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Abstract The crossed cube, which is a variation of the hypercube, possesses some
properties that are superior to those of the hypercube. In this paper, we show that
with the assumption of each node incident with at least two fault-free links, an n-
dimensional crossed cube with up to 2n − 5 link faults can embed, with dilation one,
fault-free cycles of lengths ranging from 4 to 2n. The assumption is meaningful, for its
occurrence probability is very close to 1, and the result is optimal with respect to the
number of link faults tolerated. Consequently, it is very probable that algorithms ex-
ecutable on rings of lengths ranging from 4 to 2n can be applied to an n-dimensional
crossed cube with up to 2n − 5 link faults.
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1 Introduction

The architecture of an interconnection network (network for short) is usually rep-
resented by a graph G, where the vertices (edges) of G represent the nodes (links)
of the network. We usually use V (G) (E(G)) to denote the vertex set (edge set)
of G. Throughout this paper, vertex and node, edge and link, and graph and network
are used interchangeably. An embedding of one (guest) graph G into another (host)
graph H is a one-to-one mapping f from the node set of G to the node set of H .
An edge of G corresponds to a path of H under f . The dilation of f is the maximal
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length of the paths in H that are the images of edges in G under f . The pancycle
problem on a graph G is to determine whether or not G contains cycles of lengths
ranging from four1 to |V (G)|, and to construct them if they exist. If all these cycles
exist in G, then G is called pancyclic. A pancyclic graph can embed cycles of lengths
ranging from four to |V (G)| with dilation 1.

The hypercube is a popular interconnection network with many attractive proper-
ties such as regularity, symmetry, small diameter, strong connectivity, recursiveness,
flexible partition, and relatively low link complexity [22]. On the other hand, the
crossed cube [7, 8], which was derived by changing some connections of the hyper-
cube, is superior to the hypercube in diameter and mean distance. An n-dimensional
crossed cube has a diameter equal to �(n + 1)/2�, which is about one half of the
diameter of an n-dimensional hypercube (throughout this section, we use n to de-
note the dimension of the crossed cube and the hypercube). The diameter of a net-
work represents a worst-case lower bound on the time required for performing some
fundamental operations such as one-to-one routing, broadcasting, data aggregation,
semigroup computation, etc.

Previous results on the crossed cube can be found in the literature [5, 10, 14, 16,
27]. In [16], a (2n − 1)-node complete binary tree was embedded into the crossed
cube with dilation 1. The dilation will go up to 2 if the same tree is embedded into
the hypercube [25]. In [18], the connectivity of the crossed cube was shown to be
n [18]. In [5], the n-wide diameter of the crossed cube was shown to be �n/2� + 2.
The same diameter for the hypercube is n + 1 [22]. Since processor faults or link
faults may occur, it is meaningful in practice to consider faulty networks. A network
with a high degree of fault tolerance can work properly when a limited number of
processors or links are damaged.

There were two commonly used fault models: random faults [14, 27] and condi-
tional faults [13]. The former assumed that faults might happen anywhere without any
restriction, while the latter assumed that the fault distribution must obey some con-
straint, e.g., that each node is incident with at least one fault-free node [9] or that each
node is incident with at least two fault-free links [4]. In [5], with the assumption of
random faults, the fault diameter of the crossed cube was shown to be �n/2�+ 2. The
fault diameter of a network W is the maximal diameter in W with at most κ(W) − 1
nodes removed, where κ(W) is the node connectivity of W . The fault diameter for the
hypercube is n+1 [18]. Also, the crossed cube was shown to be (n−2)-Hamiltonian
[14], (n − 3)-Hamiltonian connected [14], and (n − 2)-fault tolerant pancyclic [27].
Since the hypercube is bipartite, it is not pancyclic, not Hamiltonian connected, and
not 1-node-Hamiltonian (see [11]). All these results reveal that when faults happen,
the crossed cube is superior to the hypercube in fault diameter and Hamiltonicity.

On the other hand, with an assumption that each node is incident with at least one
fault-free node, connectivities and fault diameters were computed on some networks
[9, 20]. With another assumption that each node is incident with at least two fault-
free links, Hamiltonian properties were investigated on some networks [3, 4, 12, 15,
23]. This assumption is meaningful, as its occurrence probability is very close to 1.

1Some studies, e.g., [1, 2, 19] defined the pancycle problem with cycle lengths ranging from three to
|V (G)|. Here, we follow the definition of [27].
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In [15], with the same assumption, the authors showed that a crossed cube with up to
2n − 5 link faults contained a fault-free Hamiltonian cycle. In this paper, we extend
the work of [15] by showing that fault-free cycles of lengths ranging from 4 to 2n

can be embedded with dilation one into a crossed cube with up to 2n − 5 link faults.
In other words, when each node is incident with at least two links, the crossed cube
remains pancyclic, even if up to 2n − 5 links are damaged. The result is optimal with
respect to the number of link faults tolerated.

In the next section, the structure of the crossed cube is reviewed. Some necessary
definitions, notations and fundamental results are also introduced. In Sect. 3, fault-
free cycles of all possible lengths in a crossed cube with up to 2n − 5 link faults are
constructed. Finally, in Sect. 4, this paper concludes with some remarks.

2 Preliminaries

We use CQn to denote an n-dimensional crossed cube. Each node of CQn is
uniquely identified with an n-bit sequence. CQ1 and CQ2 are the same as a one-
dimensional hypercube and a two-dimensional hypercube, respectively. For n ≥ 3,
CQn can be obtained by joining two CQn−1’s, denoted by CQ0

n−1 and CQ1
n−1,

with 2n−1 links, where each node of CQ0
n−1(CQ1

n−1) is preceded with a bit 0 (1).
A node u = 0un−2un−3 . . . u0 ∈ CQ0

n−1 is connected to a node v = 1vn−2vn−3 . . . v0 ∈
CQ0

n−1 if and only if (u2i+1u2i , v2i+1v2i ) ∈ {(00,00), (10,10), (01,11), (11,01)} for
all 0 ≤ i ≤ �(n − 1)/2� − 1 and un−2 = vn−2 if n is even. Formally, CQn can
be defined as follows, where u2i+1u2i ∼ v2i+1v2i denotes (u2i+1u2i , v2i+1v2i ) ∈
{(00,00), (10,10), (01,11), (11,01)}.

Definition 1 [7] The node set of CQn is {vn−1vn−2 . . . v0 | vi ∈ {0,1} for all 0 ≤ i ≤
n − 1}. Two nodes u = un−1un−2 . . . u0 and v = vn−1vn−2 . . . v0 of CQn are adjacent
if and only if there exists 0 ≤ d ≤ n − 1, satisfying the following four conditions:

(1) u2i+1u2i ∼ v2i+1v2i for all 0 ≤ i ≤ �d/2� − 1, if d ≥ 2;
(2) ud−1 = vd−1, if d is odd;
(3) ud = v̄d (v̄d is the complement of vd);
(4) un−1un−2 . . . ud+1 = vn−1vn−2 . . . vd+1, if d < n − 1.

The link (u,v) is referred to as a d-link. When d ≥ 2, it connects CQ0
d with CQ1

d .
When d = 1, it has u1 = v̄1 and ui = vi for i ∈ {0,1, . . . , n − 1} − {1}; when d = 0,
it has u0 = v̄0 and ui = vi for i ∈ {1,2, . . . , n − 1}. Each node of CQn is incident
with n links, which are 0-link, 1-link, . . . , (n − 1)-link, respectively. Figure 1 shows
the structures of CQ3 and CQ4, where (0001,0000), (0001,0011), (0001,0111) and
(0001,1011) are the 0-link, 1-link, 2-link, and 3-link, respectively, incident with the
node 0001.

A path (cycle) in a graph G is called a Hamiltonian path (cycle) if it contains every
vertex of G exactly once. The number of edges incident with a vertex v in G is called
the degree of v. Throughout this paper, we use G − V ′(G − E′) to denote the graph
that results by removing V ′ (E′) from G, where V ′ ⊆ V (G)(E′ ⊆ E(G)). We also let
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Fig. 1 CQn. (a) n = 3. (b) n = 4

Px,y denote a path from node x to node y, δ(G) denote the minimum node degree of
G, and u(d) denote the node of CQn that is connected to u by a d-link. When x = y,
Px,y is a cycle. A cycle of length l is referred to as an l-cycle.

Lemma 1 [14] Suppose that E′ ⊂ E(CQn) and |E′| ≤ n − 2, where n ≥ 3. Then
there exists a Hamiltonian cycle in CQn − E′.

Lemma 2 [14] Suppose that E′ ⊂ E(CQn), V ′ ⊂ V (CQn), and |E′| + |V ′| ≤ n − 3,
where n ≥ 3. Then for every two distinct nodes u,v in V (CQn) − V ′, there exists a
Hamiltonian path between u and v in CQn − V ′ − E′.

Lemma 3 [15] Suppose that E′ ⊂ E(CQn), |E′| ≤ 2n − 5, and δ(CQn − E′) ≥ 2,
where n ≥ 3. Then there is a Hamiltonian cycle in CQn − E′.

Lemma 4 [27] Suppose that E′ ⊂ E(CQn) and |E′| ≤ n − 2, where n ≥ 3. Then for
4 ≤ l ≤ 2n, there is an l-cycle in CQn − E′.

Lemma 5 [15] Suppose that u, v, x, and y are four distinct nodes of CQn, where
n ≥ 4. Then there are a Pu,v and a Px,y such that V (Pu,v) ∩ V (Px,y) = ∅ and
V (Pu,v) ∪ V (Px,y) = V (CQn).

Lemma 6 [17] Suppose that (s, t) is a d-link of CQn, where d is odd or d = n − 2
and n ≥ 2. Then (s(n−1), t (n−1)) is also a d-link of CQn.

Clearly, when d �= n − 1, the four nodes s, s(n−1), t (n−1) and t mentioned in
Lemma 6 form a 4-cycle. In particular, when d = n − 2, this 4-cycle is referred to
as a crossed 4-cycle. For example, refer to Fig. 1, where the four nodes 0110, 1110,
1010, and 0010 form a crossed 4-cycle. It is not difficult to see that each node of CQn
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Fig. 2 Two crossed 5-cycles. (a) {s1s0, t1t0} = {00,01}. (b) {s1s0, t1t0} = {10,11}

is contained in a unique crossed 4-cycle. Thus, there are 2n−2 mutually node-disjoint
crossed 4-cycles in CQn.

Similarly, when (s, t) is a 0-link of CQn, where n ≥ 3, there are two 5-cycles
formed by s, t , t (n−1), (s(n−1))(0), s(n−1), and s, t , t (n−1), (t(n−1))(0), s(n−1), respec-
tively, as explained below. We only need to show (t (n−1), (s(n−1))(0)), ((t(n−1))(0),

s(n−1)) ∈ E(CQn). It is not difficult to check that s(n−1) and t (n−1) differ at
the rightmost two bits (by the fact that s and t differ at the rightmost bit). So,
(t (n−1), (s(n−1))(0)), and ((t (n−1))(0), s(n−1)) are two 1-links of CQn. Also, notice that
(s(n−1))(0) and (t (n−1))(0), which are the two distinct nodes in the two 5-cycles, differ
at the rightmost two bits. A 5-cycle thus defined is referred to as a crossed 5-cycle, if
either (s(n−1))(0) or (t (n−1))(0) has the rightmost bit 1.

For example, refer to Fig. 2, where crossed 5-cycles are illustrated with bold
lines. Let s1s0 and t1t0 be the rightmost two bits of s and t , respectively. We
have {s1s0, t1t0} = {00,01} or {10,11}. Figure 2a shows the crossed 5-cycle with
{s1s0, t1t0} = {00,01}, and Fig. 2b shows the crossed 5-cycle with {s1s0, t1t0} =
{10,11}. Since there are a total of 2n−1 0-links, CQn contains 2n−1 crossed 5-cycles.

Lemma 7 [15] Suppose that E′ ⊂ E(CQn) and |E′| ≤ n−2, where n ≥ 4. If (u, v) /∈
E′ is an (n−1)-link or a d-link for some odd d , then there exists a Hamiltonian cycle
in CQn − E′ that contains (u, v).

Lemma 8 [10] Suppose that (u,v) is an (n − 1)-link of CQn, where n ≥ 3. Then for
4 ≤ l ≤ 2n, there is an l-cycle in CQn that contains (u,v).

Lemma 9 Each link of CQn is contained in at most two crossed 5-cycles.

Proof Consider an arbitrary d-link (x, y) of CQn, where 0 ≤ d ≤ n − 1. Recall that
a crossed 5-cycle can be expressed as s, t , t (n−1), (s(n−1))(0), s(n−1) or s, t, t (n−1),
(t(n−1))(0), s(n−1), depending on which of (s(n−1))(0) and (t (n−1))(0) has the rightmost
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bit 1. For convenience, we use z1, z2, z3, z4, z5 to represent a crossed 5-cycle, where
z4 is the distinct node with the rightmost bit 1. Moreover, (z1, z2) and (z4, z5) are two
0-links, (z2, z3) and (z5, z1) are two (n − 1)-links, and (z3, z4) is a 1-link. It is easy
to see that the rightmost bits of z1, z2, z3, z4 and z5 are 0, 1, 1, 1 and 0, respectively.

When d /∈ {0,1, n − 1}, (x, y) is not contained in any crossed 5-cycle. Let x0 and
y0 be the rightmost bits of x and y, respectively. When d = 0, we have x0 �= y0.
Without loss of generality, we assume x0 = 0 and y0 = 1. Then (x, y) is contained in
two crossed 5-cycles with (z1, z2) = (x, y) and (z4, z5) = (y, x), respectively. When
d = 1, we have x0 = y0. If x0 = y0 = 1, then (x, y) is contained in two crossed
5-cycles with (z3, z4) = (x, y) and (z3, z4) = (y, x), respectively. If x0 = y0 = 0,
then (x, y) is not contained in any crossed 5-cycle. When d = n − 1, we have x0 =
y0. If x0 = y0 = 1(x0 = y0 = 0), then (x, y) is contained in two crossed 5-cycles
with (z1, z5) = (x, y) and (z1, z5) = (y, x)((z2, z3) = (x, y) and (z2, z3) = (y, x)),
respectively. �

Lemma 10 Suppose that E′ ⊂ E(CQn) and |E′| ≤ n − 3, where n ≥ 3. For every
two distinct nodes u,v of CQn, there exists a Pu,v of length 2n − 2 in CQn − E′.

Proof When |E′| ≤ n − 4, a node w /∈ {u,v} of CQn is arbitrarily selected. By
Lemma 2, there exists a Pu,v of length 2n −2 in CQn −{w}−E′. When |E′| = n−3,
a node w /∈ {u,v} of CQn is selected such that there is a link (w,z) ∈ E′. There exists
a Pu,v of length 2n − 2 in CQn − {w} − (E′ − {(w, z)}), by Lemma 2 again. �

Lemma 11 Suppose that E′ ⊂ E(CQn) and |E′| ≤ n− 2, where n ≥ 4. If (u,v) /∈ E′
is an (n− 1)-link, then there exists a (2n − 1)-cycle in CQn −E′ that contains (u,v).

Proof Partition E′ into E0,E1 and Ec, where E0 = E′ ∩ E(CQ0
n−1),E1 = E′ ∩

E(CQ1
n−1), and Ec = E′ ∩ {(x, y)|x ∈ V (CQ0

n−1) and y ∈ V (CQ1
n−1)}. Without loss

of generality, assume that u ∈ V (CQ0
n−1), v ∈ V (CQ1

n−1), and |E0| ≥ |E1|. When
n = 4, this lemma can be easily verified with the aid of a computer program (see
[24]) that performs an exhaustive search on CQ4. For n ≥ 5, three cases are discussed
below.

Case 1. |E0| ≤ n − 3. When |E0| ≤ n − 4, select (s, s(n−1)) /∈ E′ so that
(s, s(n−1)) �= (u, v). Without loss of generality, assume s ∈ V (CQ0

n−1). By Lemma 2,
there exists a Hamiltonian path between s and u in CQ0

n−1 − E0. By Lemma 10,
there exists a Pv,s(n−1) of length 2n−1 − 2 in CQ1

n−1 − E1. The desired (2n − 1)-cycle
in CQn − E′ can be constructed as the bold cycle of Fig. 3a. When |E0| = n − 3,
the bold cycle of Fig. 3a remains valid after a modification. The Hamiltonian path in
CQ0

n−1 − E0 is not available again. Instead, a Hamiltonian cycle in CQ0
n−1 − E0 is

constructed by Lemma 1. Moreover, since |Ec| ≤ 1, there exists (s, s(n−1)) /∈ E′ such
that (s, u) is a link of the Hamiltonian cycle.

Case 2. |E0| = n − 2. Arbitrarily select a link (x, y) ∈ E0. By Lemma 1, there
exists a Hamiltonian cycle in CQ0

n−1 − (E0 −{(x, y)}). If the Hamiltonian cycle does
not contain (x, y), then select (s, s(n−1)) /∈ E′ such that (s, u) is a link of the Hamil-
tonian cycle. By Lemma 10, there exists a Pv,s(n−1) of length 2n−1 −2 in CQ1

n−1 −E1.
The desired (2n − 1)-cycle in CQn − E′ can be obtained as shown in Fig. 3a.
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Fig. 3 (2n − 1)-cycles in
CQn − E′ that contain (u, v).
(a) |E0| ≤ n − 3.
(b) |E0| = n − 2 and u /∈ {x, y}

If the Hamiltonian cycle contains (x, y), then two situations, u ∈ {x, y} or u /∈
{x, y}, are discussed. When u ∈ {x, y}, we assume u = x without loss of generality.
By Lemma 10, there exists a Pv,y(n−1) of length 2n−1 − 2 in CQ1

n−1 − E1. The de-
sired (2n − 1)-cycle in CQn − E′ can be obtained as shown in Fig. 3a (replacing s

with y). When u /∈ {x, y}, select a node s /∈ {x, y} such that (s, u) is a link of the
Hamiltonian cycle. Also, select a node t /∈ {u, s} such that (t, x) or (t, y) is a link
of the Hamiltonian cycle. By Lemma 5, there exist a Pv,s(n−1) and a Pt(n−1),y(n−1)

satisfying V (Pv,s(n−1) ) ∩ V (Pt(n−1),y(n−1) ) = ∅ and V (Pv,s(n−1) ) ∪ V (Pt(n−1),y(n−1) ) =
V (CQ1

n−1). The desired (2n − 1)-cycle in CQn − E′ can be constructed as the bold
cycle of Fig. 3b. �

3 Fault-free cycles of all possible lengths

It was shown in [27] that a CQn with n − 2 random link faults can embed cycles
of lengths ranging from 4 to 2n with dilation one (no 3-cycle in CQn [14]). In this
section, we show that when each node is incident with at least two fault-free links,
CQn can embed cycles of the same lengths with dilation one, even if there are up to
2n − 5 link faults.

Theorem 1 Suppose that E′ ⊂ E(CQn), |E′| ≤ 2n−5, and δ(CQn −E′) ≥ 2, where
n ≥ 3. Then there are cycles of lengths ranging from 4 to 2n in CQn − E′.

Proof For n = 3, the correctness of the theorem can be assured by Lemma 4. Thus,
we assume n ≥ 4. We prove by induction that there are cycles of lengths ranging
from 4 to 2n in CQn − E′ that each contain at least two (n − 1)-links. When n = 4,
cycles of lengths ranging from 4 to 16 containing at least two 3-links each can be
constructed in CQ4 − E′, which can be verified with the aid of a computer program
(see [24]). We assume that it also holds for n = k ≥ 4, i.e., there are cycles of lengths
ranging from 4 to 2k in CQk − E′ that each contain at least two (k − 1)-links. In the
rest of the proof, the situation of n = k + 1 is discussed.

To begin with, we partition E′ into E0, E1, and Ec, where E0 = E′ ∩ E(CQ0
k),

E1 = E′ ∩ E(CQ1
k), and Ec = E′ ∩ {(x, y)|x ∈ V (CQ0

k) and y ∈ V (CQ1
k)}. Without

loss of generality, we assume |E0| ≥| E1|. Since |E0|+ |E1|+ |Ec| ≤ 2k −3, we have
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|E1| ≤ k − 2. Recall that there are 2k−1 mutually node-disjoint crossed 4-cycles and
2k crossed 5-cycles in CQk+1. They each contain two k-links, and by Lemma 9, each
link of CQk+1 is contained in at most two crossed 5-cycles. Since 2k−1 > 2k−3(2k >

2 × (2k − 3)) for k ≥ 4, there are crossed 4-cycles (crossed 5-cycles) in CQk+1 −
E′. According to Lemma 3, there are 2k+1-cycles in CQk+1 − E′. In the following,
l-cycles for 6 ≤ l < 2k+1 in CQk+1 − E′ containing at least two k-links each are
constructed with two cases.

Case 1. 6 ≤ l ≤ 2k + 2. Define S = {(u, v)|(u, v) is a (k − 1)-link of CQk+1,
(u, v) /∈ E′, and {(u,u(k)), (v, v(k)), (u(k), v(k))} ∩ E′ �= ∅}. Recall that (u(k), v(k))

is a (k − 1)-link of CQk+1 by Lemma 6, and (u, v), (u,u(k)), (v, v(k)), (u(k), v(k))

constitute a crossed 4-cycle in CQk+1. Suppose that (s, t) /∈ E′ is a (k − 1)-link of
CQk+1. Then {(s, s(k)), (t, t (k)), (s(k), t (k))} ∩ E′ �= ∅ if and only if (s, t) ∈ S. So, if
(s, t) /∈ S, then (s, s(k)), (t, t (k)), (s(k), t (k)) /∈ E′.

Let S0 = S ∩ E(CQ0
k) and S1 = S ∩ E(CQ1

k). Suppose (s, t) ∈ S1. Then (s, s(k)) ∈
E′ or (t, t (k)) ∈ E′ or (s(k), t (k)) ∈ E′, where (s, s(k)), (t, t (k)) ∈ Ec and (s(k), t (k)) ∈
E0. It means that each link (s, t) ∈ S1 induces at least one link ((s, s(k)) or (t, t (k))

or (s(k), t (k))) in E0 ∪ Ec. Similarly, each link (s, t) ∈ S0 induces at least one link
in E1 ∪ Ec. Since no two distinct links in S1 induce the same link in E0 ∪ Ec, we
have |S1| ≤| E0 ∪ Ec| = |E0| + |Ec|, which further implies |S1 ∪ E1| = |S1| + |E1| ≤
|E0|+|E1|+|Ec| ≤ 2k−3. Since |E1| ≤ k−2 and each node in CQ1

k is incident with
at most one link in S1, we have δ(CQ1

k − (S1 ∪ E1)) ≥ 1. Two subcases are discussed
below.

Case 1.1. |S1 ∪ E1| ≤ 2k − 4. When δ(CQ1
k − (S1 ∪ E1)) = 1, there is exactly one

node of degree one in CQ1
k − (S1 ∪ E1); for otherwise, |S1 ∪ E1| ≥ 2k − 3, which is

a contradiction. Suppose that x is the node of degree one in CQ1
k − (S1 ∪ E1). Then,

(x, x(k−1)) ∈ S1. By the induction hypothesis, there are cycles of lengths ranging
from 4 to 2k in CQ1

k − (S1 ∪ E1 − {(x, x(k−1))}) containing at least two (k − 1)-
links each. Let C denote any of these cycles, and (s, t) �= (x, x(k−1)) be a (k − 1)-link
of C. Since (s, t) /∈ S1, we have (s, s(k)), (t, t (k)), (s(k), t (k)) /∈ E′. A (|C|+2)-cycle in
CQk+1 −E′ that contains two k-links can be constructed as the bold cycle of Fig. 4a,
where |C| is the length of C.

Next, we assume δ(CQ1
k − (S1 ∪ E1)) ≥ 2. If |S1 ∪ E1| = 2k − 4, then select a

link (y, y(k−1)) ∈ S1, and by the induction hypothesis, there are cycles of lengths

Fig. 4 l-cycles for
6 ≤ l ≤ 2k + 2 in CQk+1 − E′ .
(a) |S1 ∪ E1| ≤ 2k − 4.
(b) |S1 ∪ E1| = 2k − 3,
|E1| > 0, and there is no
(k − 1)-link in E1
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ranging from 4 to 2k in CQ1
k − (S1 ∪ E1 − {(y, y(k−1))}) containing at least two

(k − 1)-links each. If |S1 ∪ E1| ≤ 2k − 5, then by the induction hypothesis, there are
cycles of lengths ranging from 4 to 2k in CQ1

k − (S1 ∪ E1) containing at least two
(k − 1)-links each. For both, l-cycles for 6 ≤ l ≤ 2k + 2 in CQk+1 − E′ containing
two k-links each can be obtained, which is similar to the situation when δ(CQ1

k −
(S1 ∪ E1)) = 1.

Case 1.2. |S1 ∪ E1| = 2k − 3. Since |E0| + |E1| + |Ec| ≤ 2k − 3 = |S1 ∪ E1| =
|S1| + |E1|, we have |E0| + |Ec| ≤| S1|. Recall that |S1| ≤| E0| + |Ec|, and each link
in S1 induces at least one link in E0 ∪ Ec. So, |S1| = |E0| + |Ec|, and there is a one-
to-one correspondence between S1 and E0 ∪ Ec. Also, notice that the image of each
link in S1 under the one-to-one correspondence is a (k − 1)-link if it is located in
E0 and is a k-link if it is located in Ec. It follows that all links in E0 are (k − 1)-
links. Moreover, if (s, t) ∈ E1 is a (k − 1)-link, then (s, s(k)), (t, t (k)), (s(k), t (k)) /∈ E′
for the following reason. Suppose, conversely, that (s(k), t (k)) ∈ E′, without loss of
generality. The fact that (s(k), t (k)) ∈ E0 and (s, t) /∈ S1 contradicts the one-to-one
correspondence between S1 and E0 ∪ Ec.

When |E1| = 0, arbitrarily pick a crossed 4-cycle in CQk+1 − E′, and let (s, t) ∈
E(CQ1

k) be the (k − 1)-link contained in the crossed 4-cycle. By Lemma 8, there are
cycles of lengths ranging from 4 to 2k in CQ1

k , each of which contains (s, t). Let C

denote any of these cycles. A (|C|+2)-cycle in CQk+1 −E′ that contains two k-links
can be obtained as shown in Fig. 4a.

Then we assume |E1| > 0. Suppose that (u,v) ∈ E1 is a (k − 1)-link. We
have (u,u(k)), (v, v(k)), (u(k), v(k)) /∈ E′. When δ(CQ1

k − (S1 ∪ E1)) = 1, we have
(x, x(k−1)) ∈ S1, where x is the node of degree one in CQ1

k − (S1 ∪ E1). By the in-
duction hypothesis, there are cycles of lengths ranging from 4 to 2k in CQ1

k − (S1 ∪
E1 − {(x, x(k−1)), (u, v)}) that contain at least two (k − 1)-links each. Let C denote
any of these cycles. If (u,v) is contained in C, then a (|C| + 2)-cycle in CQk+1 − E′
that contains two k-links can be obtained as shown in Fig. 4a (replacing (s, t) with
(u,v)).

If (u,v) is not contained in C, then there exists a (k − 1)-link (w,w(k−1)) �=
(x, x(k−1)) in C. A (|C| + 2)-cycle in CQk+1 − E′ that contains two k-links can be
obtained as shown in Fig. 4a (replacing (s, t) with (w,w(k−1))). When δ(CQ1

k − (S1 ∪
E1)) ≥ 2, arbitrarily select a (k − 1)-link in S1, and then l-cycles for 6 ≤ l ≤ 2k + 2
in CQk+1 − E′ that contain two k-links each can be obtained similarly.

On the other hand, suppose that there is no (k −1)-link in E1. Recall that each link
(s, t) ∈ S0 induces at least one link in E1 ∪ Ec. Since the links induced by (s, t) are
(k − 1)-links or k-links, we have |S0| ≤| Ec|, implying |S0| + |E0| ≤| Ec| + |E0| ≤
2k −4. Arbitrarily select a (k −1)-link, say (u,v), from E0. By the induction hypoth-
esis, there are cycles of lengths ranging from 4 to 2k in CQ0

k − (S0 ∪ E0 − {(u, v)})
that contain at least two (k − 1)-links each. Let C denote any of these cycles. If (u,v)

is contained in C, then a (|C| + 2)-cycle in CQk+1 −E′ that contains two k-links can
be constructed as the bold cycle of Fig. 4b. If (u,v) is not contained in C, then let
(w,w(k−1)) be a (k − 1)-link of C. A (|C| + 2)-cycle in CQk+1 − E′ that contains
two k-links can be obtained as shown in Fig. 4b (replacing (u,v) with (w,w(k−1))).

Case 2. 2k + 3 ≤ l < 2k+1. Since δ(CQk+1 − E′) ≥ 2, we have δ(CQ0
k − E0) ≥ 1.

Three subcases: |E0| = 2k −3, |E0| = 2k −4 and |E0| ≤ 2k −5, are discussed below.
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Case 2.1. |E0| = 2k − 3. We have |E1| = |Ec| = 0. There are at most two nodes of
degree one in CQ0

k − E0; for otherwise, |E0| ≥ 2(k − 2) + (k − 3) + 2 = 3k − 5
(there is no 3-cycle in CQ0

k), which is a contradiction. Two node-disjoint links,
say (u,v) and (x, y), are selected from E0 such that they are incident with the
nodes of degree one, if such nodes exist in CQ0

k − E0. Clearly, δ(CQ0
k − (E0 −

{(u, v), (x, y)})) ≥ 2. By Lemma 3, there is a Hamiltonian cycle, denoted by C, in
CQ0

k − (E0 − {(u, v), (x, y)}).
If neither of (u,v) and (x, y) is contained in C, then obtain paths of lengths rang-

ing from 2 to 2k − 2 from C. Let Ps,t denote any of these paths. By Lemma 2,
there is a Hamiltonian path between s(k) and t (k) in CQ1

k − E1. A (|Ps,t | + 2k + 1)-
cycle in CQk+1 − E′ that contains two k-links can be constructed as the bold cy-
cle of Fig. 5a, where |Ps,t | is the length of Ps,t . If exactly one (assuming (u,v)) of
(u,v) and (x, y) is contained in C, then obtain Ps,t without containing (u,v), and a
(|Ps,t | + 2k + 1)-cycle in CQk+1 − E′ that contains two k-links can be obtained all
the same.

If both (u,v) and (x, y) are contained in C, then without loss of generality, assume
that u,v, x, y appear clockwise in C. We use Pv,x(Py,u) to denote the path between
v and x (between y and u) in C that does not contain (u,v)((x, y)). Notice that
|Pv,x | + |Py,u| = 2k − 2. We first construct cycles of lengths ranging from 2k + 3
to |Pv,x | + 2k + 1 in CQk+1 − E′ as follows. Obtain subpaths, denoted by Ps,t , of
Pv,x whose lengths range from 2 to |Pv,x |. By Lemma 2, there is a Hamiltonian path
between s(k) and t (k) in CQ1

k − E1. A (|Ps,t | + 2k + 1)-cycle in CQk+1 − E′ that
contains two k-links can be obtained as shown in Fig. 5a.

Then we construct cycles of lengths ranging from |Pv,x | + 2k + 2 to 2k+1 − 1 in
CQk+1 − E′ as follows. For each |Pv,x | + 2k + 2 ≤ l ≤ 2k+1 − 1, obtain a subpath
denoted by Ps,t , of Pv,x , and a subpath denoted by Pg,h, of Py,u, such that |Ps,t | +
|Pg,h| = l − 2k − 2. By Lemma 5, there are two paths Ps(k),g(k) and Pt(k),h(k) in CQ1

k

satisfying V (Ps(k),g(k) )∩V (Pt(k),h(k) ) = ∅ and V (Ps(k),g(k) )∪V (Pt(k),h(k) ) = V (CQ1
k).

An l-cycle that contains four k-links of CQk+1 − E′ can be constructed as the bold
cycle of Fig. 5b.

Case 2.2. |E0| = 2k − 4. We have |Ec| + |E1| ≤ 1. There is at most one node of
degree one in CQ0

k − E0, for otherwise |E0| ≥ 2(k − 2) + 1, a contradiction. Select
a link, denoted by (u,v), from E0. If there is a node of degree one in CQ0

k − E0,
then (u,v) should be incident with it. By Lemma 3, there is a Hamiltonian cycle in
CQ0

k − (E0 − {(u, v)}). There are paths, denoted by Ps,t , of lengths ranging from 2

Fig. 5 l-cycles for
2k + 3 ≤ l < 2k+1 in
CQk+1 − E′ . (a) |E0| = 2k − 3
and neither of (u,v) and (x, y)

is contained in C.
(b) |E0| = 2k − 3 and
|Pv,x | + 2k + 2 ≤ l < 2k+1.
(c) |E0| ≤ 2k − 5, |E1| ≤ k − 3,
and δ(CQ0

k
− E0) = 1
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to 2k − 2 in the cycle such that Ps,t does not contain (u,v) and (s, s(k)), (t, t (k)) /∈
Ec. By Lemma 2, there is a Hamiltonian path between s(k) and t (k) in CQ1

k − E1.
A (|Ps,t | + 2k + 1)-cycle in CQk+1 − E′ that contains two k-links can be obtained as
shown in Fig. 5a.

Case 2.3. |E0| ≤ 2k − 5. Similarly, there is at most one node of degree one in
CQ0

k −E0. Two subcases, |E1| ≤ k − 3 and |E1| = k − 2, are further discussed below.
Case 2.3.1. |E1| ≤ k − 3. When δ(CQ0

k − E0) ≥ 2, by Lemma 3, there is a Hamil-
tonian cycle in CQ0

k − E0. There are paths, denoted by Ps,t , of lengths ranging from
2 to 2k − 2 in the cycle such that (s, s(k)) /∈ Ec and (t, t (k)) /∈ Ec. By Lemma 2, there
is a Hamiltonian path between s(k) and t (k) in CQ1

k − E1. A (|Ps,t | + 2k + 1)-cycle in
CQk+1 − E′ that contains two k-links can be obtained as shown in Fig. 5a.

When δ(CQ0
k −E0) = 1, we have |E0| ≥ k−1, which further implies |Ec| ≤ k−2.

Suppose that u is the node of degree one in CQ0
k − E0. Arbitrarily select (u,v) ∈ E0

such that (v, v(k)) /∈ Ec. Since δ(CQk+1 − E′) ≥ 2, we have (u,u(k)) /∈ Ec. We first
construct cycles of lengths ranging from 2k +3 to 2k +2k−1 as follows. By Lemma 3,
there is a Hamiltonian cycle in CQ0

k − (E0 − {(u, v)}). Also, (u,v) is contained in
the cycle. Let Ps,t be a path in the cycle such that Ps,t does not contain (u,v) and
(s, s(k)), (t, t (k)) /∈ Ec. There are 2k − |Ps,t | choices for Ps,t , and we consider 2 ≤
|Ps,t | ≤ 2k−1 − 1 (so, 2k − |Ps,t | > |Ec|). By Lemma 2, there is a Hamiltonian path
between s(k) and t (k) in CQ1

k − E1. A (|Ps,t | + 2k + 1)-cycle in CQk+1 − E′ that
contains two k-links can be obtained as shown in Fig. 5a.

Then we construct cycles of lengths ranging from 2k + 2k−1 + 1 to 2k+1 − 1. By
the induction hypothesis, there are cycles of lengths ranging from 2k−1 + 1 to 2k − 1
in CQ0

k − (E0 − {(u, v)}). Let C denote any of these cycles. If (u,v) is contained in
C, then by Lemma 2, there is a Hamiltonian path between u(k) and v(k) in CQ1

k −E1.
Otherwise, select a link, say (s, t), of C such that (s, s(k)), (t, t (k)) /∈ Ec. A (|C|+2k)-
cycle in CQk+1 −E′ that contains two k-links can be constructed as shown in Fig. 5c
(replacing (u,v) with (s, t) if (u,v) is not contained in C).

Case 2.3.2. |E1| = k − 2. We have |E0| = k − 2 or k − 1, and |Ec| ≤ 1. A cycle of
length 2k +3 in CQk+1 −E′ can be obtained as follows. Let (s, t) be a (k−1)-link of a
crossed 4-cycle in CQ0

k −E0 such that (s, s(k)), (t, t (k)) /∈ Ec. By Lemma 6, (s(k), t (k))

is a (k − 1)-link of CQ1
k (and CQk+1), and by Lemma 11, there is a (2k − 1)-cycle in

CQ1
k − (E1 − {(s(k), t (k))}) that contains (s(k), t (k)). A (2k + 3)-cycle in CQk+1 − E′

that contains two k-links can be constructed as the bold cycle of Fig. 6.
Cycles of lengths ranging from 2k + 4 to 2k+1 − 1 can be obtained as follows.

When δ(CQ0
k − E0) ≥ 2, by the induction hypothesis, there are cycles of lengths

ranging from 4 to 2k − 1 in CQ0
k − E0 that contain at least two (k − 1)-links

each. Let C denote any of these cycles, and (s, t) be a (k − 1)-link of C such that
(s, s(k)), (t, t (k)) /∈ Ec. By Lemma 6, (s(k), t (k)) is a (k−1)-link of CQ1

k (and CQk+1),
and by Lemma 7, there is a Hamiltonian cycle in CQ1

k − {E1 − (s(k), t (k))} that con-
tains (s(k), t (k)). A (|C| + 2k)-cycle in CQk+1 − E′ that contains two k-links can be
obtained as shown in Fig. 5c (replacing (u,v) with (s, t)).

When δ(CQ0
k −E0) = 1, assume that u is the node of degree one in CQ0

k −E0. Ar-
bitrarily select a d-link (u,v) ∈ E0 such that d is odd and (v, v(k)) /∈ Ec. By Lemma 6,
(u(k), v(k)) is a d-link of CQ1

k (and CQk+1). By the induction hypothesis, there are
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Fig. 6 A (2k + 3)-cycle in
CQk+1 − E′ when |E1| = k − 2

cycles of lengths ranging from 4 to 2k − 1 in CQ0
k − (E0 −{(u, v)}) that each contain

at least two (k − 1)-links. Let C denote any of these cycles. If (u,v) is contained
in C, then by Lemma 7, there is a Hamiltonian cycle in CQ1

k − {E1 − (u(k), v(k))}
that contains (u(k), v(k)). Otherwise, let (s, t) be a (k − 1)-link of C such that
(s, s(k)), (t, t (k)) /∈ Ec. A (|C|+2k)-cycle in CQk+1 −E′ that contains two k-links can
be obtained as shown in Fig. 5c (replacing (u,v) with (s, t) if (u,v) is not contained
in C). �

4 Discussion and conclusion

This paper aims to solve the pancycle problem on a faulty crossed cube. Under the
random fault model, the pancycle problem was solved on a CQn with up to n − 2
link faults [27]. In this paper, with the assumption that at least two fault-free links
are incident with each node, the pancycle problem was solved on a CQn with up to
2n−5 link faults. The result is optimal, as there are distributions of 2n−4 link faults
in CQn that can prevent a fault-free Hamiltonian cycle in the faulty CQn (see [15]).
In addition, it was indicated in [15] that the probability that the assumption holds is
very close to 1. Therefore, the assumption is meaningful in practice, and as a result,
algorithms that are executable on rings of lengths ranging from 4 to 2n can be applied
to a CQn with up to 2n − 5 link faults, with a very high probability.

With the same assumption, a fault-free Hamiltonian cycle in a faulty n-dimensional
hypercube was constructed in [4], in which up to 2n − 5 link faults could be toler-
ated. The hypercube is highly symmetric, and it can be partitioned at any dimen-
sion into two smaller hypercubes. By the aid of this favorable property, a fault-free
Hamiltonian cycle could be successfully constructed in a faulty hypercube. On the
other hand, the crossed cube is not symmetric, and it can be partitioned into two
smaller crossed cubes only at two dimensions. Thus, it is more difficult to construct a
fault-free Hamiltonian cycle (and fault-free cycles of all possible lengths) in a faulty
crossed cube.

There were three intractable distributions of 2n − 5 link faults over a faulty CQn.
One occurred when the faulty CQn was partitioned into two CQn−1’s, such that some
node in one CQn−1 was incident with only one fault-free link. Another occurred when
one CQn−1 had too many (≥ 2n − 6) link faults. For both, the induction hypothesis
could not be applied, and thus some skillful routing methods must be developed to
bypass the link faults. The routing methods were illustrated in Fig. 5.
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The other occurred when one CQn−1 had n − 3 link faults and the other CQn−1
had n − 2 link faults. It was shown in [27] that there is a fault-free Hamiltonian
path between every two distinct vertices of a faulty CQn−1 with up to n − 4 link
faults. If such a fault-free Hamiltonian path existed in the two CQn−1’s, then it would
be easy to bypass the link faults. Unfortunately, it did not necessarily exist in both
CQn−1’s. Instead, the induction hypothesis was applied to construct cycles of all
possible lengths in the CQn−1 with n−2 link faults. The additional constraint (i.e., at
least two (n−2)-links in each cycle) associated with the induction hypothesis assured
the existence of two fault-free (n−1)-links, i.e., (u,u(k)) and (v, v(k)) in Fig. 5c. Then
Lemma 7 assured the existence of a fault-free Hamiltonian path between u(k) and v(k)

in the other CQn−1. The routing method was shown in Fig. 5c.
With the assumption that each node was incident with at least one fault-free node,

the connectivities of hypercubes [9], k-ary n-cubes [6], cube-connected cycles [20],
undirected de Bruijn networks [20], and Kautz networks [20] were computed. More-
over, the fault diameters of hypercubes [18] and star graphs [21] were obtained. One
further research topic is to compute the connectivity and fault diameter of the crossed
cube under the same assumption.

The edge-pancycle problem was defined as follows: Given any edge e of a graph
G, the problem is to determine whether or not G contains cycles of lengths ranging
from three to |V (G)| that contain e, and to construct them if they exist [1]. Previously,
the problem was solved (i.e., constructing cycles of lengths ranging from three to
|V (G)| for any e) on recursive circulants [2] and coupled graphs [19]. In addition,
cycles of lengths ranging from four to |V (G)| for any e were constructed for crossed
cubes [10] and Möbius cubes [26]. Fault-free networks were assumed in these works.
To solve the edge-pancycle problem on faulty networks is another topic for further
research.
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