J Supercomput (2008) 44: 41-63
DOI 10.1007/s11227-007-0148-y

Dynamic load balancing with adaptive factoring
methods in scientific applications

Ricolindo L. Cariiio - Ioana Banicescu

Published online: 5 October 2007
© Springer Science+Business Media, LLC 2007

Abstract To improve the performance of scientific applications with parallel loops,
dynamic loop scheduling methods have been proposed. Such methods address per-
formance degradations due to load imbalance caused by predictable phenomena like
nonuniform data distribution or algorithmic variance, and unpredictable phenomena
such as data access latency or operating system interference. In particular, methods
such as factoring, weighted factoring, adaptive weighted factoring, and adaptive fac-
toring have been developed based on a probabilistic analysis of parallel loop iterates
with variable running times. These methods have been successfully implemented in a
number of applications such as: N-Body and Monte Carlo simulations, computational
fluid dynamics, and radar signal processing.

The focus of this paper is on adaptive weighted factoring (AWF), a method that
was designed for scheduling parallel loops in time-stepping scientific applications.
The main contribution of the paper is to relax the time-stepping requirement, a mod-
ification that allows the AWF to be used in any application with a parallel loop. The
modification further allows the AWF to adapt to load imbalance that may occur during
loop execution. Results of experiments to compare the performance of the modified
AWF with the performance of the other loop scheduling methods in the context of
three nontrivial applications reveal that the performance of the modified method is

This work was partially supported by the National Science Foundation Grants: #9984465, #0081303,
#0313274, #0085969 and #0132618.

R.L. Carifio (X))

Center for Advanced Vehicular Systems—HPCC, Mississippi State University, Mississippi State, MS
39762, USA

e-mail: rlc@cavs.msstate.edu

I. Banicescu

Department of Computer Science and Engineering, and Center for Computational Sciences—HPCC,
Mississippi State University, Mississippi State, MS 39762, USA

e-mail: ioana@cse.msstate.edu

@ Springer

42 R.L. Carifio, I. Banicescu

comparable to, and in some cases, superior to the performance of the most recently
introduced adaptive factoring method.

Keywords Dynamic load balancing - Adaptive weighted factoring

1 Introduction

A major source of parallelism in scientific computing is the parallel loop, a loop
without dependencies among its iterates. The straightforward parallelization strategy
of statically dividing the iterates equally among available processors results in load
imbalance if the iterate execution times vary and/or the processors have different
speeds. Strategies to address load imbalance have been developed in cases where the
variations are known or are predictable before loop runtime. However, load imbalance
might be induced during execution time by system effects such as data access latency
and operating system interference; thus, fully dynamic loop scheduling methods are
needed, in which runtime information is taken into account when distributing loop
iterates to processors.

Dynamic loop scheduling methods such as factoring [24] (FAC), fractiling [6]
(FRAC), weighted factoring [23] (WF), adaptive factoring [7, 9] (AF) and adap-
tive weighted factoring [8, 10] (AWF), have been proposed. Based on a probabilistic
analysis, these methods schedule the execution of loop iterates in chunks with vari-
able sizes. The chunk sizes are determined during loop runtime such that chunks have
a high probability of being completed before the optimal time. Some of the parallel
applications in which the methods have been successfully incorporated include: FAC
in Monte-Carlo simulations, WF in radar signal processing, FRAC in N-body simu-
lations, and AWF in computational fluid dynamics.

In this paper, we propose a modification of the AWF. Originally, the AWF was de-
signed for scientific applications like the N-body and CFD simulations which involve
time-stepping. The method assigns weights to processors, with the weights initially
set to unity. During a time step, the time per iterate ratio in each processor is mea-
sured for the parallel loop under consideration. At the end of the time step, a weighted
average of the ratios in each processor is computed with the time step as the weighing
factor. The average ratios are then normalized to become the processor weights for
the next time step. Thus, the original AWF method does not adapt to load imbalance
factors that arise while the parallel loop is being executed. Our proposed modifica-
tion to the AWF makes use of the ratios based on timings from earlier chunks to
compute the processor weights for the succeeding chunks, instead of using ratios col-
lected from previous time steps. This modification allows the AWF to be used in a
wider range of scientific applications such as those that do not involve time steps. The
modified AWF adjusts to irregularities that may occur during loop runtime since the
processor weights are adapted while the loop is being executed, unlike the original
AWF where the processor weights are fixed during loop execution.

The rest of this paper is outlined as follows: Sect. 2 traces the development of
loop scheduling methods, with emphasis on the factoring methods. This section
also describes a strategy for dynamic loop scheduling on message-passing environ-
ments. Section 3 details the proposed modification to the adaptive weighted factoring

@ Springer

Dynamic load balancing with adaptive factoring methods 43

method; specific implementation variants are also described. Section 4 summarizes
the results of experiments to compare the performance achieved by the modified AWF
and other loop scheduling methods for three nontrivial applications: profiling of a
quadrature routine, simulation of wave packet dynamics using the quantum trajec-
tory method, and statistical analysis of multiple datasets. The results indicate that the
performance achieved by the modified AWF is comparable to, and in some cases bet-
ter than the performance achieved by adaptive factoring, the most recently introduced
loop scheduling method. Section 5 concludes the paper.

2 Loop scheduling methods

Assume that in a parallel application, a loop with N independent iterates is to be ex-
ecuted by P processors. The iterates are stored in a central ready work queue from
which idle processors obtain chunks. The sizes of the chunks are determined accord-
ing to a scheduling method which attempts to minimize the overall loop execution
time. The method is classified as nonadaptive, when the chunk sizes are predictable
from information that is available or assumed before loop runtime, or adaptive, when
the chunk sizes depend on information available only during loop execution.

2.1 Nonadaptive methods

Nonadaptive loop scheduling methods generate equal size chunks or predictable de-
creasing size chunks. Equal size chunks are generated by static scheduling (STATIC),
where all the chunks are of size N/ P, self-scheduling (SS), where all the chunks are
unit size, and fixed size chunking [28] (FSC). STATIC has very low overhead, but it
provides good load balancing only if the iterate times are constant and the processors
are homogeneous and equally loaded. SS is suitable only when communication over-
head is negligible as it requires sending N control messages. In FSC, the chunk size
is computed as

FSC chunk size = ((\/ENh)/(O'P\/@))z/3

which will minimize the parallel execution time on homogeneous and equally-loaded
processors if the following parameters are known: 7—a constant overhead time, u—
the mean iterate execution time, and o—the standard deviation of the iterate execu-
tion times.

For methods that generate predictable decreasing size chunks, the underlying idea
is to initially allocate large chunks and later use the smaller chunks to smoothen the
unevenness of the execution times of the initial larger chunks. Guided self-scheduling
[32] (GSS) computes the chunk size as

GSS chunk size = [remaining/ P,

where remaining is the number of unscheduled iterates. GSS assumes that the loop
iterates have uniform execution times. In trapezoid self-scheduling [34] (TSS), the
chunk sizes decrease linearly, in contrast to the geometric decrease of the chunk sizes

@ Springer

44 R.L. Carifio, I. Banicescu

in GSS. Factoring [24] (FAC) on the other hand, schedules iterates in batches, where
the size of a batch is a fixed ratio of the unscheduled iterates, and the batch is divided
into P chunks. The ratio is determined such that the resulting chunks have a high
probability of finishing before the optimal time. In general, the ratio depends on the
mean and standard deviation of the iterate execution times; when these statistics are
not known, the ratio 0.5 has been experimentally proven to be practical. In this case,

FAC batch size = 0.5 *x remaining,

FAC chunk size = [FAC batch size/ P]. M

The next batch size is calculated after all the chunks in the current batch are sched-
uled. In N-body simulations, the combination of factoring and filing, a technique for
organizing data to maintain locality, is known as fractiling (FRAC) [6]. Weighted fac-
toring [23] (WF) incorporates information on processor speeds in computing chunk
sizes. In particular, the factoring chunk sizes are multiplied by relative processor
speeds:

WEF chunk size = w; * FAC chunk size, 2)

where wj is the relative speed of processor i. Thus, from a batch, the faster processors
get bigger chunks than slower processors. The relative processor speeds are assumed
to be fixed throughout the execution of the loop, so the size of chunks executed by a
given processor monotonically decrease in size.

A number of methods that generate adaptive size chunks have evolved from fac-
toring and weighted factoring. These methods are summarized next.

2.2 Adaptive methods

Adaptive weighted factoring [8, 10] (AWF) was developed specifically for time-
stepping applications containing parallel loops. In such an application where a par-
allel loop is executed in every step, the amount computations in a loop iterate may
evolve as the application progresses. Furthermore, the loads of the processors running
the application may also be changed by the operating system. Under these evolving
conditions, assigning chunk sizes to processors based on the above nonadaptive loop
scheduling techniques may not yield the best possible performance. AWF attempts
to incorporate both loop characteristics and processor capacities in determining the
chunk sizes. Within a time step, the iterates of a parallel loop are assigned to proces-
sors as in WF; however, the processor weights w; are adjusted at the end of a step
using information collected during the current and previous steps. For the first time
step, w; = 1.0. In every step, the execution times of chunks in each processor are
recorded. These timing data are used to update the w; in preparation for the next
time step. More details about the AWF are presented in Sect. 3, where a modification
is proposed to make the method suitable for applications that do not involve time-
stepping.

Adaptive factoring [7, 9] (AF) relaxes the assumptions in the original factoring
(FAC) technique that the mean and standard deviation of the iterate execution times
are known a priori, and that these are the same on all processors. Adaptive factoring
dynamically estimates these statistics during runtime. First estimates are obtained

@ Springer

Dynamic load balancing with adaptive factoring methods 45

from the execution times of chunks from an arbitrary sized initial batch. The sizes
of succeeding chunks are then computed using these estimates; these estimates are
refined by using more information from recently executed chunks. In AF, the chunk
sizes are computed as follows: let u;, o; denote the mean execution time and standard
deviation of the execution times, respectively, of the most recent iterates done by
processor i. Let

P P -1
R = remaining, D= Zaiz/,u,', T= <Z 1/M[) .
i=1

i=1

Then, the next chunk size for processor i is
AF chunk size = (D 4+ 2TR — v D>+ 4DTR)/(2u).
2.3 Loop scheduling overhead and performance

Assuming that the scheduling operation has the same cost regardless of the size of
the chunk, analytical expressions for the scheduling overhead can be derived for most
of the techniques. The overhead depends on the number of chunks generated by the
technique. Each chunk triggers some arithmetic operations to compute the chunk size,
and bookkeeping operations for information about the chunk. In a message-passing
environment, the chunk size may have to be requested and communicated. The fixed
sized techniques (STAT, SS, FSC) generate N/k chunks, where k is the fixed size,
while GSS, FAC and AWF generate O (P log(N/P)) chunks. For the adaptive fac-
toring (AF) and the proposed AWF variants, the number chunks is unknown since
this depends on measurements taken during runtime; however, experience indicates
that it is no more than twice that of FAC. Since the number of chunks does not as-
ymptotically exceed the problem size N, loop scheduling is theoretically considered
scalable.

When an application invokes loop scheduling to execute a parallel loop on a set
of processors, the loop completion time in each processor is easy to measure. Denote
this time by ¢, for processor r, and let W be the amount of work done by the loop.
Then, the following performance metrics can be computed:

parallel time Tp = max{t,};

cost = P x Tp, the aggregate time used by the parallel system to execute the loop;
performance = W /Tp, the ratio of total work to parallel time; and

effectiveness I' = (W /Tp)/(P x Tp) = W/(P % T}%), the ratio of performance to
cost [30].

When using these metrics to compare different methods to schedule a loop on the
same computational platform, the “better” methods are those with lesser 7p and cost,
or those with greater performance and effectiveness.

If the processors are homogeneous, let #, denote the time spent by processor r
executing loop iterates only (i.e., doing useful work). Then, the total useful work time
for the loop is 77 = Zf:o] u,, and the following additional metrics can be computed:

@ Springer

46 R.L. Carifio, I. Banicescu

coefficient of variation (c.0.v.) = o/u of work times, where u = T /P, o0 =
P e —up)?) /(P = 1)

speedup =Ty /Tp; and

efficiency = (T1/Tp)/P.

2.4 Message-passing implementation

The loop scheduling methods described above were developed assuming a central
ready work queue of iterates where idle processors obtain chunks of iterates to exe-
cute. This assumption is ideally suited for a shared memory architecture: the proces-
sors have to synchronize on a very small set of variables in order to determine the
next chunk to be executed, and the data for the iterates can be accessed concurrently.
On a message-passing environment where there is no centralized memory, the initial
implementations of FAC, WF, AWF and AF utilize a work queue of iterates that is
replicated in all processors. One of the processors, the scheduler, polls for requests
for chunk sizes. The scheduler maintains a chunk table to keep track of which
chunks are executed by each worker. A dedicated processor for the scheduler may
not be necessary since chunk size computations involve simple arithmetic; hence, the
scheduler can also participate in executing iterates. The replicated work queue setup
has the advantage of using only very short control messages to and from the sched-
uler; data movement during loop computation is not necessary since each processor
has a local copy of the work queue. However, it may be necessary to consolidate all
the results of the computations into one of the processors, logically the scheduler. The
disadvantages include the possibility of the scheduler becoming a bottleneck when
the number of processors becomes large, and more significantly, the problem size
must be limited such that the work queue will fit into the memory available on any
of the processors. In contrast, a partitioned work queue is utilized in the implemen-
tations of FRAC for the N-body application where only a subset of the application
data is stored in each processor. This partitioned setup accommodates larger problem
sizes; however, during loop execution, the scheduler may direct the redistribution of
data for load balancing, which will contribute substantially to the communication
overhead.

Figure 1 illustrates the loop scheduling strategy with a replicated work queue on a
message-passing environment. A worker sends a Request message to the scheduler
to request a chunk size. When received, this message triggers a scheduling event, to
interrupt the scheduler from executing iterates if the scheduler doubles as a worker.
The scheduler determines a chunk size according to the loop scheduling technique
and responds with a Size message containing this size to the requesting worker. The
Request message contains the performance data of the worker based on timings of
the previously executed chunk. These timings provide the scheduler with a contin-
uously updated global view of worker performance during loop execution. These
timings are used by the scheduler to determine subsequent chunk sizes according to
the loop scheduling technique. The execution of iterates in the workers may be in-
terleaved with the Request message to reduce waiting time of workers for chunk
sizes. With interleaving, a worker sends the request before executing the last few iter-
ates of the current chunk; hopefully, the next chunk size would have arrived from the

@ Springer

Dynamic load balancing with adaptive factoring methods 47

Scheduler

Size Local copy of work queue

8BS
Oo O O

Worker J

Request

Worker |

Fig.1 Dynamic loop scheduling with a replicated work queue on a message-passing environment

scheduler before the computation for the last iterate of the current chunk is finished.
To establish the number of iterates left in the current chunk before sending the request
for a new chunk size, precise measurements of send/receive message latencies would
have to be conducted.

Dynamic loop scheduling in a message-passing environment with a partitioned
work queue occurs in two phases. Before loop execution, the loop data is already
divided among the participating processors. The first phase proceeds in a manner
similar to the strategy with a replicated work queue, until a worker finishes ahead
with its portion of the work queue. Figure 2 illustrates the second phase which com-
mences when a worker, say Worker I, that has finished its share of the queue, sends
a Request message. The scheduler recognizes the situation from the chunk table;
it determines the next chunk size and the slowest worker, say Worker J, and sends
these information to Worker I through a Get message. Upon receipt of this message,
Worker I prepares a receive buffer, sends a Give message containing the size to
Worker J and posts a receive. Worker J then sends a chunk of iterates to Worker 1. In
computing the size, the scheduler may consider many factors such as the availability
of space for the data of new iterates in Worker I, estimates of the cost of moving data
from Worker J to Worker I, and the penalty of load imbalance if the iterates were to
be done by Worker J. If one sided communications are supported by the message-
passing environment, an alternative data transfer strategy is for Worker I to perform
a one sided get operation for a chunk of iterates from Worker J.

A general purpose loop scheduling routine based on a partitioned work queue is
proposed in [16]. The routine is utilized by the applications listed in Sect. 4, as well
as in other work presented elsewhere [1, 17, 19, 20]. The routine is designed to be
invoked by MPI applications that contain parallel loops like v (i) = £(x(1)),
i=1,2,...,N,where x() and y () are arrays of possibly complex types, and are

@ Springer

48 R.L. Carifio, I. Banicescu

Scheduler

Share of work queue

Worker |

Fig. 2 Dynamic loop scheduling with a partitioned work queue on a message-passing environment

partitioned among the processors. The loop scheduling routine takes as arguments the
routine that encapsulates f () for a chunk of iterations, a pair of complimentary rou-
tines for sending and receiving chunks of x (), a similar pair of routines for chunks
of v (), and the partitioning of the N data items among the processors. The routine
performs load balancing only: a chunk of x () is sent, for example, from worker J
to worker I, and worker I returns a chunk of y (), to maintain the partitioning spec-
ified by the application. The routine has subsequently been modified to support a
replicated work queue, in which case, the routine for sending a chunk of x () is not
used.

3 Adaptive weighted factoring variants

Adaptive weighted factoring [8, 10] (AWF) was originally designed for executing a
parallel loop in a scientific application which involves time-stepping. The amount
computations associated with a loop iterate may evolve as the application progresses,
or the loads of the processors running the application may be changed by the oper-
ating system. Adaptivity in the chunk sizes is, therefore, necessary to obtain the best
possible application performance.

Based on weighted factoring (WF), AWF incorporates adaptivity by updating the
relative processor weights w; in Eq. 2 after every time step. Initially, w; = 1. Suppose
during step s, processor i allocated #;; time units to execute n;, iterates. Then, the
time per iterate ratio in processor i during this step is tj;/n;s. Considering all the

@ Springer

Dynamic load balancing with adaptive factoring methods 49

steps until s, the weighted average ratio is

7T,'=<ijtij>/(2jxnij>- 3
j=1 j=1

7; is biased towards the latest timings, since measurements from recent steps are
given higher weights. The collection of weighted average ratios from each processor
serves as the basis for the processor weights required by the WF technique. The
conversion from the weighted average ratio to processor weight proceeds as follows:
let

P
ﬁ=<2nj)/f>, pi=7/i, p=) pj @)
j=1 j=l1
The quantities may be interpreted as: 7 is the average weighted average ratio; p; is
the raw weight of processor i; and p is the sum of the raw weights used to normalize

the raw weights. Then, the normalized weight of processor i for computing its WF
chunk sizes for the next time step is

AWF weight w; = (p; X P)/p. 5)

From Eq. 3, an increase in m; because processor i is taking longer to execute its
chunks, results in a smaller p; and w; when these are computed at the end of the time
step. Consequently, processor i will be assigned smaller chunks in the next time step.

However, adaptation in AWF is based on information collected from previous time
steps. Changes in effective processor speeds or changes in the computational require-
ments of iterates during the current time step will be reflected only in the weights for
the succeeding time step. Thus, the method does not adapt the weights during a time
step for any load imbalance that occurs during the step.

Our proposed modification to the AWF is to utilize the timings of the execution
of earlier chunks to adapt the processor weights for the succeeding chunks. This
modification relaxes the requirement of the AWF that the parallel loop must be in-
side a time-stepping loop: timing data from previous execution of the parallel is no
longer necessary. This modification further allows more frequent adaptation since the
processor weights can be adjusted while the parallel loop is being executed.

The modified AWF can be implemented with a few variations, some of which are
described below. Initially, the processor weights are set to unity like in AWF. An
arbitrary-size batch of B¢ * N iterates, 0 < B < 1, is selected like in AF to determine
an initial chunk size. From this batch, processor i will be assigned the first chunk
of size n;1 = Bo * N/P. The succeeding chunks may be determined by one of the
following strategies.

AWEF-B (batched AWF). The remaining iterates are scheduled by batches like in
FAC. The chunk sizes are computed as in AWF using Egs. 4-5, but with

T = (ZLJ x lij)/(le X ”ij)s Q)
j=1 j=1

@ Springer

50 R.L. Carifio, I. Banicescu

where s; is the number of chunks executed by processor i. Timings from previous
chunks are used in Eq. 6, unlike in Eq. 3 which uses timings from previous time
steps. Further, Eq. 6 allows updates to the weights while the loop is being executed.
AWF-C (chunked AWF). The remaining iterates are scheduled by chunks like in
AF, instead of by batches. The scheduling strategy formulated in FAC, WF, AWF
and AWF-B stipulates that the chunk sizes are computed as a fraction of the current
FAC batch size (see Eq. 2). With this formulation, a processor that has completed
its portion of the batch will be assigned remaining iterates from the current batch.
This may result in faster processors being assigned a chunk of less-than-optimal
size, leading to higher overhead due to more frequent communications. As a rem-
edy, AWF-C recomputes a new batch size each time a processor requests for work,
before applying Egs. 6, 4, and 5. With the AWF-C strategy, faster processors are
assigned larger chunks from all the remaining iterates, not just from the remainder
of the current batch.

AWF-D. This strategy is similar to AWF-B, but with f;; redefined as the fotal chunk
time. In the original AWF, #;; is the execution time (only) of n;; iterates. In AWF-D,
t;j includes the time spent by the processor doing other tasks associated with the
execution of a chunk of iterates, like bookkeeping and checking for messages. The
total chunk time provides the loop scheduler a more accurate measure of the load
associated with a chunk.

AWF-E. This strategy is similar to AWF-C, but using total chunk time as in
AWEF-D.

In comparison with the AF, the modified AWF can also be used in any application
with a parallel loop, since information from a previous run of the loop is no longer
necessary. Both techniques adapt to load imbalance that may occur during loop run-
time since the processor weights are updated while the loop is being executed. In
contrast, the modified AWF measures the execution times of chunks instead of indi-
vidual iterates as required in AF. Thus, the modified AWF incurs less overhead than
AF for timing measurements since the clock is checked much less frequently.

4 Applications

Three nontrivial applications were employed to compare the performance obtained
by the modified AWF and other loop scheduling methods. These applications are:
profiling a quadrature routine, simulation of wave packet dynamics, and statistical
analysis of multiple datasets. In these applications, the bulk of the execution times
are spent on computationally intensive parallel loops. In the first two applications, a
general purpose loop scheduling routine is invoked to execute the parallel loop; while
in the third application, a load balancing framework for the simultaneous analysis of
related datasets was developed based on a dynamic loop scheduling approach, the
choice of the loop scheduling method having a major effect on performance of the
framework.

@ Springer

Dynamic load balancing with adaptive factoring methods 51

4.1 Profiling a quadrature routine

Automatic quadrature routines (AQRs) are often used in scientific computations such
as multivariate statistics, finite element methods, particle physics, and other applica-
tions. An AQR is designed to approximate an integral

]=/ f(x)dx
D

where D is the domain of integration, and f(x) is the integrand. Here, x could be a
single variable or a vector. Typically, the inputs to such a routine are: a description of
the domain D, the code for the integrand f (x), absolute and relative error tolerances
(€4, €), a limit to the number of function evaluations in case the error tolerances
are not achievable by the AQR, and the quadrature rule to be used. The AQR returns
result, hopefully satisfying |result — I| < max(e,, € * |I]), an estimate errest of the
absolute error in result, the actual number of function evaluations used, and a termi-
nation condition indicator. Since the AQR does not know the value of I, it attempts
to satisfy errest < max(e,, €, * |result|).

The profiling of an AQR is an empirical study which attempts to highlight the
accuracies (&4, €,) that are achievable by the routine and the costs involved (in terms
of function evaluations), using various types of integrands for f(x). The integrands
are chosen such that the answers are known analytically to facilitate the computation
of the true error in result, as well as the accuracy of errest. The use of profiles to
evaluate AQRs has been advocated [31] as an alternative to the practice of running
AQRs on a small set of test cases. A package for profiling two-dimensional AQRs that
runs on a message-passing environment has been developed [18], but the environment
is now obsolete. For this work, the control section of the package was reimplemented
to employ dynamic loop scheduling and standard MPI.

Generating the profile of an AQR is a very simple but a time-consuming three-
stage procedure. The first stage generates a large set of parameters where each el-
ement defines a sample integral with specific properties and error requirements; the
second stage is an embarrassingly parallel loop in which each iterate invokes the AQR
on a sample integral and determines the true error in result and the accuracy of er-
rest; and the third stage generates summary statistics. The bulk of the execution time
is spent in the second stage. The determinants for the number of loop iterates in the
second stage are the following quantities: nfam—the number of integrand families,
ndif—the number of difficulty levels for each integrand family, neps—the number
of relative accuracy requirements, nrul—the number of quadrature rules to use, and
nsamp—the number of samples to compute for each combination of integrand fam-
ily, difficulty level, accuracy requirement, and quadrature rule. The total number of
integrals to be evaluated is nfam * ndif * neps * nrul * nsamp. In order to control the
granularity of the computations, grpsize integrals can be analyzed at a time. The
number of iterates, therefore, is N = nfam * ndif * neps * nrul * (nsamp/grpsize). The
granularity of the computational task of an iterate of the loop in the second stage
can be set from one integral per task (grpsize =1, “small” granularity), and up to
nsamp integrals per iterate (grpsize = nsamp, “large” granularity). Due to the differ-
ences in integrand families, difficulty levels, accuracy requirements, and quadrature

@ Springer

52 R.L. Carifio, I. Banicescu

rule settings, the iterate execution times are highly variable even if the same number
of integrals is evaluated by each iterate.

An AQR previously developed by one author for estimating integrals over tri-
angulated domains [33] was selected for profiling. It is written in C and is linked
with a general purpose loop scheduling routine [16]. The AQR uses the Lyness and
Jespersen quadrature rules with degrees 1, 4, 6, 8 and 11 for triangles and incorpo-
rates nonlinear extrapolation. The routine was tested on fourteen families of inte-
grands (nfam = 14), each family having three difficulty levels (ndif = 3). The inte-
grand functions may be broadly classified as well behaved, oscillatory, C¢ function,
with Gaussian peak or internal peak, or singular at an interior point or along an edge.
The relative error tolerances 0.5 x 107/, i =1,...,6, (neps = 6), and the degree 4,
degree 6, degree 8 quadrature rules (nrul = 3) were specified. Three values for nsamp
were chosen (50, 100, 200), with grpsize = 10 in each case; these values give rise
to loops of sizes N = 3,780, 7,560 and 15,120, respectively, with each loop iterate
making grpsize invocations of the AQR. An iterate analyzing a family of singular
integrands and/or a high accuracy setting would require more integrand evaluations,
and hence will execute longer than an iterate analyzing a family of well-behaved
integrands or a low accuracy setting.

To investigate the effect of the location of time consuming iterates within the iter-
ation space on the performance of the loop scheduling methods, four (4) evaluation
sequences for the integrand families were chosen. In Sequence 1, the integrand fam-
ilies with severe singularities are evaluated first, followed by the families with less
severe singularities, and the families with no singularities being evaluated last. In
Sequence 2, families with severe singularities are in the middle of the sequence, pre-
ceded and succeeded by the families with less severe singularities, and the families
without singularities making the head and tail of the sequence. Sequence 3 is the re-
verse of Sequence 1, and Sequence 4 is obtained from Sequence 2 by interchanging
the positions of the families with severe singularities with the positions of the families
without singularities.

The profiling experiments were conducted on the UltraMSPARC cluster using
P =4,8, 16, 32 processors. Designed and constructed by the Mississippi State Uni-
versity Engineering Research Center, the UltraMSPARC is a 16-node cluster with
Myrinet interconnects, each node with four (4) Sun UltraMSPARC II 400 MHz
processors. The cluster has 32 gigabytes aggregate RAM, and uses the MPICH im-
plementation of MPI. Other jobs were also running in the cluster along with the ex-
periments, thus network traffic volume may have varied across runs. In order to re-
duce timing measurement biases, each simulation run was repeated 3 times, and the
processor timings were averaged over these 3 runs.

The distribution of the useful work times when the profiling application is exe-
cuted without load balancing is illustrated by Fig. 3, for N = 15,120 and P = 32.
Load imbalance in the application is evident from this figure, for all the integrand
family evaluation sequences. The graphs for other combinations of N and P are sim-
ilar. The loop completion time without load balancing is essentially the finishing time
of the processor that was assigned the most difficult integrand family.

Figures 4, 5, 6, 7 compare the parallel costs of profiling the AQR when using
various loop scheduling methods. Each cost is the average cost of three runs; the costs

@ Springer

Dynamic load balancing with adaptive factoring methods 53

800 +
[—0— Sequence 1 —® -Sequence 2 —A -Sequence 3 - #- -Sequence 4]
700 % e
N o e
600 14 b\ J ¢! Ak
S 500 A a ! 1 :7 n
3 ; \ ,- , [
2404 * : ! £
£ , i J 1 F '
= 300 - . : c :
Co . ¢ C
200 ! \ / \ I .
! '} A . N y) ” N
1004 - ¥ V.‘ Py :l e Al
. }’ ER 0 | . L.
| * . AL A % = o< . ¥
0 AM& e & ,’"\’/ \'j‘ 42

12

16 20 24 28

Processor rank

Fig. 3 Distribution of useful work times for AQR profiling without loop scheduling

Fig. 4 Parallel cost of profiling
an AQR on Sequence 1 with
loop scheduling

Fig. 5 Parallel cost of profiling
an AQR on Sequence 2 with
loop scheduling

Cost, in seconds x1000

Cost, in seconds x1000

25 4

OSTATIC BGSS OFAC

OAF

BAWF-B @DAWF-C

20 A

15 4

10 4

25 -

20 A

8 16
Number of processors

OSTATIC BEGSS OFAC

CAF

32
HAWF-B EIAWF-C
32

8 16
Number of processors

for AWF-D and AWF-E have been excluded from the graphs since these methods had
costs similar to AWF-B and AWF-C, respectively. The graphs indicate that AWF-C

incurs the least cost overall.

@ Springer

54 R.L. Carifio, I. Banicescu

Fig. 6 Parallel cost of profiling 25
an AQR on Sequence 3 with BSTATIC MGSS OFAC
. OAF HAWF-B OAWF-C |]
loop scheduling o 20 =
=3
=1
*
€ 15
c
o
(3]
&
c 10
]
| mmm
0 -
4 8 16 32
Number of processors
Fig. 7 Parallel cost of profiling 25 4 STATIC BGSS FAC
5 : (]] O
an AQR on Sequence 4 with OAF BAWEE OAWF-C ‘
loop scheduling o 20
]
*
B 15
c
o
o
b
< 10
i
o]
O 54
0 <4

4 8 16 32
Number of processors

When profiling with Sequence 3, all the methods, with the exception of STA-
TIC, uniformly achieve the lowest costs. Recall that these methods schedule chunks
in decreasing sizes; with Sequence 3, the time-consuming iterates are assigned to
small chunks, which is ideal for load balancing. This result suggests a heuristic for
load balancing a parallel loop on homogeneous processors when the distribution of
the iterates execution times is known in advance: if sorting the iterates according
to increasing execution time incurs little overhead, then scheduling the loop using a
method like GSS or FAC that generates decreasing sized chunks may be very effi-
cient.

When profiling with Sequences 1 and 4, GSS which initially allocates large
chunks, performs poorly because these initial chunks consist of time-consuming it-
erates; the processors assigned to these chunks inevitably finish last. FAC is not af-
fected severely as GSS since the initial FAC chunks are half the size of the largest
GSS chunk. The adaptive factoring methods (AF and modified AWF) further allocate
smaller initial chunks than FAC in determining first estimates of the performance pa-
rameters; hence, these adaptive methods are also not severely affected as in GSS.
These results highlight a disadvantage of the decreasing size chunks strategy for
scheduling a parallel loop with time-consuming iterates near the beginning of the
loop; in this situation, small starting chunks are preferable.

The advantage of AWF-C over the other methods is evident when profiling with
either Sequence 2 or 4. In particular, AF—the most recently introduced method de-

@ Springer

Dynamic load balancing with adaptive factoring methods 55

signed for parallel loops with variable iterate execution times, costs more than AWF-
C. One possible explanation is that, with Sequences 2 and 4, the AF is incompatible
with the strategy of allocating iterates in natural order to chunks; that is, if L is the
number of chunks, and k1, k>, ..., k7 are the chunk sizes, then the chunks are [1..k1],
ki +1..ki + ko), [k1 +ky+ 1.k1 +ky + k3], ..., [(Z;L=_11 ki) + 1..N]. This strategy
assigns chunks from different regions in the iteration space to a processor. Intuitively,
if the behavior of the iterates in two successive chunks assigned to a processor are
totally different, then the predicted size of the second chunk based on the mean and
standard deviation of the iterate execution times in the first chunk may not be ap-
propriate. The AWF-C appears to be less affected by this strategy with Sequences 2
and 4 due to its use of the weighted averaging approach. The performance of AF
for Sequences 2 and 4 may be improved by initially assigning blocks of iterates to
processors; if there is load imbalance, a processor that finishes its initial share early
will be assigned iterates from other blocks. In this manner, while a processor is not
finished with its initial block, the chunks assigned to it will be contiguous and the
behavior of the iterates from successive chunks are likely to be related. Results of
preliminary experiments using this strategy coupled with a partitioned work queue of
iterates are reported elsewhere [14].

4.2 Simulation of wave packet dynamics

Time-dependent wave packets are widely used to model various phenomena in
physics. Classical approaches for computing the wave packet dynamics include
space-time grids, basis sets, or combinations of these methods. An unstructured grid
approach based on the Bohm hydrodynamic interpretation of quantum mechanics
[12], the quantum trajectory method (QTM), has been implemented for a serial com-
puting environment [29]. The QTM solves the quantum hydrodynamic equations us-
ing a moving weighted least-squares (MWLS) algorithm to compute needed deriva-
tives. The solutions to the equations of motion give the quantum trajectories for “fluid
particles” or pseudoparticles. An implementation of the QTM on a shared-memory
environment employing OpenMP for loop parallelization has been developed, as well
as a message-passing version that utilizes dynamic loop scheduling [13, 21, 22]. An
outline of the simulation is given by the following pseudocode:

Initialize positions r[], velocities v[], and probability densities p[]
For each timestep s in turn
For pseudoparticle i =1 to N (Loop 1)
Call MWLS (i, r[], p[], Np1, Nb)
Compute quantum potential Q]
For pseudoparticle i =1 to N (Loop 2)
Call MWLS (i, r[], Q[], Np2, Nb)
Compute quantum force f[i]
For pseudoparticle i =1 to N (Loop 3)
Call MWLS (i, r[], v[], Np2, Nb)
Compute derivative of velocity dv|i]
For pseudoparticle i =1 to N (Loop 4)
Compute classical potential V[i], force f.[i]

@ Springer

56 R.L. Carifio, I. Banicescu

100 ~
g0 ||TISTATIC BGSS

OFAC OAF
EAWF-B OAWF-C ||

80
70
60 -
50 A

40 -

Cost, in seconds x1000

20 A
10 A

4 8 12
Number of Processors

Fig. 8 Parallel cost of simulating wave packet dynamics using the quantum trajectory method

Output s, r[], v[], p[1, VI, fell. OI1. fgll, dvl]
For pseudoparticle i =1 to N (Loop 5)

Update density p[i], position [i] and velocity v[i]

The MWLS algorithm needed to compute Q[1, f,[1, and dv[] solves an overde-
termined linear system of size Np x Nb. The execution profile of a straightforward
serial implementation of the above algorithm indicates that up to 90% of the total
time is spent in the MWLS routine called by Loops 1-3, which are parallel loops.
However, due to adaptivity in the MWLS algorithm, the loop iterates perform vary-
ing amounts of computation, and that these amounts also change with the evolution
of the time steps. Thus, adaptive loop scheduling is necessary. The simulation code is
written in Fortran 90, and it invokes a general purpose loop scheduling routine [16]
to execute Loops 1-3.

To compare the performance of the application with various loop scheduling meth-
ods, a free particle represented by a Gaussian wave packet with 1,501 pseudoparticles
was simulated for 1,000 time steps. The timings used in the results below are aver-
aged over 3 runs of the simulation on 4, 8 and 12 processors of the “Empire” Linux
cluster at the Mississippi State University High Performance Computing Collabora-
tory. The cluster has a number of compute nodes with dual 1.0 GHz or 1.266 GHz
Intel Pentium III processors, the nodes (32 in a rack) are connected via fast Ether-
net, and the racks are connected with gigabit Ethernet uplinks. The cluster scheduler
attempts to assign, if feasible, the processors requested by a job, from a single rack.
Figure 8 graphs the parallel costs of the simulation when using the STATIC, GSS,
FAC, AF, AWF-B and AWF-C to execute Loops 1-3. The figure indicates that the
modified AWF methods achieve performance that is comparable to the performance
of the other factoring methods.

@ Springer

Dynamic load balancing with adaptive factoring methods 57

4.3 Simultaneous analysis of multiple datasets on a cluster

The simultaneous analysis of a number of related datasets using a single statistical
model is an important problem in statistical computing. A parameterized statisti-
cal model is to be fitted on multiple datasets. Definitive conclusions are hopefully
achieved by analyzing the datasets together. A simple “one processor per dataset”
parallel strategy is not suitable for this application due to wide differences in dataset
analysis times, which can range from a few seconds to several hours, depending on
the number of observations in a dataset. A processor assigned to a large dataset will
finish long after those assigned to smaller datasets. Also, an “all processors working
on one dataset at a time” strategy precludes the exploitation of the large number of
processors available on typical clusters because of the limited degree of concurrency
in the analysis procedure.

The authors developed a framework (Fig. 9) for dataset analysis [2, 5, 15] based
on a “processor groups” strategy. The framework is to be configured with the rou-
tines for a specific statistical analysis problem and is submitted as a parallel job to a

Cluster & Note

\\
£ otel
' N

Cluster switch

Dataset #1
Dataset #2
s N Dataset #3
i Cluster \:‘
\._ Scheduler _/ Dataset #D

Fig. 9 A processor groups strategy for dataset analysis on a cluster

@ Springer

58 R.L. Carifio, I. Banicescu

cluster. The cluster scheduler commits the number of processors requested by the job.
Early during execution, the framework designates one of the processors as a dedicated
scheduler S, which is responsible for managing three phases of the computations:
(1) organizing the rest of the processors into groups of crew members C and appoint-
ing a foreman F for each group; (2) retrieving the datasets from disk and distributing
these to the groups; and (3) scheduling the analysis of the datasets by the groups.
Load imbalance among groups is expected to be induced by the differences in both
the computational powers and loads of the processor groups, and the unpredictable
network latencies or operating system interferences inherent in a cluster environment.
Dynamic redistribution of datasets among groups is necessary during the third phase,
in order to achieve high performance.

When the cluster scheduler assigns processors to a parallel job, the processors are
typically fragmented across several racks, especially if a large number of processors
is requested. This fragmentation is conveniently exploited by the framework to match
the degree of concurrency in the analysis procedure with the appropriate number of
processors. The scheduler S forms the processors residing in a rack into a processor
group that acts as single worker, to carry out the analysis procedure on one dataset at
atime. A very large number of processors in a rack (relative to the degree of concur-
rency in the analysis procedure) can be formed into two or more workers. However,
if there are racks that contribute tiny numbers of processors, then the processors are
combined together to form a single more powerful worker in order to avoid the possi-
bility of “tiny” workers being assigned very large datasets. This manner of organizing
processors by racks enables two levels of concurrency—the simultaneous processing
of datasets, and the parallel execution of the analysis procedure for a single dataset,
while exploiting the efficiency of communications among processors residing in a
single rack. Load balancing can be employed on both concurrency levels, that is,
among the processor groups and within a group.

After the processors assigned to the analysis job are identified and the processor
groupings are established, the datasets are retrieved from disk for distribution to the
processor groups. Keeping the datasets in memory offers some advantages over “on
demand” retrieval of datasets from disk. If the datasets are not massive, moving a
dataset from one processor to another within the cluster is at least an order of mag-
nitude faster than retrieving the dataset from a filesystem outside the cluster. The
framework initially distributes the datasets among the groups such that the total num-
ber of observations stored by a group is proportional to the number of processors in
the group. To avoid the situation where all the big datasets are lumped together into
one group, the distribution procedure is as follows. The datasets are sorted according
to decreasing size. The largest datasets are simply distributed one for each group.
Then, for the rest of the datasets in sorted order, the group which is farthest from
its quota of observations is identified and the processor with the minimum number
of observations in that group will store the dataset. This initial distribution strategy
ensures that the big datasets are effectively scattered among the groups, and that the
processors in a group store comparable numbers of observations.

The proportionality of the number observations stored by a group to the number
of processors in the group before the start of the analysis is not a guarantee for good
load balance among groups. This is because the number of observations may not be

@ Springer

Dynamic load balancing with adaptive factoring methods 59

good measure of the computational load of a dataset. Furthermore, the dynamic na-
ture of a cluster environment also induces other types of load imbalance that must be
addressed during the actual analysis of the datasets, necessitating their redistribution
during runtime. Dynamic load balancing in the analysis framework is accomplished
via loop scheduling, using a partitioned work queue, with some contextualization. In
conventional loop scheduling, a parallel loop with N iterations is to be executed on
P processors. Chunks of iterations are assigned to processors with the objective of
minimizing the loop completion time. The sizes of chunks are determined according
to a loop scheduling technique. Mapped to the present context of the dataset analy-
sis, the N loop iterations correspond to the total number of observations, and the P
processors correspond to the number of groups, a group being a single worker. A
chunk of iterations is essentially a fraction f of the total N iterations; here, a chunk
of observations will correspond to a collection of datasets where the number of obser-
vations is a fraction f of the total observation count. Using these correspondences,
dynamic loop scheduling techniques are applicable in the present context, with the
possible exception of AF which requires the measurement of individual iterate exe-
cution times. The correspondence between a single loop iteration and a observation
may not be valid because the execution of individual loop iterations can be timed,
while observations are not analyzed individually, but only collectively in a dataset.

As a preliminary performance test, the framework was configured for the analysis
of gamma-ray burst (GRB) datasets using vector functional coefficient autoregressive
(VFCAR) time series models, on the “Empire” cluster. GRBs are cosmic explosions
that occurred in distant galaxies and are thought to be excellent “beacons” for tracing
the structure of the early universe. Scientific satellites have been recording GRB time
profiles for a number of years [11, 27], and the analysis of the collected datasets is
currently an open problem in the astrophysics community. The small-scale analysis
mentioned by this paper is an initial investigation of the usefulness of VFCAR mod-
els [25, 26] in describing features of GRBs. The computational challenges in this
investigation and their partial resolution are presented elsewhere [2-5].

The test involved the analysis of 555 GRB datasets, with sizes ranging from 46 to
9,037 observations, on 64 processors of the cluster. The analysis was executed with-
out dataset redistribution (STAT) and with dataset redistribution using the following
loop scheduling techniques: modified fixed size chunking (mFSC), GSS, FAC and
AWEF-C Since the required parameters for the optimal FSC chunk size are not known,
the chunk size in mFSC is chosen such that the number of chunks generated is the
same as the number generated by factoring (FAC), that is, mFSC and FAC both gener-
ate the same number of scheduling events but different chunk sizes. This comparison
experiment was submitted as a single 64-processor job so that the same set of proces-
sors (and therefore, the same processor groupings) is used by the four load balancing
schemes.

Figures 10 and 11 summarize the performance of the framework under the STAT,
mFSC, GSS, FAC, AWF-B and AWF-C load balancing schemes when heterogeneous
processors were assigned to the experiment. In this instance, the 64 processors were
spread across racks 8, 10, 14, 15 and 16 of the Empire cluster, with the racks con-
tributing 20, 16, 16, 8 and 4 processors, respectively. Rack 8 had 1.0 GHz processors,
while the rest of the racks had 1.266 GHz processors. The scheduler S formed five

@ Springer

60 R.L. Carifio, I. Banicescu

350 -

300 - BGrp1,p=7 @OGrp2, p=8 MWGrp3, p=16
OGrp4, p=16 B Grp5, p=16

250 A

200 A

150 4

No. of datasets

100 4

50 -

STAT mFSC GSSs FAC AWF-B AWF-C
Scheduling technique

Fig. 10 Comparison of the final distribution of datasets among processor groups. The initial distribution
of datasets is the same as the final distribution for STAT

25 A

B Grp1, p=7 O Grp2, p=8 M Grp3, p=16 0 Grp4, p=16 B Grp5, p=16

N
o

N
(&}
I

Group elapsed time (x1000 sec)
>

(&2}
L

STAT mFSC GSS FAC AWF-B AWF-C
Scheduling technique

Fig. 11 Comparison of processor group elapsed times

groups: Group 1 with 7 processors split between racks 8 and 16 (hence, heteroge-
neous processors); Group 2 with 8 processors in rack 15; Group 3 with 16 processors
in rack 14; Group 4 with 16 processors in rack 10; and Group 5 with 16 processors
in rack 8. The scheduler S resided in rack 16.

Figure 10 indicates that except for STAT, datasets migrated from Groups 4 and 5
to Groups 1-3. Using the timings in Fig. 11 to calculate the parallel cost of the frame-
work under each load balancing scheme, the percent cost improvements of the other
methods over STAT (i.e., 100x (cost(STAT) — cost(method))/cost(STAT)) are 24.3,

@ Springer

Dynamic load balancing with adaptive factoring methods 61

11.0, 14.9, 19.6 and 32.7, respectively, for mFSC, GSS, FAC, AWF-B and AWF-C.
Thus, AWF-C achieved the highest cost improvement over STAT. This may be at-
tributed to AWF-C’s adaptive strategy of assigning work to processors, compared to
the nonadaptive strategy of mFSC, GSS and FAC. AWF-C’s better performance over
AWF-B may be attributed to the more frequent adaptation of processor weights by
AWE-C.

5 Concluding remarks

The adaptive weighted factoring method (AWF) was originally designed for schedul-
ing a parallel loop in time-stepping scientific applications. During a time step, the
method measures the time per iterate ratio in each processor. At the end of the step,
the ratios are converted into processor weights for allocating chunk sizes in the suc-
ceeding time step. This paper proposes a modification to make the AWF also suitable
for scientific applications that do not involve time steps. Essentially, the change is to
utilize the ratios based on timings from earlier chunks, to adapt the processor weights
for the succeeding chunks. With this revision, information from a previous run of
the loop is no longer necessary. The modified method adjusts to load imbalance that
occurs during loop runtime since the processor weights are updated while the loop is
being executed. Tests of the modified AWF in three nontrivial applications—the pro-
filing of a quadrature routine, simulation of wave packet dynamics using the quantum
trajectory method, and statistical analysis of multiple datasets, confirm that the per-
formance of the method is comparable, and in certain cases, superior to the perfor-
mance of the most recently introduced adaptive factoring method. Work is on-going
to implement a library of dynamic loop scheduling methods, including the modified
AWF.

Acknowledgements We thank Ravi Vadapalli, Charles Weatherford and Jianping Zhu for their collabo-
ration on the simulation of wave packet dynamics. We also thank Jane Harvill and John Lestrade for their
collaboration on the analysis of gamma-ray burst datasets using vector functional coefficient autoregressive
time series models.

References

1. Balasubramaniam M, Barker K, Banicescu I, Chrisochoides N, Pabico JP, Carifio RL (2004) A novel
dynamic load balancing library for cluster computing. In: Proceedings of the 3rd international sym-
posium on parallel and distributed computing, in association with the international workshop on algo-
rithms, models and tools for parallel computing on heterogeneous networks (ISPDC/HeteroPar’04).
IEEE Computer Society Press, Los Alamitos, pp 346-352

2. Banicescu I, Carifio RL (2005) Addressing the stochastic nature of scientific computations via dy-
namic loop scheduling. Electron Trans Numer Anal 21:66-80

3. Banicescu I, Carifio RL, Harvill JL, Lestrade JP (2005) Simulation of vector nonlinear time series on
clusters. In: Proceedings of the 19th international parallel and distributed processing symposium—the
6th international workshop on parallel and distributed scientific and engineering computing (IPDPS-
PDSEC 2005). IEEE Computer Society Press, Los Alamitos (on CD-ROM)

4. Banicescu I, Carifio RL, Harvill JL, Lestrade JP (2005) Computational challenges in vector functional
coefficient autoregressive models. In: Proceedings of the international conference on computational
science 2005 (ICCS 2005), part I. Springer, Berlin, pp 237-244

@ Springer

62

R.L. Carifio, I. Banicescu

20.

21.

22.

23.

24.

25.

26.

Banicescu I, Carino RL, Harvill JL, Lestrade JP (2005) Vector nonlinear time-series analysis of
gamma-ray burst datasets on heterogeneous clusters. Sci Program 13(2):415-422

Banicescu I, Flynn-Hummel S (1995) Balancing processor loads and exploiting data locality in n-
body simulations. In: Proceedings of the 1995 ACM/IEEE conference on supercomputing. ACM,
New York (on CD-ROM)

Banicescu I, Liu Z (2000) Adaptive factoring: dynamic scheduling method tuned to the rate of weight
changes. In Proceedings of the high performance computing symposium (HPC 2000), pp 122-129
Banicescu I, Velusamy V (2001) Performance of scheduling scientific applications with adaptive
weighted factoring. In: Proceedings of the 15th IEEE international parallel and distributed processing
symposium—10th heterogeneous computing workshop (IPDPS-HCW 2001). IEEE Computer Soci-
ety Press, Los Alamitos (on CD-ROM)

Banicescu I, Velusamy V (2002) Load balancing highly irregular computations with the adap-
tive factoring. In: Proceedings of the 16th IEEE international parallel and distributed processing
symposium—1 1th heterogeneous computing workshop (IPDPS-HCW 2002). IEEE Computer So-
ciety Press, Los Alamitos

Banicescu I, Velusamy V, Devaprasad J (2003) On the scalability of dynamic scheduling scientific
applications with adaptive weighted factoring. Clust Comput: J Netw Softw Tools Appl 6(3):215—
226

. BATSE. (2005) Burst and transient source experiment BATSE home page. http://www.batse.msfc.

nasa.gov/batse

Bohm D (1952) A suggested interpretation of the quantum theory in terms of “hidden” variables. Phys
Rev 85:166-193

Brook RG, Oppenheimer PE, Weatherford CA, Banicescu I, Zhu J (2001) Solving the hydrodynamic
formulation of quantum mechanics: A parallel MLS method. Int J Quantum Chem 85(4-5):263-271
Carino RL, Banicescu I (2002) Load balancing parallel loops on message-passing systems. In:
Akl SG, Gonzales T (eds) Proceedings of the 14th IASTED international conference on parallel and
distributed computing and systems (PDCS 2004). Acta Press, Calgary, pp 362-367

Cariiio RL, Banicescu I (2005) A framework for statistical analysis of datasets on heterogeneous
clusters. In: Proceedings of the 2005 IEEE international conference on cluster computing. IEEE, New
York (on CD-ROM)

Cariflo RL, Banicescu I (2005) A load balancing tool for distributed parallel loops. Clust Comput
8(4):313-321

Carino RL, Banicescu I, Rauber T, Runger G (2004) Dynamic loop scheduling on processor groups.
In Proceedings of the 17th international conference on parallel and distributed computing systems
(PDCS 2004), pp 78-84. International Society for Computers and Their Applications

Carifo RL (1992) Numerical integration over finite regions using extrapolation by nonlinear sequence
transformations. PhD thesis, La Trobe University, Melbourne, Australia

Carifio RL, Banicescu I (2006) A Dynamic load Balancing tool For one- and Two-dimensional parallel
loops. In: Proceedings of the 5th international symposium on parallel and distributed computing. IEEE
Computer Society, Los Alamitos, pp 107-114

Carino RL, Banicescu I, Lim H, Williams N, Kim S (2006) Simulation of a hybrid model for image
denoising. In: Proceedings of the 20th international parallel and distributed processing symposium.
IEEE Computer Society, Los Alamitos (on CD-ROM)

Cariilo RL, Banicescu I, Vadapalli RK, Weatherford CA, Zhu J (2003) Parallel adaptive quantum
trajectory Method for Wavepacket simulation. In: Proceedings of the 17th international parallel and
distributed Processing Symposium—4th workshop on parallel and distributed scientific and engineer-
ing applications. IEEE Computer Society Press, Los Alamitos (on CD-ROM)

Carino RL, Banicescu I, Vadapalli RK, Weatherford CA, Zhu J (2004) Message passing parallel adap-
tive quantum trajectory method. Kluwer Academic, Dordrecht, pp 127-139

Flynn-Hummel S, Schmidt J, Uma RN, Wein J (1996) Load-sharing in heterogeneous systems via
weighted factoring. In: Proceedings of the 8th annual ACM symposium on parallel algorithms and
architectures, pp 318-328

Flynn-Hummel S, Schonberg E, Flynn LE (1992) Factoring: A method for scheduling parallel loops.
Commun ACM 35(8):90-101

Harvill JL, Ray BK (2005) A note on multi-step forecasting with functional coefficient autoregressive
models. Int J Forecast 21(4):717-727

Harvill JL, Ray BK (2006) Functional coefficient autoregressive models for vector time series. Com-
put Stat Data Anal 50(12):3547-3566

@ Springer

Dynamic load balancing with adaptive factoring methods 63

217.
28.

29.

30.

31.

32.

33.

34.

HETE. (2005) High energy transient explorer HETE home page. http://space.mit.edu/HETE

Kruskal CP, Weiss A (1985) Allocating independent subtasks on parallel processors. IEEE Trans
Softw Eng 11(10):1001-1016

Lopreore CL, Wyatt RE (1999) Quantum wave packet dynamics with trajectories. Phys Rev Lett
82:5190-5193

Luke E, Banicescu I, Li J (1998) The optimal effectiveness metric for parallel application analysis.
Inf. Process. Lett., special issue on parallel models 66(5):223-229

Lyness J, Kaganove J (1976) Comments on the nature of automatic quadrature routines. ACM Trans
Math Softw 2:65-81

Polychronopoulos CD, Kuck DJ (1987) Guided self-scheduling: a practical scheduling scheme for
parallel supercomputers. IEEE Trans Comput 36(12):1425-1439

Carifio RL, Robinson I, de Doncker E (1994) Adaptive cubature over a collection of triangles using
the d-transformation. J Comput Appl Math 50:171-183

Tzen TH, Ni LM (1993) Trapezoid self-scheduling: a practical scheduling scheme for parallel com-
puters. IEEE Trans Parallel Distrib Syst 4(1):87-98

Ricolindo L. Carifio finished his Ph.D. from La Trobe University, Melbourne,
Australia in 1993. He was an Associate Professor of Computer Science in the
University of the Philippines Los Banos until 2002. Currently, he is a research fac-
ulty in the Center for Advanced Vehicular Systems, Mississippi State University.
His interests include high performance computing for scientific and engineering
applications. He is a senior member of the IEEE.

Ioana Banicescu is a professor in the Department of Computer Science and
Engineering at Mississippi State University (MSU). She received the Dipl. in
Engineering (Electronics and Telecommunications) from Polytechnic University,
Bucharest, and the M.S. and the Ph.D. degrees in Computer Science from Poly-
technic University, New York. Professor Banicescu’s research interests include
parallel algorithms, scientific computing, scheduling theory, load balancing algo-
rithms, performance analysis, optimization, and prediction. She also holds a re-
search faculty position in the Center for Computational Sciences at MSU, where
she presently is involved in the development of dynamic scheduling algorithms
for scalable parallelization and performance optimization of problems in compu-
tational sciences. Professor Banicescu is the recipient of a number of awards for

research and scholarship including the National Science Foundation (NSF) Early CAREER award, and
three NSF Information Technology awards. She serves on steering and program committees of a number
of international conferences, symposia and workshops, and on the Executive Board of the IEEE Technical
Committee on Parallel Processing (TCPP). In 2004, Bagley College of Engineering at MSU has recognized
Professor Banicescu’s scholarly contributions by awarding her the Outstanding Faculty Engineering Re-
search Award, and in 2005 she received the University Faculty Research Award for College of Engineering,
and the Hearin Eminent Scholar Award.

@ Springer

	Dynamic load balancing with adaptive factoring methods in scientific applications
	Abstract
	Introduction
	Loop scheduling methods
	Nonadaptive methods
	Adaptive methods
	Loop scheduling overhead and performance
	Message-passing implementation

	Adaptive weighted factoring variants
	Applications
	Profiling a quadrature routine
	Simulation of wave packet dynamics
	Simultaneous analysis of multiple datasets on a cluster

	Concluding remarks
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

