
The Journal of Supercomputing, 36, 3–16, 2006
C© 2006 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Wavelength Assignment for Realizing Parallel FFT on
Regular Optical Networks

YAWEN CHEN yawen@jaist.ac.jp,

HONG SHEN∗ shen@jaist.ac.jp

School of Information Science, Japan Advanced Institute of Science and Technology, Asahidai 1-8, Nomi-Shi,
Ishikawa 923-1292, Japan

FANGAI LIU liufangai@yahoo.com.cn

School of Information and Management, Shandong Normal University, Jinan, Shandong 250014, China

Abstract. Routing and wavelength assignment (RWA) is a central issue to increase efficiency and reduce

cost in Wavelength Division Multiplexing (WDM) optical networks. In this paper, we address the problem of

wavelength assignment for realizing parallel FFT on a class of regular optical WDM networks. We propose two

methods for sequential mapping and shift-reversal mapping of FFT communication pattern to the optical WDM

networks concerned. By sequential mapping, the numbers of wavelengths required to realize parallel FFT with

2n nodes on WDM linear arrays, rings, 2-D meshes and 2-D tori are 2n−1, 2n−1, 2max(k,n−k)−1 and 2max(k,n−k)−1

respectively. By shift-reversal mapping, the numbers of wavelengths required are max(3 × 2n−3, 2), 2n−2,

max(3 × 2max(k,n−k)−3, 2) and 2max(k,n−k)−2. These results show that shift-reversal mapping outperforms

sequential mapping. Our results have a clear significance for applications because FFT represents a common

computation pattern shared by a large class of scientific and engineering problems and WDM optical networks

as a promising technology in networking has an increasing popularity.

Keywords: parallel FFT, wavelength assignment, optical networks, Wavelength Division Multiplexing

(WDM), network embedding

1. Introduction

Fast Fourier Transform (FFT) plays an important role in various scientific and technical
applications including image processing, communications, cellular phones and digital
control systems [1]. While the application fields of FFT are growing rapidly, the amount
of data to be transformed is also increasing tremendously. Hence, there has been a great
interest in implementing FFT on parallel computers and some parallel computers have
been specially designed to perform FFT computations [2, 3, 6, 9, 13]. With the increasing
computation power of parallel computers, interprocessor communication has become
an important factor that limits the performance of supercomputing systems. Optical
communication, in particular, Wavelength Division Multiplexing (WDM) technique, has
become a promising technology for many emerging networking and parallel/distributed
computing applications because of its huge bandwidth [15]. In [7], parallel computing
using optical interconnection is introduced.
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Due to its topological properties, parallel FFT is often implemented on dense inter-
connection networks such as hypercube and shuffle-exchange networks [6], instead of
simple connected networks such as linear arrays and rings. Since WDM divides the
bandwidth of an optical fiber into multiple wavelength channels so that multiple devices
can transmit on distinct wavelengths through the same fiber concurrently, these dense
networks can be simplified to simple regular topologies by realizing connections of
parallel FFT in optical lightpaths.

The problem of routing and wavelength assignment (RWA) is critical for increasing
the efficiency of wavelength-routed all-optical networks [10]. Commercial wavelength-
division multiplexers combining up to 16 wavelengths were introduced in 1996, and
40-chanel systems were made available in 1998. Recent laboratory experiments have
achieved 1000 channels or more per fiber. How to make full use of these channels
efficiently has attracted a lot of attentions. A review of routing and wavelength assignment
approaches for wavelength-routed optical WDM networks was given in [16]. In [12],
multicasting in multi-hop optical WDM networks with limited wavelength conversion
was surveyed. In [17], some results in wide-sense nonblocking multicast in a class
of regular optical WDM networks were given. In [14], optimal routing and channel
assignments for hypercube communication on optical mesh–like processor arrays were
studied. In [11], off-line permutation embedding and scheduling in multiplexed optical
networks with regular topologies were discussed.

In this paper, we study the wavelength assignment problem for realizing parallel FFT
on a class of regular optical WDM networks including linear arrays, rings, 2-D meshes
and 2-D tori. We derive the numbers of wavelengths required to embed the parallel FFT
communication pattern on the optical networks by sequential mapping and shift-reversal
mapping. Our results show that shift-reversal mapping outperforms sequential mapping.
A preliminary version of this paper appeared in [8].

The rest of this paper is organized as follows. In Section 2, we provide necessary
background on wavelength assignment on optical WDM networks and parallel FFT.
We then define the problem and provide some results of wavelength assignment for
realizing parallel FFT on linear arrays, rings, meshes and tori by sequential mapping
and shift-reversal mapping in Sections 3. In Sections 4, comparisons between the two
embeddings are given. Finally, we conclude the paper in Section 5.

2. Preliminaries

In this section, we introduce some general concepts and definitions that are used in this
paper.

2.1. Optical WDM networks

Optical WDM networks are widely regarded as the best choice for providing the huge
bandwidth required by future networks [15, 16]. Wavelength Division Multiplexing
(WDM) divides the bandwidth of an optical fiber into multiple wavelength channels,
so that multiple users can transmit at distinct wavelength channels through the same
fiber concurrently. To efficiently utilize the bandwidth resources and eliminate the high
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cost and bottleneck caused by optoelectronic conversion and processing at intermediate
nodes, end-to-end lightpaths are usually set up between each pair of source-destination
nodes. A connection or a lightpath in a WDM network is an ordered pair of nodes (x ,y)
corresponding to that a packet is sent from source x to destination y. There are two
approaches for establishing a connection in a network whose links are multiplexed with
virtual channels. One is called path multiplexing (PM), in which the same wavelength
has to be used on each link along a path, and the other is called link multiplexing (LM),
in which different wavelengths may be used in a path [16]. In this paper, we assume that
no wavelength converter facility is available in the network. Thus, a connection must
use the same wavelength throughout its path by PM. In this case, the lightpath is said to
satisfy the wavelength-continuity constraint.

2.2. Wavelength assignment

Given a physical network structure and the required connections, the problem of routing
and wavelength assignment (RWA) is to select a suitable path and wavelength among
many possible choices for each connection so that no two paths sharing a link are
assigned the same wavelength. RWA tries to minimize the number of channels to realize
a communication requirement by taking into consideration both routing options and
channel assignment options which can be described as follows [14]. Given a set of
all–optical connections, the problem is to (a) find routes from the source nodes to their
respective destinations, and (b) assign channels to these routes so that the same channel
is assigned to all the links of a particular route. (c) The goal of RWA is to minimize the
number of assigned channels.

Numerous research studies have been conducted on the RWA problem [10, 11, 14,
16, 17]. A popular approach to tackle this problem is to apply integer programming
technique [10], which, however, does not lead to efficient solution for special cases. In
this paper, we discuss the RWA problem of realizing parallel FFT on a class of regular
optical WDM networks.

2.3. Parallel FFT

The FFT developed by Cooley and Tukey [5] in the mid-60s is a method of computing
the discrete Fourier transform which reduces the number of operations for an N -point
complex vector from O(N 2) to O(N log2 N ). The data-flow graph induced by an N -point
FFT computation is usually described by means of the so-called butterfly representation
[9]. The butterfly representation of FFT is a diagram made up of blocks representing
identical computational units (butterflies) connected by arrows that show the flow of data
between the blocks. Assuming that N is the length of the sequence to be transformed
(N is an integer power of two), then the diagram with N (log2 N+1) nodes arranged in
N rows and log2 N+1 columns is made of log2 Nstages of N /2 butterflies each. The
nodes in column 0 are the problem inputs and those in column log2 N are the outputs.
Each non-input nodes represents an atomic computation [3]. Figure 1 shows the butterfly
representation of an 8-point FFT. FFT can be easily implemented on a butterfly. In fact,
the butterfly was first defined for the purpose of implementing FFT, and it is often referred
to as the FFT network.



6 CHEN, SHEN AND LIU

Figure 1. Butterfly computations of an 8-point FFT.

It is well known that FFT uses a very regular structure and most of the FFT algorithms
are designed based on the butterfly computation. The butterfly representation of FFT
computation pattern clearly shows the great potential of FFT for parallel processing.
Generally, the FFT is implemented stage by stage, i.e. any stage of calculation cannot
proceed until all the results of its previous stage have been completed. In this way, all
operations within one stage can be performed in parallel and all the stages have to be
handled sequentially. We call this form of implementation parallel FFT. In this paper, we
consider one dimensional data sequence of size N = 2n . If each data is assigned a binary
representation, the communications during the i th (1 ≤ i ≤ n) stage of the butterfly
must take place between the nodes whose binary representations differ in the i th position
[13]. As shown in Figure 1, processor 000 communicates with processor 100 in the first
stage, with processor 010 in the next stage, and finally with processor 001 in the last
stage. Obviously, if the butterfly representation is viewed as a process graph, i.e. each
row of the butterfly is implemented by a process and each arrow by a communication
channel, the butterfly communication pattern can map onto a WDM hypercube perfectly
those links connecting the nodes having an address that differs by only one bit at each
stage. However, if a WDM hypercube is used, only the i th dimensional links are used
with one wavelength during the i th stage whereas other (n − 1) × 2n−1 links are vacant
during this stage, which may lead to wasting of wavelength channels.

As we know, a connection in the hypercube is called a dimensional i connection [14] if
it connects two nodes that differ in the i th bit position, where 1 ≤ i ≤ n. In a network of
size 2n , the set DIMi is defined as the set of all dimension i connections and Hn is defined
as the hypercube communication pattern which contains all connections in the hypercube.
That is, Hn = ⋃n

i=1 DIMi and DIMi = {( j, j + (−1)� j/2n−i� × 2n−i )|0 ≤ j ≤ 2n − 1}.
With 2n input data distributed on 2n processors, the set of all communications during

n stages of parallel FFT is equivalent to Hn , and the set of communications during the i th
stage is equivalent to DIMi . Clearly, parallel FFT has a regular communication pattern
which we denote by FFTn(n ≥ 2). In fact, even if the number of processors is less
than the number of input data and each processor is allocated a group of input data, the
inter-processor communication pattern has the same regularity as FFTn .
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3. Wavelength assignment for realizing parallel FFT on optical networks

3.1. Problem definition

We model a network as a directed graph G (V, E). Nodes in V are switches and edges in E
are links. In general, an optical WDM network consists of routing nodes interconnected
by point-to-point fiber links, which can support a certain number of wavelengths. A light-
path is implemented by selecting a path of physical links between the source and destina-
tion nodes, and reserving a particular wavelength on each of these links for the lightpath.
In this paper, we assume each link in the network is bidirectional and composed of a pair
of unidirectional links with one link in each direction. For FFTn , if (x ,y) ∈ FFTn , then
(y, x) ∈ FFTn . Assuming that these two communications can be realized by two light-
paths in the same path of opposite directions passing through different fiber links, the
same wavelength can be assigned to these two lightpaths. In this case, we can ignore the
problem of communication directions in FFTn .

Since the n stages of parallel FFT communications should be implemented stage by
stage, the number of wavelengths required to realize FFTn on optical WDM networks is
the maximum number among the wavelengths required by the n stages. Let We(G ′, G)
denote the number of wavelengths to realize communication pattern G ′ on network G by
embedding scheme e. Thus, We(FFTn, G) = max1≤i≤n(We(DIMi , G)). In the following,
Ws and Wr denote the numbers of wavelengths required by sequential mapping and shift-
reversal mapping respectively.

3.2. Linear arrays

Assume that the nodes of WDM linear arrays are numbered from left to right in ascending
order starting from 0, and that the links are numbered from left to right starting from 1.
If the i th node of FFTn is mapped onto the i th processor of the optical WDM networks,
we call such an embedding sequential mapping.

Theorem 1 By sequential mapping, the number of wavelengths required to realize
FFTn on a WDM linear array with 2n nodes is 2n−1.

Proof: Sequential mapping of FFTn to a linear array with 2n nodes will result that the
kth node on the linear array communicates with node k +2n−1 for 0 ≤ k ≤ 2n−1 −1 and
with node k − 2n−1 for 2n−1 ≤ k ≤ 2n − 1. Therefore, there are min(i, 2n − i) lightpaths
passing through the i th link of the linear array, as illustrated in Figure 2(a). So, the
maximum number of wavelengths required during the first stage is 2n−1 when i = 2n−1.
Similarly, it can be seen from Figure 2(a) that during the j th(1 ≤ j ≤ n) stage the kth
node on the linear array communicates with either node k + 2n− j or node k − 2n− j .
Thus, there are min(i − 2n+1− j� i

2n+1− j �, 2n+1− j
 i
2n+1− j � − i) lightpaths passing through

the i th link of the linear array. So, the maximum number of wavelengths required during
the j th stage is 2n− j when i = m × 2n+1− j + 2n− j (m = 0, 1, . . . , 2 j−1 − 1). Hence, the
maximum number of wavelengths required for all the stages is 2n−1, which happens on
the 2n−1th link during the first stage. That is, Ws(FFTn, line) = 2n−1.
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Figure 2. FFTn embedded in 8-node linear array.

As shown in Figure 2(a), the maximum number of wavelengths required to realize FFT3

on an 8-node linear array by sequential mapping is 22 = 4.
Obviously, sequential mapping is not satisfactory because it requires a large number

of wavelengths. In the following, we consider an alternative embedding, shift-reversal
mapping, which is better than sequential mapping on the number of wavelengths.

At first, we introduce the definitions of reversal mapping and shift-reversal mapping.
Assume that X is an arrangement of binary representations, and X−1 is the reversal

arrangement of these binary representations. For example, if X = a, b, c, d, then X−1 =
d, c, b, a, and (X1 X2)−1 = X−1

2 X−1
1 . The node arrangement of Xn is defined recursively

as follows [4]:

X1 = 0, 1

X2 = 0X1, (1X1)−1 = 00, 01, (10, 11)−1 = 00, 01, 11, 10

...

Xn = 0Xn−1, (1Xn−1)−1.

We call Xn reversal order of 2n nodes. For example, reversal order of 8 nodes X3 =
0X2, (1X2)−1 = 000, 001, 011, 010, 110, 111, 101, 100.

If we move the node in position i of Xn towards its left (right) side to position
i−1 (i+1) of Xn , and node 0 (n) to position n (0), we define these movements left-
shift (right-shift) operation on Xn . If we implement left-shift (right-shift) operations
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for 2n−3(n ≥ 3) times, we call the obtained arrangement left shift-reversal order (right
shift-reversal order). Due to the symmetry between left shift-reversal order and right
shift-reversal order, these two orders are equivalent for the results in this paper. In the
following, we only use shift-reversal order to represent one of left shift-reversal order
and right shift-reversal order. In addition, we assume that shift-reversal order is identical
with its corresponding reversal order when n = 2.

If we map the i th node of reversal order or shift-reversal order of FFTn onto the i th
processor of the WDM network G, we establish the 1-1 mapping from the nodes of FFTn

to the nodes of G. We call these two embeddings reversal mapping and shift-reversal
mapping.

Theorem 2 By shift-reversal mapping, the number of wavelengths required to realize
FFTn on a WDM linear array with 2n nodes is max(3 × 2n−3, 2).

Proof: When n = 2, the nodes of 0, 1, 3 and 2 of FFT2 are mapped onto the nodes of
0, 1, 2 and 3 on the linear array. Clearly, the number of wavelengths required is 2.

When n ≥ 3, we consider reversal mapping firstly. By reversal mapping, during
the first stage, the kth node on the linear array communicates with node 2n − k −
1. Therefore, there are min(i, 2n − i) lightpaths passing through the i th link of the
linear array. So, the maximum number of wavelengths required during the first stage is
2n−1 when i = 2n−1. Similarly, during the j th (1 ≤ j ≤ n) stage, there are min(i −
2n+1− j� i

2n+1− j �, 2n+1− j
 i
2n+1− j � − i) lightpaths passing through the i th link of the linear

array. So, the maximum number of wavelengths required during the j th stage is 2n− j

when i = m×2n+1− j +2n− j (m = 0, 1, . . . , 2 j−1). Therefore, the number of wavelengths
required by reversal mapping is 2n−1, which is the same as that by sequential mapping,
as shown in Figure 2(b).

Next, we consider shift-reversal mapping on a linear array with 2n nodes. Based on
reversal mapping, implement the shift operations for 2n−3 times so that FFTn(n ≥ 3) is
embedded in a linear array by shift-reversal mapping. After the shift operations, the kth
node on the linear array during the first stage communicates with node 3 × 2n−2 − 1 − k
when 0 ≤ k ≤ 3×2n−3−1 and with node 7×2n−2−1−k when 3×2n−2 ≤ k ≤ 7×2n−3−
1, as shown in Figure 2(c). Thus, there are min(i, 3×2n−2 −i) lightpaths passing through
the i th link of the linear array when 1 ≤ i ≤ 3 × 2n−2 − 1, and min(i − 3 × 2n−2, 2n − i)
lightpaths passing through the i th link when 3 × 2n−2 ≤ i ≤ 2n − 1. So, the maximum
number of wavelengths required during the first stage is 3×2n−3 when i = 3×2n−3, i.e.
the number of wavelengths decreases by 2n−3 after the shift operations. Similarly, during
the second stage, the maximum number of wavelengths is 3 × 2n−3 when i = 5 × 2n−3,
i.e. the number of wavelengths required increases by 2n−3 after the shift operations.
Since the kth(0 ≤ k ≤ 2n−3 − 1) node during the third stage communicates with node
2n−2 − 1 − k by reversal mapping, it will communicate with node 2n − 1 − k after
the shift operations by the shift-reversal mapping. As the other communications during
the third stage requires 2n−3 wavelengths, it is easy to know the maximum number of
wavelengths required after the shift operations is 2n−3 + 2n−3 = 2n−2. For each of the
other stages(4 ≤ i ≤ n), the number of wavelengths required is 2n−i , which is the same
as that by reversal mapping because the 2n−3 times of shift operations can’t change
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the relative positions between the communication pairs during these stages. So, the
maximum number of wavelengths required during all stages by shift-reversal mapping
is 3 × 2n−3 for n ≥ 3, as shown in Figure 2(c).

Therefore, Wr (FFTn, line) = max(3 × 2n−3, 2).
From the above discussion, it can be concluded that realizing FFTn on a WDM linear

array with 2n nodes by shift-reversal mapping requires �2n−3� fewer wavelengths than
that by sequential mapping.

3.3. Rings

Assume that the nodes of WDM rings are numbered clockwise starting from 0, and the
links starting from 1.

Theorem 3 By sequential mapping, the number of wavelengths required to realize
FFTn on a WDM ring with 2n nodes is 2n−1.

Proof: As we know, the number of wavelengths required for a collection of connections
in a WDM network under the wavelength-continuity constraint is determined using a
graph Gc, the conflict graph [17], in which each connection in the network is represented
by a vertex in Gc. An undirected edge connecting two vertices appears in if and only
if the corresponding connections share a physical fiber link. Color the vertices of Gc

such that no two adjacent vertices have the same color (a proper coloring). Then the
minimum number of colors in a proper coloring of Gc (i.e., the chromatic number of
Gc) is the minimum number of wavelengths required for the corresponding connections
in the original network. For the communications on a ring during the first stage, node i
(0≤ i ≤ 2n −1) communicates with node (i +2n−1) mod 2n , that is, the communication
distance in this stage is equal to the diameter of the ring. Each connection for both
clockwise routing and anti-clockwise routing shares links with all the other connections.
In this case, we know that the conflict graph of these connections during the first stage
is an N/2-node complete graph. Clearly, the chromatic number of the conflict graph is
N/2. Thus, at least N/2 = 2n−1 wavelengths are required for this stage. It is easy to see
that the number of wavelengths required during the other i th(2 ≤ i ≤ n) stage is 2n−i

with communications routed in the shortest path, as shown in Figure 3(a). Therefore,
Ws(FFTn, ring) = 2n−1.

Theorem 4 By shift-reversal mapping, the number of wavelengths required to realize
FFTn on a WDM ring with 2n nodes is 2n−2.

Proof: We embed FFTn into a WDM ring by reversal mapping with all the commu-
nications routed in the shortest path, as shown in Figure 3(b). Since the kth node on the
ring communicates with node 2n − k − 1 during the first stage, the lightpaths passing
through the i th link, denoted by wi1, can be calculated by the following equation:

wi1 =
{

|2n−2 − i |, 1 ≤ i < 2n−1

|3 × 2n−2 − i |, 2n−1 ≤ i ≤ 2n.
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Figure 3. FFT3 embedded in 8-node ring.

So, the maximum number of wavelengths is 2n−2 which can be achieved when i = 2n−1

or 2n .

During the stages from 2 to n, there is no lightpath passing through the links of 2n−1 and
2n . If we ignore these two links, the ring can be regarded as two 2n−1-node linear arrays:
line1(from node 0 to node 2n−1 −1 clockwise) and line2 (from node 2n−1 to node 2n −1
clockwise), as shown in Figure 3(b). With all the communications routed in the shortest
path, realizing the stages from 2 to n can be regarded as realizing FFTn−1 on each 2n−1-
node linear array. In the proving of Theorem 2, we know that the number of wavelengths
required on an N -node linear array by reversal mapping is N /2. Therefore, the number
of wavelengths required on line1 and line2 is 2n−2 during the stages from 2 to n.

Thus, the maximum number of wavelengths required to realize all the stages of parallel
FFT by reversal mapping is 2n−2. Since the relative positions of the nodes by reversal
mapping and shift-reversal mapping are identical in the ring, the number of wavelengths
required by shift-reversal mapping is the same as that by reversal mapping, as shown in
Figure 3(b) and (c). That is, Wr (FFTn, ring) = 2n−2.

From the above discussion, we know that realizing FFTn in a WDM ring with 2n

nodes by shift-reversal mapping requires 2n−2 fewer wavelengths than that by sequential
mapping.

3.4. Meshes and tori

In this section, we consider WDM meshes and tori of size N = 2k × 2n−k , with nodes
indexed sequentially in row major order: the node at position (x, y) has index x + y×2k ,
for 0≤ x ≤2n−k − 1 and 0≤ y ≤2k − 1.

Theorem 5 By sequential mapping, the number of wavelengths required to realize
FFTn on a 2k × 2n−k mesh is 2max(k,n−k)−1.

Proof: With the i th node of FFTn mapped onto the i th processor of a 2k×2n−k mesh, 1-1
mapping is established by sequential mapping. During the first k communications stages,
communications takes place between processors in each column, and the communication
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steps are decreased from 2k−1 to 1. During the last n − k stages, communications takes
place between processors in each row, and the communication steps are decreased from
2n−k−1 to 1. In fact, communications on each column of a 2k × 2n−k mesh can be
regarded as those on a 2k-node linear array and communications on each row as on
an 2n−k-node linear array. Since the maximum number of wavelengths on an N -node
linear array by sequential mapping is N /2 by Theorem 1, the maximum numbers of
wavelengths required in a 2k × 2n−k mesh on each column and each row are 2k−1

and 2n−k−1 respectively. Thus, Ws(FFTn, mesh(2k × 2n−k)) = max(2k−1, 2n−k−1) =
2max(k,n−k)−1.

In the following, we introduce the definition of shift-reversal mapping for 2-D meshes
and 2-D tori with 2k × 2n−k nodes.

Group the 2n nodes of FFTn into 2k groups with each group consist-
ing of 2n−k nodes. Accordingly, the binary representation of each node, r =
(bn−1, . . . bn−k, bn−k−1, . . . , b0) = (B1, B2), can be decomposed into two parts: B1 =
bn−1, . . . bn−k and B2 = bn−k−1, . . . , b0. B1 is the identification of each group and B2 is
the identification of each node within one group. Obviously, the nodes in the same group
have the same value of B1 and different values of B2. The shift-reversal order for 2-D
meshes and tori with 2k × 2n−k nodes can be constructed by the following two steps:

1. According to B2, sort the nodes within each group into shift-reversal order mentioned
in Section 3.2;

2. According to B1, sort the groups into shift-reversal order between groups.

We define the resulting arrangement of 2n nodes shift-reversal order for 2-D meshes
and tori with 2k × 2n−k nodes.

Mapping the i th node of shift-reversal order defined above onto the i th processor of
a 2k × 2n−k mesh or torus, the 1-1 mapping is established from the nodes of FFTn to the
nodes of the 2-D mesh or the torus. Such embedding is defined as shift-reversal mapping
for a 2-D mesh or a 2-D torus.

Theorem 6 By shift-reversal mapping, the number of wavelengths required to realize
FFTn on a 2k × 2n−k mesh is max(3 × 2max(k,n−k)−3, 2).

Proof: By shift-reversal mapping on a 2k ×2n−k mesh, we consider communications in
each row and column as those on a linear array with 2n−k and 2k nodes by shift-reversal
mapping respectively. According to Theorem 2, the numbers of wavelengths required
on each row and column are max(3 × 2n−k−3, 2) and max(3 × 2k−3, 2) respectively.
Therefore, Wr (FFTn, mesh(2k × 2n−k)) = max(3 × 2max(k,n−k)−3, 2).

For a 2k × 2n−k torus, communications on each row and column can be regarded as
those on a WDM ring with 2n−k and 2k nodes respectively. The following results can be
easily obtained according to Theorem 3 and Theorem 4.

Theorem 7 By sequential mapping, the number of wavelengths required to realize
FFTn on a 2k × 2n−k torus is 2max(k,n−k)−1.
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Theorem 8 By shift-reversal mapping, the number of wavelengths required to realize
FFTn on a 2k × 2n−k torus is 2max(k,n−k)−2.

Using Theorem 5, Theorem 6, Theorem 7 and Theorem 8, the following corollary is
derived when the number of rows is equal to that of columns on the meshes and tori.

Corollary 1 By sequential mapping and shift-reversal mapping, the numbers of wave-
lengths required to realize FFTn on a 2n/2 × 2n/2 mesh and torus satisfy:

Ws(FFTn, mesh(2n/2 × 2n/2)) = 2n/2−1 =
√

N/2,

Wr (FFTn, mesh(2n/2 × 2n/2)) = max(3 × 2n/2−3, 2) = max(3
√

N/8, 2);

Ws(FFTn, torus(2n/2 × 2n/2)) = 2n/2−1 =
√

N/2,

Wr (FFTn, torus(2n/2 × 2n/2)) = 2n/2−2 =
√

N/4.

4. Comparisons between the two embeddings

It can be seen that shift-reversal mapping outperforms sequential mapping on the number
of wavelengths, as shown in Figure 4(a). In the following, we give some comparisons
between the two embeddings on the number of communication steps required during
the n communication stages of parallel FFT.

By sequential mapping on WDM linear array, the number of communication steps
during the i th(1 ≤ i ≤ n) stage is 2n−i . By shift-reversal mapping on linear array, the
average number of communication steps during stage 1, stage 2 and stage 3 is 5×2n−4; For
the other i th(i ≥ 3) stages, the average number of communication steps is 2n−i . Figure
4(b) illustrates the average number of communication steps during the 7 stages on a
linear array with 128 nodes by the sequential mapping and shift-reversal mapping. It can
be seen that the average number of communication steps by the shift-reversal mapping is
not more than the sequential mapping except during the stage 2 and stage 3 on the linear
array.

By sequential mapping on WDM ring, the number of communication steps required
during the i th stage is 2n−i . By shift-reversal mapping, the average number of com-
munication steps during the first stage is 2n−2; During the other i th (i ≥ 2) stages,
the average number of communication steps is 2n−i . Figure 4(c) illustrates the average
number of communication steps on a ring with 128 nodes, from which we can see that
the average number of communication steps by shift-reversal mapping is not more than
sequential mapping during all the stages. The analysis on 2-D meshes or 2-D tori is
similar.

Because of the high transmission rate and low latency of optical communication,
the influence of the number of communication steps is much smaller than the number
of wavelengths required to realize the communication steps for the problems we are
concerned.
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Figure 4. Comparisons between the two embeddings.
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Table 1. Number of wavelengths required to realize parallel FFT on a class

of regular optical networks by different embedding schemes.

Embedding scheme

Optical network Sequential mapping Shift-reversal mapping

Linear array 2n−1 max(3 × 2n−3, 2)

Ring 2n−1 2n−2

2-D mesh 2max(k,n−k)−1 max(3 × 2max(k,n−k)−3, 2)

2-D torus 2max(k,n−k)−1 2max(k,n−k)−2

5. Conclusions

In this paper, we discussed the wavelength assignment problem to embed the parallel
FFT communication pattern on a class of regular optical WDM networks, including
linear arrays, rings, 2-D meshes and 2-D tori. We derived the number of wavelengths
required for each type of these networks to realize parallel FFT by sequential mapping
and shift-reversal mapping. Our results show that shift-reversal mapping outperforms
sequential mapping, as summarized in Table 1. Considering the number of processors
and the capacity of the fiber links in practice, we can select the proper WDM networks
to implement parallel FFT according to the results in this paper. Our results have a clear
significance for applications for the widespread applications of FFT in scientific and en-
gineering computations and the increasing popularity of the promising WDM technology
in optical networks. Our proposed embedding method also provides a new approach to
the hypercube layout problem considering connections dimension by dimension rather
than all connections as in the traditional approach.

Since different parallel algorithms have different communication patterns, how to
embed these communication patterns on optical networks is a key research problem.
Our future work includes study on FFT realization in other types of optical networks
and other RWA problems.
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