that our scheduling scheme assigns Grid Services
for tasks more efficiently than the other scheduling methods. With respect to LSS,
PIR shows the best performance when the number of hosts is 25, even though per-
formance degradation occurs when the number of hosts is 5 and 50. This is because
rescheduling is less efficient when the number of hosts is too small or large. When
the number of hosts is too small, the probability of having better Grid Services is
low. On the other hand, when the number of hosts is too large, the probability of in-
voking unnecessary rescheduling events is high. In both cases, the makespan is more
affected by the rescheduling overhead. In other words, when the number of hosts in
a VO is too small, a newly generated service graph is often the same as the current
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Fig. 9 PIR comparisons according to; (a) CCR, (b) the number of hosts, (c) the deployment probability
of the Grid Service, and (d) the heterogeneity of the service providers

one since a pool of candidate services is limited. The rescheduling overhead incurs
an adverse effect on the makespan. On the other hand, when the number of hosts in
a VO is abundant, the probability of generating a superior service graph increases
via rescheduling. It leads to frequent rescheduling events and incurs the rescheduling
overheads such as reinvocation of Grid Services and data migration to newly selected
GSPs. The overheads adversely affect the performance, too. However, we expect that
these outliers can be eliminated by adjusting the strict rescheduling ratio (ω).

The next experiment investigated the relationship between PIR and the number of
deployed Grid Services. Figure 9(c) presents the results. When the deployment prob-
ability is 20%, PIRs over MaxMin, MinMin, and Myopic approach a peak, and PIR
is consistently around 15% when the probability is more than 40%. This means that
ALSS will provide a stable performance in the real-world SOG environment where
all Grid Services are not necessarily deployed for all GSPs in a VO. Compared to
LSS, the performance gain is about 6% on average, and shows the maximum benefit
when the probability is 40%. Compared to AHEFT and SLACK, ALSS reports about
7% PIRs on average. We also conducted experiments according to the heterogeneity
of the service providers. Figure 9(d) demonstrates that our proposed method outper-
forms the other schemes in all cases, implying that ALSS is well suited to the grid
environment where diverse systems are gathered and integrated.

We further studied the correlation between PIR and the dynamicity of the grid.
Figure 10 shows the experimental results. In Fig. 10(a), we observed that PIR is in-
creasing as the probability of the alteration increases in GSPs. As ChangePercent
increases from 5 to 15, there is a gradual degradation in the performance gain. The
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Fig. 10 PIR comparisons according to; (a) the stability of the GSPs and (b) the frequency of alteration in
GSPs

reason would be inferior performance of candidate Grid Services and rescheduling
overheads. ALSS provides peaks in performance gain over the other algorithms when
ChangePercent is 45. At the peak points, ALSS provides superior performance to
LSS by 10%, AHEFT by 8%, SLACK by 9%, HEFT by 11%, MaxMin by 24%,
MinMin by 22%, and Myopic by 23%. This proves that our rescheduling strategy is
well adapted to a dynamic alteration in service providers. Figure 10(b) also shows
that our rescheduling scheme is well adapted to dynamic environments. The experi-
mental results indicate that as the grid environment becomes more dynamic (i.e., the
frequency of alternation in GSPs increases), our ALSS becomes more efficient than
the other algorithms.

We extended our investigations on a real-world workflow structures, the GA, and
the MDC workflow applications. The GA workflow has 10 tasks, 16 edges, and a
height of 6. The MDC workflow has 41 tasks, 71 edges, and a height of 10. Since
the structure of the workflow graph is fixed, we only used CCR and the parame-
ters related to grid environments such as the heterogeneity, number of hosts, and
deployment probability. Figure 11 shows the experimental results for the real-world
workflow structures. In general, the results show a similar pattern to the experiments
with the randomly generated graph. Even better, PIR is doubled in the experiment on
the deployment probability, compared to the results with the generated graph. These
observations imply that our ALSS shows superior performance not only in the ex-
perimental setup but also in the real-world structures, and it is well adapted to SOG
where the Grid Service is not seamlessly deployed.

Lastly, we evaluated our algorithm based on NQS, the number of times that the
ALSS produced superior, inferior, or equal performance compared to the other algo-
rithms. For each nine parameters, we performed 10,000 iterations in the simulation.
Table 5 shows the experimental results; it lists the number of superior, inferior, and
equal schedulings compared to the other scheduling methods. The average NQS rate
in the table means the average percentages of superior, inferior, or equal schedul-
ing over the other algorithms. ALSS produces a superior scheduling to AHEFT by
50.2%, SLACK by 50.8%, HEFT by 68.3%, MaxMin by 72.0%, MinMin by 71.0%,
and Myopic by 69.8%. The experiment proves that ALSS is mapping tasks to Grid
Services more efficiently. By comparing NQS over LSS, we also observed that our
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Fig. 11 Comparison studies on real-world workflow graphs according to; (a) CCR and (b) heterogeneity
using GA, (c) the number of hosts and (d) deployment probability using MDC

scheme shows a superior performance via rescheduling in a dynamic grid environ-
ment.

7 Conclusions and future works

In this paper, we proposed a new adaptive service scheduling scheme, referred to as
the ALSS algorithm. ALSS schedules a workflow application in a service oriented
Grid. It is composed of four phases; the weighting, ranking, mapping, and reschedul-
ing phases. The weighting phase assigns weightings to tasks and edges in a workflow
graph according to the proposed weighing scheme. The ranking phase arranges tasks
in the order of rank. The mapping phase assigns the proper Grid Services for tasks
according to the mapping values. Finally, the rescheduling phase reassigns new Grid
Services to tasks if necessary, to adapt to a dynamic grid environment and ensure
high and stable performance in the execution of the workflow application. In SOG,
a workflow application can be described as a collection of Grid Services invoked
in a well-defined order. To ensure high performance in the applications’ execution,
the Grid Services’ characteristics must be considered when mapping and scheduling
tasks.

We proposed and modeled evaluation metrics for performance measurement of
Grid Services. The metrics are based on common properties of Grid Services. With
these metrics, we developed an ALSS algorithm that is built upon the original list
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scheduling heuristic with additional weighting and rescheduling phases. To deal with
the dynamicity of SOG, we also designed a low-overhead rescheduling strategy. Our
ALSS algorithm has three key features. First, ALSS uses the proposed metrics and
considers the scarcity of the deployed Grid Services in the weighting phase. It en-
sures that ALSS chooses Grid Services of high-quality and prevents a potential delay
caused by the late mapping of tasks with a fewer number of candidate Grid Services.
Second, with the proposed mapping scheme, ALSS considers the communication and
computation costs in the mapping phase. The performance can be further optimized
globally with these costs in mind. Third, rescheduling in ALSS is triggered for tasks
on the critical path when a performance benefit is expected. This prevents unneces-
sary overhead due to frequent rescheduling events.

Finally, we evaluated ALSS in terms of PIR and NQS using a large set of ran-
domly generated DAGs and real-world workflow application graphs. The experimen-
tal results prove that our algorithm outperforms the other scheduling methods; HEFT,
Myopic, MaxMin, MinMin, and our static version of the service scheduling method
(LSS), and ensures superior performance in a dynamic grid environment. We also
observed that the algorithm provides superior quality in scheduling to the other com-
pared algorithms. ALSS provides superior scheduling to AHEFT by 50.2%, SLACK
by 50.8%, HEFT by 68.3%, MaxMin by 72.0%, MinMin by 71.0%, and Myopic by
69.8% on average.

In the future, we plan to conduct a wider variety of experiments with ALSS to
improve the efficiency of the algorithm. We also plan to apply ALSS to real-world
workflow applications on a real-world grid testbed, and compare the performance
with the other algorithms. We are currently developing the mobile grid middleware to
integrate Grid Services in a mobile grid. ALSS will be incorporated in the middleware
and experimented with a variety of applications.
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