
The Journal of Supercomputing, 34, 135–163, 2005
C© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Characterization of Bandwidth-Aware Meta-Schedulers
for Co-Allocating Jobs Across Multiple Clusters

WILLIAM M. JONES wjones@parl.clemson.edu
WALTER B. LIGON III walt@parl.clemson.edu
LOUIS W. PANG plouis@parl.clemson.edu
Parallel Architecture Research Lab, Department of Electrical and Computer Engineering, Clemson University,
105 Riggs Hall, Clemson, SC 29634-0915

DAN STANZIONE dstanzi@asu.edu
High Performance Computing Center, Fulton School of Engineering, Arizona State University, P.O. Box 875206,
Tempe, AZ 85287-5206

Abstract. In this paper, we present a bandwidth-centric job communication model that captures the interaction
and impact of simultaneously co-allocating jobs across multiple clusters. We compare our dynamic model with
previous research that utilizes a fixed execution time penalty for co-allocated jobs. We explore the interaction of
simultaneously co-allocated jobs and the contention they often create in the network infrastructure of a dedicated
computational multi-cluster.

We also present several bandwidth-aware co-allocating meta-schedulers. These schedulers take inter-cluster
network utilization into account as a means by which to mitigate degraded job run-time performance. We make
use of a bandwidth-centric parallel job communication model that captures the time-varying utilization of shared
inter-cluster network resources. By doing so, we are able to evaluate the performance of multi-cluster scheduling
algorithms that focus not only on node resource allocation, but also on shared inter-cluster network bandwidth.

Keywords: parallel job scheduling, multiple clusters, bandwidth-aware, network contention, job co-allocation,
multi-site scheduling, simulation

1. Introduction

Clusters of commodity processors have become fixtures in research laboratories around the
world. Collections of several co-located clusters exist in many larger laboratories, univer-
sities, and research parks. This co-location of several resource collections naturally lends
itself to the formation of a multi-cluster (Figure 1).

A multi-cluster is distinguished from a traditional computational grid in that the multi-
cluster utilizes a dedicated interconnection network among cluster resources with a known
topology and predictable performance characteristics. This type of networking infrastructure
allows for the possibility of mapping jobs across cluster boundaries in a process known as
co-allocation or multi-site scheduling (Figure 2).

In this paper, we develop a parallel job model that takes both computation and commu-
nication into account as a means by which to explore co-allocating multi-cluster schedulers

136 JONES ET AL.

Figure 1. A multi-cluster.

Figure 2. Job co-allocation.

that exploit these unique architectural features [8]. We present an in-depth explanation of
our communication model and its associated algorithms as well as a study of the impact
of co-allocation in a multi-cluster as a function of job communication characteristics and
scheduling routines. We compare our dynamic model with previous research that utilizes a
fixed execution time penalty for co-allocated jobs.

We also develop several bandwidth-aware co-allocating meta-schedulers that take inter-
cluster network utilization into account as a means by which to mitigate the slowdown

CHARACTERIZATION OF BANDWIDTH-AWARE META-SCHEDULERS 137

associated with the interaction of simultaneously co-allocating jobs across multiple clusters
[7]. By making use of a bandwidth-centric parallel job communication model that captures
the time-varying utilization of shared inter-cluster network resources, we are able to evaluate
the performance of multi-cluster scheduling algorithms that focus not only on computational
resource allocation, but also on shared inter-cluster network bandwidth. Lastly, we provide
an in-depth explanation of our bandwidth-aware co-allocation algorithms and compare and
contrast their performance characteristics.

Previous work in the area of job co-allocation tends to characterize jobs by either specify-
ing that all communications require a fixed amount of time to travel between clusters [1, 2]
or by assigning co-allocated jobs a fixed execution-time penalty [3, 4]. This type of charac-
terization is not sensitive to the time-varying contention for bandwidth in the inter-cluster
communication links and the impact it has on the execution time of co-allocated jobs that
share network resources. We take a different approach by considering that as jobs become
co-allocated or co-allocated jobs terminate, there is a continual change in the available inter-
cluster bandwidth. Therefore, in our work, the duration of wide area communication is a
function of the time-varying network bandwidth utilization among clusters participating in
the multi-cluster, which in turn affects the execution time of co-allocated jobs. This research
aims to extend the work presented in [1] and [2] by replacing the static communication model
with a more dynamic view of job communication that is bandwidth-centric.

We find that schedulers designed to allocate node resources across cluster boundaries can
result in rather poor overall performance over a wide range of workload characterizations
and multi-cluster configurations due to the interaction simultaneously co-allocated jobs
experience as they contend for inter-cluster network bandwidth. Our research therefore
focuses on a range of algorithms with varying levels of complexity that attempt to mitigate
this impact.

2. Computational multi-clusters and meta-scheduling

At first glance, multi-clusters may appear to be distinguished from conventional computa-
tional grids only in scope. A multi-cluster is limited to a campus-wide setting, for example,
while a traditional grid is national or even global in scope. However, upon further inspection,
a multi-cluster has a distinctive architectural feature; the internal networks of the clusters
are bridged together through dedicated links. This has several important implications. First,
there exists predictable, reliable bandwidth between cluster resources, as contrasted with
Internet connected grids. This should allow a scheduler to make better decisions in co-
allocating jobs across these resources.

Additionally, finer grain control of resources is more practical within the multi-cluster
framework. When fast, low latency links are available, reallocating sets of nodes from one
cluster to another is a low overhead operation.

In order to efficiently leverage the collective computational power of a multi-cluster,
special scheduling agents are required to select and maps jobs to available resources. We
refer to these schedulers as meta-schedulers (Figure 3). In general, we consider a meta-
scheduler to be the software, or collection of software, that decides where, when, and how
to schedule jobs in a multi-cluster. A meta-scheduler is expected to work in conjunction

138 JONES ET AL.

Figure 3. Meta-scheduler.

with the local schedulers working on each individual cluster. In this paper, we assume that
the meta-scheduler is globally aware of the state of the multi-cluster.

The initial motivation for this research was an interest in developing new scheduling
and resource management software for our own computational multi-cluster (Figure 1). A
discrete event-driven simulator, known as Beosim (Section 3.8), was developed in order to
study the effects of various scheduling routines and explore the behavior of a multi-cluster
under a variety of workload characterizations.

3. The model

In this section we characterize the parallel job model as well as the multi-cluster architecture.
We provide a detailed explanation of the communication model used, as well as a strategy
to account for the time-varying inter-cluster network utilization. Additionally, we provide
a brief description of our custom multi-cluster simulator.

3.1. Multi-cluster model

In the research presented in this paper, we consider a multi-cluster to be a collection of
arbitrary sized clusters with globally homogeneous nodes. Each cluster has its own internal
ideal switch. Additionally, the clusters are connected to one another through a single ded-
icated link to a central ideal switch (Figure 4). Each node in the multi-cluster has a single

CHARACTERIZATION OF BANDWIDTH-AWARE META-SCHEDULERS 139

...

...

...

...

internal switches

central switch
clusters

Figure 4. Multi-cluster topology.

processor and a single network interface card. Jobs can be co-allocated in a multi-cluster
by allocating nodes from different clusters to the same job in order to better meet collective
needs across the multi-cluster.

3.2. Parallel job model

The model used assumes that jobs are non-malleable. In other words, each job requires a fixed
number of processors for the life of the job, and the scheduler may not adjust this number.
Additionally, neither execution-time migration nor gang-scheduling [12] is employed in
mapping the job onto the multi-cluster, i.e. once the job is mapped to a particular set of
nodes, the job remains on these nodes for the lifetime of its execution.

A job’s execution time, TE , is a function of two components, the computation time, TP ,
and the communication time, TC . The initial value of these two quantities is considered
to represent the total execution time that the job would experience on a single dedicated
cluster with an ideal switch. They therefore form a basis for the best-case execution time
of a given job when it is co-allocated in the multi-cluster. In particular, TE = TP + TC . The
computation portion of the execution time does not vary, however the communication time
is considered dynamic, since the communication time of simultaneously co-allocated jobs
may be lengthened due to the utilization of any shared inter-cluster network links.

3.3. Communication characterization

Each job modeled in this study performs all-to-all global communication patterns period-
ically throughout its execution. Each node in a given job j , is characterized by an average
per-processor bandwidth requirement, PPBW j , that consists of the bandwidth needed to
both send and receive all messages associated with a node. During co-allocation, nodes
must communicate across cluster boundaries. This communication will require a certain
about of bandwidth in the inter-cluster network links. A job’s performance will deteriorate
if it does not receive the amount of bandwidth it requires to run at full speed. In order to

140 JONES ET AL.

boundary
(shared link)

m1

m2m4

m5

m3
Cluster 2Cluster 1

Cluster 3

Figure 5. Bandwidth calculation example.

determine when the inter-cluster links become saturated, we must first identify how much
bandwidth a job will require in order to run at full speed. The amount of bandwidth, BW j

i ,
required by job j on inter-cluster link i is given by Equation (1), where n j

T is the total num-
ber of nodes required by job j and n j

i is the number of nodes allocated to job j on cluster
Ci . This equation is based on all-to-all communication, which is assumed to dominate the
communication time of the program.

BW j
i = (

n j
i ∗ PPBW j

)
(

n j
T − n j

i

n j
T − 1

)

(1)

The first factor is total bandwidth required by all the nodes associated with job j on cluster
Ci . The second factor in this equation represents the fraction of the messages generated
by each node on cluster, Ci , that are destined for non-local nodes. For example, suppose
that a job consists of six total nodes and has been mapped onto a multi-cluster consisting
of three clusters, as shown in Figure 5. The total bandwidth required by all nodes local
to cluster 1 would be (3 ∗ PPBW), since there are three nodes local to cluster 1. For each
all-to-all communication, each of the three nodes on cluster 1 will generate five messages,
i.e. (6−1)∗3 = 15 total messages. Of these 15 messages, only (6−3)∗3 = 9 will traverse
cluster 1’s inter-cluster network link. The ratio of the number of messages traversing cluster
1’s network link to the total number of messages represents the percentage of the total
bandwidth that is required by this job on cluster 1’s inter-cluster network link, e.g.

BW j
1 = (3 ∗ PPBW j)

(
(6 − 3) ∗ 3

(6 − 1) ∗ 3

)
. (2)

Figure 5 depicts the messages sent and received by a single node on cluster 1; however
in practice, all nodes send and receive messages.

Once a job has been mapped to the multi-cluster, the required bandwidth, BW j
i , is

calculated for each link, i . This amount is then aggregated with the bandwidth required by
every other job that shares this link. Using this quantity, the co-allocated jobs’ residual times

CHARACTERIZATION OF BANDWIDTH-AWARE META-SCHEDULERS 141

L1

...

...

...

...

Job 1

Cluster 2

C
luster 4C

lu
st

er
 1

Cluster 3

Job 3Job 2

L2

L4

L3

Figure 6. Co-allocation example.

to completion are recalculated for each event that causes a state change in any inter-cluster
links. The details for these recalculations are provided in the subsections that follow.

3.4. Job co-allocation

We consider co-allocation (Figure 6) to be the mapping of a job across cluster boundaries.
One possible reason that a job might be co-allocated is due to the natural fragmentation that
occurs within each cluster in the node dimension. Suppose for example that a job is waiting
in a cluster’s ready queue. This job may require more nodes than are presently available on
its particular cluster, but collectively there may be enough available nodes elsewhere in the
multi-cluster to accommodate the job. The job would be considered co-allocated if it were
mapped onto nodes that were “borrowed” from other clusters.

3.5. Intra-cluster bandwidth saturation

When jobs are co-allocated, their effective execution times may be altered due to the inherent
bottleneck that is created in the multi-cluster’s interconnection network. The degree to which
the job’s runtime is affected depends on several factors. Clearly the time-varying utilization
of the dedicated links connecting the clusters plays an important role. Additionally, the
amount of communication that each co-allocated job produces can considerably affect not
only its own execution time, but also that of every other co-allocated job that shares any
network resources with it.

The first step in determining the impact of co-allocation is to identify the presence
and location of communication bottlenecks in the inter-cluster links. The residual time to
completion for a particular job can change in response to two events, in particular, when a
new job is co-allocated in the multi-cluster, or when a co-allocated job terminates and thus
frees network resources.

142 JONES ET AL.

Each inter-cluster link, i , is characterized by a maximum bandwidth rating, BW max
i . An

initial measure of the saturation of each link is calculated by taking the ratio of the maximum
available bandwidth to the total bandwidth required for every job that spans that link. The
saturation ratio is given by Equation (3)

BW sat
i = BW max

i∑
∀ j∈Ji

BW j
i

(3)

where set Ji is the set of all jobs that span link i . If BW sat
i ≥ 1.0 then link i is not saturated,

otherwise if (0.0 ≤ BW sat
i < 1.0), then link i is saturated. If a given link i is saturated,

then each job in Ji will not be able to receive the amount of bandwidth it requires to run at
full speed. In order to calculate the impact on each job due to co-allocation, the fraction of
bandwidth each job receives compared to the amount it requires must be determined.

Each time a new job is co-allocated or when a co-allocated job terminates, the algorithm
below is applied in order to determine the amount of bandwidth ultimately alloted to each
job on each link. In the following algorithm, Equation (4) is used to account for the resid-
ual saturation level of the inter-cluster links due only to the jobs that have not yet been
constrained.

BW uc sat
i = BW avail

i∑
∀ j∈Juc

BW alloted
(i, j)

(4)

Step 1: Initialization—For every job j , let BW alloted
(i, j) = BW j

i . For every link i , let BW avail
i =

BW max
i . Let the unconstrained set of nodes, Juc = J (set of all jobs). Let the set, Ji be

the set of all jobs that span link i .
Step 2: Saturation detection—For every link, calculate BW uc sat

i . While there exists at least
one BW uc sat

i < 1.0, continue, else goto Step 5.
Step 3: Saturation correction—Identify the link with the smallest BW uc sat

i (most saturated
link) from Step 2, and globally reduce the alloted bandwidth of every job in Ji ∩ Juc by
a factor of BW sat

i .
Step 4: Update state—Remove each of the modified jobs from the set Juc. For each of the

modified jobs, remove their alloted bandwidth from the available bandwidth, BW avail
i on

each link over which they span. Goto Step 2.
Step 5: Termination—DONE.

After this algorithm is applied, the alloted bandwidth, BW alloted
(i, j) , for each job will either be

its initially requested bandwidth, BW j
i for full speed execution, or it will be some fraction

of its required bandwidth (Figures 6 and 7). If the job is alloted its required bandwidth, it
will not experience any slowdown associated with communication for the duration of time
between the current event and the next inter-cluster state changing event. However, if the
job does not receive its required bandwidth, it will experience a slowdown in its residual
communication time that is proportional to the disparity between its required and alloted
inter-cluster bandwidths.

CHARACTERIZATION OF BANDWIDTH-AWARE META-SCHEDULERS 143

Job 1

Job 2

L1
Job 1
Job 3

L2

Job 2

Job 3

L3
Job 3

L4

Job 1

Job 2

L1
Job 1
Job 3

L2

Job 2

Job 3

L3
Job 3

L4

BW Needed

BW Alloted

A
llotm

ent A
lgorithm

B
W

_m
ax

B
W

_m
ax

Figure 7. Bandwidth allotment.

3.6. Co-allocated job communication slowdown

Each affected job’s bandwidth allotment on each link over which it spans is reduced in order
to accommodate it’s most saturated link. This bottleneck uniquely determines the disparity
between the job’s required and alloted bandwidths on each link. This implies that a job’s
ratio of the alloted to required bandwidth is the same for each link over which the job spans.
Equation (5) formalizes the bandwidth slowdown associated with job j , where link k may
be any link over which the job spans.

BW sd
(k, j) = BW alloted

(k, j)

BW j
k

(5)

3.7. Residual execution times

Now that the communication slowdown factor is known, the residual execution time, T R
E ,

of a job can be calculated as a function of both the residual communication and compu-
tation times (T R

C and T R
P respectively). Its associated end-event can then be rescheduled

in the simulator to account for the state change in the inter-cluster network. In particular,
Equations (6) and (7) illustrate the calculation required to determine the residual execution
time of job j , where the primed terms represent quantities from the previous inter-cluster
state changing event, while the non-primed values represent quantities for the current state
change event.

T R
E =

T R
C︷ ︸︸ ︷(

T R′
C − T �

C

)(
BW sd ′

(k, j)

)(
BW sd

(k, j)

)−1 +
T R

P︷ ︸︸ ︷(
T R′

P − T �
P

)
(6)

where

T �
P = �T

T R′
E

T R′
P , T �

C = �T

T R′
E

T R′
C (7)

144 JONES ET AL.

Computation SD

End event can slide forward or backward in time

Original Execution Time Profile

Communication

Figure 8. Bandwidth slowdown effect.

The T �
P and T �

C terms represent the times spent doing computation and communication
respectively during the interval since the last state change event. These quantities can
then be subtracted from the previous residual computation and communication times. The
communication term is then scaled to take into account the slowdown due to its most
saturated inter-cluster network link, as seen in Equation (6).

When a job is initially co-allocated, its residual computation (T R
P), communication (T R

C),
and execution (T R

E) times are initialized to TP , TC , and TE respectively from its original
profile. As inter-cluster state changing events occur, the residual times are recalculated
based on Equations (6) and (7). Due to these recalculations, the job’s end-event can slide
forward (later) or backward (earlier) in time (Figure 8), reflecting either a degradation or
improvement in saturation levels of the inter-cluster links over which it spans.

This procedure provides a dynamic view of job communication by accounting for the
slowdown a job experiences due to the time-varying utilization of the inter-cluster network
links.

3.8. Simulator

Beosim [8] is a discrete event driven simulator designed to model a multi-cluster as a
collection of (possibly heterogeneous) computational clusters connected via a dedicated
interconnection network. Beosim can be driven via synthetic workload distributions that
are characterized through the use of randomly generated arrival and service processes.

Although Beosim has the capability of ingesting actual workload trace-files, in this paper
we make use of synthetically generated workloads. In particular, we assume that the the
arrival process of jobs to each cluster, Ci , has a Poisson distribution with rateλi . Additionally,
we assume that a job’s initial service time, TE is exponential with parameter (µi)−1. The
number of nodes that a job requires is given by a uniform distribution Dnodes

i ∼ UNIF
[ni

1, ni
2]. The fraction of the total execution time that initially represents computation is set

to a constant, Ki , for all jobs.

4. Dynamic model comparison

In order to compare the results obtained from our dynamic communication model with
that of previous research that utilizes a fixed penalty for co-allocated jobs [3, 4], we have

CHARACTERIZATION OF BANDWIDTH-AWARE META-SCHEDULERS 145

implemented several scheduling algorithms that can be used to evaluate our communication
model and the impact of co-allocating jobs across multiple clusters.

4.1. Job selection policy

Each of the strategies described in this paper uses the classic First-Come-First-Served
(FCFS) job selection policy with a slight modification. Specifically, the queue is traversed
from head to tail looking for the first job that will fit into the available node sets. This policy
is known as Fit-Processors-First-Served (FPFS) [10]. Traditionally a policy commonly
known as EASY backfilling [9, 11] is used in many production grid schedulers, such as
Maui [6]. This method will attempt to run jobs in FCFS order, but in the event that the
job at the head of the queue cannot run due to insufficient resources, it will traverse the
queue from head to tail searching for the first job that can run given the currently available
free resources, provided that by doing so, the start time of the job at the head of the queue
is not delayed. This technique is typically used as a means by which to provide a degree
of flexibility in backfilling node-time holes in the schedule, while guaranteeing that no
starvation takes place.

By making use of the bandwidth-centric communication model, only an estimate of a
job’s end event is known at any instant in time, since a job’s end event can slide forward and
backward in time depending on the communication contention in the inter-cluster network
links. This makes it difficult to guarantee that the highest priority job’s reservation in EASY
backfilling will be meet, since we do not terminate jobs; therefore, we do not employ EASY
backfilling.

4.2. Co-allocation strategies

The First-Fit Strategy performs job co-allocation by assigning node resources starting with
the cluster with the largest number of free nodes. It then spans as many clusters as necessary
to satisfy the job’s node requirement. By employing this technique, the number of inter-
cluster links over which a given job will span is minimized.

In order to establish an “reasonable” upper and lower bound for the job turnaround
time metric, three baseline simulations were conducted to identify these levels. The first
is run under the assumption that the inter-cluster network links have unlimited bandwidth
capacities. This configuration, Ideal, represents a “best-case” that can be seen as a lower
bound for average job turnaround time, since there is no slowdown associated with job co-
allocation. The second strategy is referred to as Migration Only. This strategy only performs
job migration, i.e. no job co-allocation. Jobs that are migrated do not contend for inter-
cluster network resources. Therefore their ultimate execution times are also unaffected by
their bisection bandwidth. Additionally, a third bound, No Share, is included that represents
the the performance of the multi-cluster when all jobs that arrive to a given cluster must run
must run locally. In this configuration, no resource sharing can take place.

The Ideal, Migration Only, and No Share strategies therefore appear as horizontal “limits”
in the included figures, since they are unaffected by a job’s bisection bandwidth.

146 JONES ET AL.

4.3. Experimental setup

The first set of experiments were conducted using the following parameters. Each cluster in
the multi-cluster consists of 100 homogeneous computational nodes and has a 1000 Mbps
inter-cluster network link to the central switch. The workload presented to each cluster
consists of 4,000,000 jobs. Such a large number of jobs were required in order to achieve
convergence in the job turnaround time performance metric [5]. The number of nodes each
job requires is taken from a uniform distribution UNIF [10, 90] (nodes). The job arrival
process is Poisson with the inter-arrival time taken from an exponential distribution with
parameter 150 (sec). The base execution time of each job is taken from an exponential
distribution with parameter 225 (sec). In order to restrict the number of varying parameters,
the computation fraction is uniformly set to K = 0.7 for all jobs that arrive to the multi-
cluster. This is not a limitation of the model nor the simulator, but rather an imposed
constraint for the sake of simplicity.

In order to study to impact of communication, the jobs must be characterized by a per
processor bandwidth PPBW. We chose to hold every job’s bisection bandwidth constant for
a particular run of the simulator. This produces a varying PPBW due to the varying node
sizes of jobs within the workload. We calculate the PPBW given the bisection bandwidth,
BSBW, using Equation (8), which is obtained from our model in Equation (1).

PPBW j = BSBW

(
4
(
N j

T − 1
)

(
N j

T

)2

)

(8)

Using the parameters specified above, we conducted three distinct simulations, a 2, 4,
and 8 cluster simulation. In each simulation, the bisection bandwidth of the job workload
is varied over a particular range, where the average job turnaround time and average co-
allocated job penalty in the multi-cluster is measured. The penalty is calculated as the ratio
of how long the job actually ran to its original execution time.

The BSBW ranges were chosen to show the behavior of the average job turnaround time
in the multi-cluster, as it approaches the No Share performance. The First-fit is used in
conjunction with the dynamic communication model developed in this paper to generate
the data associated with the First-fit curve.

For each iteration of the simulation (i.e. for a particular BSBW), the average penalty co-
allocated jobs experience is also calculated. This penalty in then fed into another instance of
the simulation using the fixed penalty model, where every job that is co-allocated experiences
an increase in its original execution time by a factor equal to the measured co-allocation
penalty. The data that was generated by using the fixed penalty model is shown as Fixed in
each figure.

4.4. Results and observations

The first general observation we make is that in every simulation, the use of the dynamic
communication model is not nearly as generous as the fixed penalty model. Although the
actual measured co-allocation penalties from the dynamic communication runs are fed

CHARACTERIZATION OF BANDWIDTH-AWARE META-SCHEDULERS 147

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 600 800 1000 1200 1400 1600 1800

Jo
b

tu
rn

ar
ou

nd
 ti

m
e

(s
ec

)

Bisection bandwidth (Mbps)

Turnaround Time vs Bisection Bandwidth (2 Clusters)

First-fit
Fixed

No Share
Ideal

Migration Only

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Jo
b

tu
rn

ar
ou

nd
 ti

m
e

(s
ec

)

Co-allocation Penalty

Turnaround Time vs Co-allocation Penalty (2 Clusters)

First-fit
Fixed

No Share
Ideal

Migration Only

Figure 9. Two cluster case.

directly into the fixed penalty model (i.e. the average co-allocation penalty is identical
in both cases), there is a significant difference between the average job turnaround times
predicted with each model. The dynamic model accounts for the time varying utilization of
the inter-cluster network links, and therefore captures some of the essence of simultaneously
co-allocated job interactions in the network.

Additionally, in each scenario (2, 4, 8 clusters: Figures 9–11), the ability to initially
migrate jobs Migration Only to a remote cluster provides a rather large performance gain
over No Share. In fact, as the number of clusters increase, so does the performance gain
associated with simple job migration. Certainly the gain measured here underestimates the
impact associated with activities such as data staging, etc., but we feel that this overhead is
relatively small in the multi-cluster context and that it can be accounted for in future work.

By plotting the co-allocation penalty versus turnaround time, it becomes obvious that as
the number of clusters increases, the average penalty (using both the dynamic and fixed
communication models) that co-allocated job may experience decreases from a range of
1.2 to 1.25 in the two-cluster case, to a range of 1.13 to 1.2 in the eight-cluster case, when

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 300 400 500 600 700 800

Jo
b

tu
rn

ar
ou

nd
 ti

m
e

(s
ec

)

Bisection bandwidth (Mbps)

Turnaround Time vs Bisection Bandwidth (4 Clusters)

First-fit
Fixed

No Share
Ideal

Migration Only

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Jo
b

tu
rn

ar
ou

nd
 ti

m
e

(s
ec

)

Co-allocation Penalty

Turnaround Time vs Co-allocation Penalty (4 Clusters)

First-fit
Fixed

No Share
Ideal

Migration Only

Figure 10. Four cluster case.

148 JONES ET AL.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 300 400 500 600 700 800

Jo
b

tu
rn

ar
ou

nd
 ti

m
e

(s
ec

)

Bisection bandwidth (Mbps)

Turnaround Time vs Bisection Bandwidth (8 Clusters)

First-fit
Fixed

No Share
Ideal

Migration Only

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Jo
b

tu
rn

ar
ou

nd
 ti

m
e

(s
ec

)

Co-allocation Penalty

Turnaround Time vs Co-allocation Penalty (8 Clusters)

First-fit
Fixed

No Share
Ideal

Migration Only

Figure 11. Eight cluster case.

compared to the Migration Only strategy. Additionally, when compared to the No Share
strategy, the acceptable co-allocation penalty also decreases, from a range of 1.35 to 1.4 in
the two-cluster case, to a range of 1.25 to 1.35 in the eight-cluster case.

Note that the performance of the first-fit strategy suffers greatly due to the slowdown
associated with inter-cluster network saturation, and quickly becomes less effective than
simple job migration with no co-allocation.

5. Bandwidth-aware meta-scheduling

In this section we describe several scheduling techniques that attempt to mitigate the impact
of simultaneously co-allocated jobs due to inter-cluster network saturation. The algorithms
described here will be compared and contrasted in Section 6.

Each of these meta-schedulers consists of a series of modules applied in a given order.
Each scheduling module attempts to allocate cluster resources to the given job candidate.
These modules are placed in a control loop that sequences the modules, and handles the
traversal of the global waiting job queue. This control loop traverses the waiting job queue
from head to tail looking for the first job that can make use of available resources.

Each meta-scheduling algorithm has three allocation steps. Each policy attempts to al-
locate nodes to a given job in the following order: local, migration, co-allocation. The
scheduling iteration is formalized by the following template:

Step 1: Module FCFS—While not at end of queue, continue, else GOTO Step 5.
Step 2: Local Allocation—Apply module LA, if successful then GOTO Step 1, else, con-

tinue.
Step 3: Migration—Apply module MIG, if successful GOTO Step 1, else, continue.
Step 4: Co-allocate—Apply a given co-allocation module. GOTO Step 1.
Step 5: Termination

Each module can be classified into three primary categories: 1. a mini-scheduler that
does have a priori knowledge of a job’s Bisection bandwidth (BSBW) (Class “A”), 2. a

CHARACTERIZATION OF BANDWIDTH-AWARE META-SCHEDULERS 149

mini-scheduler that does not have a priori knowledge of a job’s BSBW (Class “B”), and 3. a
helper module. In the following paragraphs, each module is described in detail. Note that the
class “A” modules will NEVER saturate any inter-cluster network link beyond a configurable
amount. These modules achieve this ability by knowing a priori how much bandwidth will
be used by placing a given number of nodes on a cluster during job co-allocation. Class
“B” modules on the other hand, attempt to minimize the level of saturation a given link will
experience, but they can not guarantee that a link will not become “over-saturated”, since
it does not have access to the job’s communication characterization. Although class “A”
modules may not be practical in general due to their need to possess a priori knowledge of
a job’s communication characterization, they provide insight into the relative performance
of class “B” algorithms.

Helper modules

Module FCFS—module sequencer. This module traverses the global waiting job queue in
First-Come-First-Served (FCFS) order. It returns the next waiting job to the sequence of
modules that represent the meta-scheduling algorithm.

Module LA—-local allocation. This module attempts to allocate a given job locally, by only
making use of node resources belonging to the cluster to which it originally arrived.

Module MIG—job migration. This module attempts to migrate a job in its entirety (i.e. no
co-allocation) to the cluster with the fewest number of free nodes that can still satisfy the
job’s resource requirement.

Class “A” modules

Module A1—satisfy. The first scheduling approach we explore ensures that no inter-cluster
saturation occurs during the co-allocation phase. In order to map jobs onto the multi-cluster
in such a way that completely prevents the slowdown associated with over-saturated inter-
cluster network links, it is necessary to first determine the range of nodes that a job j could
potentially acquire on link i as a function of the job’s bandwidth characterization, as well
as the available bandwidth. By letting the left-hand-side of Equation (1) be equal to the
available bandwidth on link i , BW avail

i , and then solving the quadratic for n j
i , Equation (9)

is obtained.

n(i, j)
(1,2) = 1

2



n j
T ∓

√
(
n j

T

)2 − 4BW avail
i

(
N j

T − 1
)

PPBW j



 (9)

The darkened regions depicted in Figure 12 indicate the potential range of nodes that job
j could acquire on link i without over-saturation. Formally, the initial interval of candidate
nodes is given by the union of the two regions defined by Equation (9). This interval is then
modified to take into account the actual number of nodes, navail

i , that are presently available
on cluster i . The resulting interval, S(i, j)

1 , is given by Equation (10). This set includes the
node ranges defined by the union of the intervals depicted in Figure 12 constrained by the

150 JONES ET AL.

n_T

BW

BSBW

BW_avail

(0,0)

n_1 n_2

BW_i^j

nodes

Infeasible Set

Feasible Set

Figure 12. Feasible node ranges.

actual number of free nodes on a given cluster.

S(i, j)
1 =

(
[0, �n1�]

⋃ [
n2�, n j
T

]) ⋂ [
0, navail

i

]
(10)

Calculating these intervals for each link results in a set of constraints that must be si-
multaneously satisfied in order to determine if there exists at least one feasible mapping
solution. Collectively the set of constraints is formalized by Equation (11),

X j
i ∈ S(i, j)

1 ,

N∑

i=1

X j
i = n j

T (11)

where the X j
i ’s represent the number of nodes mapped from cluster i for a given job j .

This type of system is typically recognized to be an integer constraint satisfaction problem.
In order to solve this system, we employ a branch-and-bound brute-force technique that
can be configured to either find the first solution that meets all constraints, or to find every
solution, depending on whether an objective function is to be applied to find the solution
that best meets an optimization criterion. In our experiments for this paper, we have elected
to return from this module once the first solution has been identified.

This technique requires the foreknowledge of a job’s bandwidth characterization in order
to determine the number of nodes that can be placed on a given link during co-allocation.
This type of information may not be available a priori. Consequently, developing additional
algorithms that do not require this information, yet provide comparable performance, is
useful from a practical standpoint.

CHARACTERIZATION OF BANDWIDTH-AWARE META-SCHEDULERS 151

Class “B” modules

Each of the class “B” modules first identifies all clusters that have links that are saturated
beyond a configurable threshold. It then discounts each of these as potential candidates for
job co-allocation. These modules will continue to utilize node resources on a given cluster
for co-allocation while its network link remains unsaturated. As soon as saturation occurs on
a particular network link, this algorithm will then discount its respective cluster for job co-
allocation. This implies that a link can only be over-saturated to the extent due to a single job’s
bandwidth utilization. After completing these two steps, each continues as described below.

Module B1—largest free nodes first. This module sorts the remaining clusters in order of
available nodes, and co-allocates the given job starting with the cluster with the largest
number of free nodes, and proceeds in order from there.

Module B2—least saturated link first. This module sorts the remaining clusters in order
of link saturation, and co-allocates the given job starting with the cluster with the least
saturated link, and proceeds in order from there.

Module B3—chunking big-small. This module attempts to co-allocate a “large chunk” (e.g.
75% of node requirement) onto a single cluster. If successful, it will then place the
remaining nodes of the job on the remaining clusters, starting with the cluster with
the largest number of free nodes, else the module returns unsuccessfully. This module
is distinguished from B1 in that it will only successfully schedule a job provided that
a “large” partition will fit on a single cluster, whereas B1 will always schedule a job
provided that there are enough free multi-cluster resources, regardless of partition sizes.
This module attempts to capitalize on two primary observations. Since jobs produce all-to-
all communication patterns, the individual bandwidth requirements during co-allocation
are minimized when a job is partitioned into a few pieces, one large and perhaps a few
small ones. This is in contrast to bisecting the job which results in the maximum bandwidth
requirement (Figure 12). However, it may not always be possible to co-allocate a job by
partitioning it into at least one “large” piece. In that event, this module simply returns
unsuccessfully.

Module B4—load-balancing. This module attempts to co-allocate the job as evenly as
possible across the remaining clusters, one node at a time in round-robin fashion.

6. Simulation

In this section, we provide details of our study of bandwidth-aware meta-scheduling al-
gorithms under a variety of algorithmic parameterizations. Figure 13 compares the first-fit
strategy described in Section 4 to two bandwidth-aware strategies described in the Section 5.
Note that the performance of the first-fit strategy suffers greatly due to the slowdown asso-
ciated with inter-cluster network saturation, and quickly becomes less effective than simple
job migration with no co-allocation, while two of our newest algorithms (A1 & B1) out-
perform the first-fit strategy over the entire range of tested values. This effect is entirely
due to the fact that the first-fit strategy ignores the state of the shared inter-cluster network
links.

152 JONES ET AL.

 250

 300

 350

 400

 450

 500

 550

 600

 300 400 500 600 700 800

Jo
b

tu
rn

ar
ou

nd
 ti

m
e

(s
ec

)

Bisection bandwidth (Mbps)

Turnaround Time vs Bisection Bandwidth (4 Clusters)

Initial Strategy
A1 Algorithm

Ideal
Migration Only

Figure 13. Comparison to bandwidth-aware schedulers.

6.1. Experimental parameters

This subsection describes the set of experimental parameters used in each of the simulations
that follow. When comparing our dynamic communication model with the fixed penalty
model, we ran simulations on multi-clusters sized at 2, 4, and 8 clusters, however we found
that the general trends exhibited in our experiments tended to simply be exacerbated as the
number of clusters increased, therefore we focus on multi-clusters containing 4 clusters for
the sake of brevity.

Each of the cluster consists of 100 homogeneous computational nodes and has a 1000
Mbps inter-cluster network link to the central switch. The workload presented to each cluster
consists of 400,000 jobs. The number of nodes each job requires is taken from a uniform
distribution UNIF[10, 50] (nodes). The job arrival process is Poisson with the inter-arrival
time taken from an exponential distribution with parameter 150 (sec). The base execution
time of each job is taken from an exponential distribution with parameter 450 (sec). For
simplicity, the computation fraction is uniformly set to K = 0.7 for all jobs that arrive to
the multi-cluster. Note that these parameters are slightly different from the those used in
the comparison study.

6.2. Experimental setup

As with the comparative study (Section 4), each of the scheduling algorithms in this section
use the modified FCFS job selection policy (FPFS) outlined in Section 4.1. Additionally,
we establish an upper and lower bound for job turnaround time: Migration Only and Ideal,
as described in Section 4.2. These boundaries were established for the multi-cluster char-
acterization used by all of the experiments presented in this section. They are displayed
in Figures 22, 24, and 25. In each of of our experiments, two dimensions are explored,

CHARACTERIZATION OF BANDWIDTH-AWARE META-SCHEDULERS 153

specifically the impact on job turnaround time due to both job BSBW as well as the target
inter-cluster link saturation level threshold (LSLT) parameter. In the case of algorithm A1,
this percentage is used to drive the simulation during the calculation of the potential number
of nodes available for co-allocation (Section 5). For class “B” strategies, this parameter rep-
resents the threshold whereby a given cluster’s free nodes are discounted as being potential
candidates for job co-allocation due to link saturation.

The BSBW parameter for each experiment is swept across a range of 200–900 Mbps.
This range was chosen because it represents an interesting range that causes the network
to be considerably stressed, and thus allows us to compare and contrast bandwidth-centric
co-allocating scheduling algorithms. Additionally, in each experiment the LSLT is swept
across a range from 40% to 120% in order to observe the ability of each algorithm to achieve
the target LSLT.

6.3. Results and observations

Figures 14–21 show the performance of algorithms A1, B1, B2, B3, and B4. (Note that each
scheduling algorithm is named after it’s co-allocation module.) On each graph, the x-axis
represents the workload’s BSBW characterization specified in Mbps. The y axis represents
the LSLT specified in percent of total link bandwidth. Note that the LSLT is a parameter
provided to the scheduling modules, not a measured value. Finally, the z axis represents the
average job turnaround time (TAT). In order to further compare the scheduling algorithms,
Figures 22–27 address situations of particular interest.

Figures 22 and 23 show the average job turnaround time as a function of job BSBW while
the LSLT is held fixed at 100%. Figures 24, 25, 27, and 26 show the average job turnaround
time as a function of the LSLT while the job BSBW’s are held fixed at around 300 and 800
Mbps, respectively, representing both low and high levels of job BSBW. The 2D graphs
have each been plotted from the same data-sets as the 3D graphs. The Migration Only and

 800
 850
 900
 950
 1000
 1050
 1100
 1150
 1200

Turnaround Time vs BSBW vs LSLT

A1 -- Satisfy

 200 300 400 500 600 700 800BSBW 0.4 0.5 0.6 0.7 0.8 0.9
 1 1.1 1.2 1.3

LSLT

 600
 700
 800
 900

1000
1100
1200

TAT

Figure 14. Algorithm A1–Satisfy.

154 JONES ET AL.

 800
 850
 900
 950
 1000
 1050
 1100
 1150
 1200

Turnaround Time vs BSBW vs LSLT

B1 -- Largest free nodes

 200 300 400 500 600 700 800BSBW 0.4 0.5 0.6 0.7 0.8 0.9
 1 1.1 1.2 1.3

LSLT

 600
 700
 800
 900
1000
1100
1200

TAT

Figure 15. Algorithm B1—Largest free.

 800
 850
 900
 950
 1000
 1050
 1100
 1150
 1200

Turnaround Time vs BSBW vs LSLT

B4 -- Least sat. link

 200 300 400 500 600 700 800BSBW 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1
 1.1

 1.2

LSLT

 600
 700
 800
 900

1000
1100
1200

TAT

Figure 16. Algorithm B2–Least sat. link.

Ideal schemes have been included in order to compare the performance of the proposed
co-allocating algorithms. In particular, a migration-only strategy results in an average job
turnaround time of 1087, whereas in the ideal case of unlimited inter-cluster bandwidth, the
average job turnaround time is 735.

Since algorithm A1 makes use of a job’s communication characterization as well as an
integer constraint satisfaction algorithm to determine a job mapping during the co-allocation
phase, it can guarantee that a link will never become more saturated than the given LSLT due
to job co-allocation. Unfortunately, the calculations involved in A1 are significant and they
also require accurate communication characterization of each job. Class “B” algorithms on
the other hand, can only guarantee that once a link becomes “over-saturated”, it will not
become further saturated due to co-allocation. When considering A1’s performance, recall

CHARACTERIZATION OF BANDWIDTH-AWARE META-SCHEDULERS 155

 800
 850
 900
 950
 1000
 1050
 1100
 1150
 1200

Turnaround Time vs BSBW vs LSLT

B4 -- Load-balance

 200 300 400 500 600 700 800BSBW 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1
 1.1

 1.2

LSLT

 600
 700
 800
 900

1000
1100
1200

TAT

Figure 17. Algorithm B4—Load-balancing.

 800
 850
 900
 950
 1000
 1050
 1100
 1150
 1200

Turnaround Time vs BSBW vs LSLT

B3 -- Big-small (70%)

 200 300 400 500 600 700 800BSBW 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1
 1.1

 1.2

LSLT

 600
 700
 800
 900

1000
1100
1200

TAT

Figure 18. Algorithm B3—Big-small chunk (70%).

that although it can be configured to hold the saturation level of the inter-cluster links at
a specified percentage (as seen in the related figures), it would typically be run at 100%
saturation level for maximum performance. A1 has been run across the range of saturation
levels as a means by which to illustrate the difference between an algorithm (A1) that can
guarantee that a link will never be more saturated than a given threshold, versus the class B
algorithms that can only attempt to limit the saturation level.

Each of the class “B” algorithms can be compared to A1 in order to determine how
close they come to approximating it’s behavior. Algorithm A1 has a very well-defined and
stable response to changes in job BSBW. Although A1 can guarantee that an inter-cluster
network link will never become over-saturated as a result of a job co-allocation, this does
not imply that it will always produce the best overall performance. In particular, a slight

156 JONES ET AL.

 800
 850
 900
 950
 1000
 1050
 1100
 1150
 1200

Turnaround Time vs BSBW vs LSLT

B3 -- Big-small (80%)

 200 300 400 500 600 700 800BSBW 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1
 1.1

 1.2

LSLT

 600
 700
 800
 900

1000
1100
1200

TAT

Figure 19. Algorithm B3–Big-small chunk (80%).

 800
 850
 900
 950
 1000
 1050
 1100
 1150
 1200

Turnaround Time vs BSBW vs LSLT

B3 -- Big-small (85%)

 200 300 400 500 600 700 800BSBW 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1
 1.1

 1.2

LSLT

 600
 700
 800
 900

1000
1100
1200

TAT

Figure 20. Algorithm B3—Big-small chunk (85%).

over-saturation of network links can in fact be beneficial. This is especially the case when
the average waiting time in the queue can be reduced by an amount that exceeds the average
increase in job execution time due to the over-saturation. In these cases, job execution
slowdown due to inter-cluster network utilization is offset by the fact that more jobs are
run earlier due to co-allocation. Therefore, there is a sufficient reduction in queue time that
ultimately results in better overall performance in average job turnaround time.

The most interesting of the class “B” algorithms is B3 (big-small chunk). Figures 18–
21 show the performance of the B3 algorithm B3 when the chunk size threshold is set to
70, 80, 85, and 90 percent respectively. Algorithm B3 is extremely stable with respect to
variation in job BSBW. For the sake of clarity, Figures 23, 26, and 27 have been included
to contrast the performance of B3 with respect to chunk size threshold. Note that the B3

CHARACTERIZATION OF BANDWIDTH-AWARE META-SCHEDULERS 157

 800
 850
 900
 950
 1000
 1050
 1100
 1150
 1200

Turnaround Time vs BSBW vs LSLT

B3 -- Big-small (90%)

 200 300 400 500 600 700 800BSBW 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1
 1.1

 1.2

LSLT

 600
 700
 800
 900
1000
1100
1200

TAT

Figure 21. Algorithm B3—Big-small chunk (90%).

 800

 1000

 1200

 1400

 1600

 1800

 2000

 200 300 400 500 600 700 800 900

Jo
b

tu
rn

ar
ou

nd
 ti

m
e

(s
ec

)

Bisection bandwidth (Mbps)

Algorithm Comparison with LSLT fixed at: 100%

A1 Algorithm (Satisfy)
B1 Algorithm (Largest free)

B2 Algorithm (Least sat. link)
B3 Algorithm (Chunking) (85%)

B4 Algorithm (Load-banance)
Ideal

Migration Only

Figure 22. Comparison at 100% saturation.

algorithm outperforms A1 in a variety of circumstances. This is due to the fact that B3 trades
over-saturation of inter-cluster network resources for decreased waiting time in the queue.
Indeed, even when the LSLT is set to 100%, the B3 algorithms exhibit better performance
than A1. Note that as the chunk size approaches 100% (i.e. the entire job) the performance
of B3 approaches that of Migration Only; a reassuring result. Additionally, as the chunk
size decreases, the performance approaches that of B1, since both co-allocate starting with
the largest partition possible. The difference is that B3 will only co-allocate a job when a
large portion can fit on a single cluster, whereas B1 will always co-allocate a job provided
that there are sufficient total resources.

158 JONES ET AL.

 700

 800

 900

 1000

 1100

 1200

 200 300 400 500 600 700 800 900

Jo
b

tu
rn

ar
ou

nd
 ti

m
e

(s
ec

)

Bisection bandwidth (Mbps)

Chunking Algorithm Comparison with LSLT fixed at: 100%

A1 Algorithm (Satisfy)
B3 Algorithm (Chunking) (70%)
B3 Algorithm (Chunking) (80%)
B3 Algorithm (Chunking) (85%)
B3 Algorithm (Chunking) (90%)

Ideal
Migration Only

Figure 23. B3 Comparison at 100% saturation.

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

Jo
b

tu
rn

ar
ou

nd
 ti

m
e

(s
ec

)

LSLT (%)

Algorithm Comparison at Low Job BSBW

A1 Algorithm (Satisfy)
B1 Algorithm (Largest free)

B2 Algorithm (Least sat. link)
B3 Algorithm (Chunking) (85%)

B4 Algorithm (Load-banance)
Ideal

Migration Only

Figure 24. Comparison at low job BSBW.

It is worth noting that the B3 algorithm provides the best overall performance compared to
A1. Additionally, it is considerably more stable than the other algorithms in class “B”, with
respect to variation in job BSBW. It is also worth noting that algorithm B4 (load-balancing)
provides the worst overall performance. This is due to the fact that B4 co-allocates a job
by spreading it as evenly as possible across the available nodes resources, and in doing so,
consumes a substantial fraction of available inter-cluster network bandwidth.

CHARACTERIZATION OF BANDWIDTH-AWARE META-SCHEDULERS 159

 800

 1000

 1200

 1400

 1600

 1800

 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

Jo
b

tu
rn

ar
ou

nd
 ti

m
e

(s
ec

)

LSLT (%)

Algorithm Comparison at High Job BSBW

A1 Algorithm (Satisfy)
B1 Algorithm (Largest free)

B2 Algorithm (Least sat. link)
B3 Algorithm (Chunking) (85%)

B4 Algorithm (Load-banance)
Ideal

Migration Only

Figure 25. Comparison at high job BSBW.

 700

 750

 800

 850

 900

 950

 1000

 1050

 1100

 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

Jo
b

tu
rn

ar
ou

nd
 ti

m
e

(s
ec

)

LSLT (%)

Chunking Algorithm Comparison at Low Job BSBW

A1 Algorithm (Satisfy)
B3 Algorithm (Chunking) (70%)
B3 Algorithm (Chunking) (80%)
B3 Algorithm (Chunking) (85%)
B3 Algorithm (Chunking) (90%)

Ideal
Migration Only

Figure 26. B3 comparison at low job BSBW.

6.4. Scheduler complexity

In addition to evaluating each meta-scheduling algorithm’s ability to effectively map jobs
onto the multi-cluster, we also wish to provide a brief analysis of their computational
complexities. Each of the meta-scheduling algorithms described in this paper consists of a
module where the bulk of the decision-making computation is situated. In order to compare
the cost of evaluating each algorithm, Table 1 has been provided. (Note: n is the number of
jobs waiting in the global job queue, p is the number of nodes required by the given job,
and m is the number of clusters.)

160 JONES ET AL.

Table 1. Algorithm run-time analysis

Module Complexity Time (µ Sec)

A1 O(n · pm) 69.6
B1 O(m · log(m) + n) 0.98
B2 O(m · log(m) + n) 0.89
B3 O(m · log(m) + n) 1.28
B4 O(p) 1.10

 800

 1000

 1200

 1400

 1600

 1800

 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

Jo
b

tu
rn

ar
ou

nd
 ti

m
e

(s
ec

)

LSLT (%)

Algorithm Comparison at High Job BSBW

A1 Algorithm (Satisfy)
B1 Algorithm (Largest free)

B2 Algorithm (Least sat. link)
B3 Algorithm (Chunking) (85%)

B4 Algorithm (Load-banance)
Ideal

Migration Only

Figure 27. B3 comparison at high job BSBW.

“Complexity” is the standard order-complexity associated with each of the core of meta-
scheduling modules. “Time”, calculated from data provided by gprof, is the average amount
of time spent making a co-allocation scheduling decision by the C code implementation
used in the simulations described in this section. While this time may not represent the
total time in an actual scheduler, it is nevertheless indicative of the scheduling computation
time.

In the case of module A1, for each of the n jobs waiting in the queue, a brute-force integer
constraint satisfaction problem solver is run to determine if the given job is a valid candidate
for co-allocation. The kernel of this solver consists for a set of m nested for-loops, each of
which iterates from 0 → p, resulting in the pm factor.

In modules B1, B2, and B3, the m · log(m) term comes from sorting the list of m clusters
using quick-sort. After the sort completes, the global job queue must be traversed in FCFS
order to locate a job for co-allocation, thus resulting in the n term.

In module B4, the p term comes from the round-robin traversal of the list of available
clusters in an attempt to allocate all p nodes of the given job.

CHARACTERIZATION OF BANDWIDTH-AWARE META-SCHEDULERS 161

7. Conclusions

In this paper, we examine job scheduling on computational multi-clusters, an important
emerging class of “grid-like” architectures. As multi-cluster systems become more preva-
lent, techniques for efficiently exploiting these resources become increasingly significant.

A critical aspect of exploiting multi-cluster resources is the challenge of scheduling.
Previous studies in algorithms for multi-cluster scheduling use a fixed-penalty model for
scheduling across cluster boundaries. In this work, we show the potential shortcomings
of a fixed-penalty model, and present an alternative bandwidth-centric job communication
model that is capable of taking into account time-varying network utilization as a means
by which to capture the interaction and impact of simultaneously co-allocating jobs across
multiple clusters. We find that the fixed-penalty model is more generous in its prediction
of job turnaround time than is our dynamic communication model. Additionally, we see
that the penalty that co-allocated jobs can experience without causing a severe performance
impact decreases as the number of clusters increase, especially when the meta-scheduler
ignores shared network resource usage.

Additionally, we present several bandwidth-aware co-allocating meta-schedulers that take
into account inter-cluster network utilization as a means by which to mitigate the slowdown
associated with the interaction of simultaneously co-allocated jobs in a dedicated compu-
tational multi-cluster. We make use of our bandwidth-centric parallel job communication
model to capture the time-varying utilization of shared inter-cluster network resources. By
doing so, we are able to evaluate the performance of multi-cluster scheduling algorithms
that focus not only on node resource allocation, but also on shared inter-cluster network
bandwidth.

We find that it is challenging to design a scheduling algorithm that does not have a
priori knowledge of a job’s communication characterization, and yet provides comparable
performance to one that does. We implemented a variety of such algorithms, and found that
co-allocating jobs when it is possible to allocate a large fraction (85%) on a single cluster
provides the best performance in mitigating the impact that co-allocated jobs experience
due to the slowdown caused by inter-cluster network saturation.

8. Future work

The work presented in this paper attempts to address the design and evaluation of bandwidth-
aware scheduling algorithms for mapping jobs across multiple clusters. In doing so, we
have made several assumptions related to both the multi-cluster architecture as well as the
parallel jobs that execute on these platforms. We have assumed that all node resources
are homogeneous and that there is only one processor per node. We have also assumed
that the parallel jobs are characterized by global all-to-all communication phases. Under
these assumptions, we are able to establish a model that describes the impact that network
saturation has on the ultimate runtime of a given job. By making use of this model, we can
then evaluate the effectiveness of scheduling algorithms that aim to mitigate this impact.

In order to provide more realism, we intend to relax the constraints mentioned above;
however, in doing so, we must extend the models to capture the impact that resource

162 JONES ET AL.

heterogeneity has on the runtime performance of varying classes of parallel jobs. We would
need to address such issues as the structure and frequency of communication synchroniza-
tions. We would also need to explore both static and dynamic application load balancing in
order to simulate the behavior of such jobs in the presence of heterogeneous computational
resources. As a result, new criteria would need to be considered in making scheduling
decisions.

The relaxation of these constraints would afford us the opportunity to further refine the
scheduling algorithms to take into account both a growing number of specific architectural
features as well as parallel program attributes.

Acknowledgments

This work was supported in part by the ERC Program of the National Science Foundation
under Award Number EEC-9731680. Any opinions, findings, conclusions, or recommenda-
tions expressed in this material are those of the authors and do not necessarily reflect those
of the National Science Foundation. Special thanks to Phil Carns, Nathan DeBardeleben,
and Mike Speth.

References

1. A. I. D. Bucar and D. H. J. Epema. The influence of communication on the performance of co-allocation.
In 7th Workshop on Job Scheduling Strategies for Parallel Processing, in conjunction with ACM Sigmetrics
2001, pp. 66–86, June 2001.

2. A. I. D. Bucar and D. H. J. Epema. The performance of processor co-allocation in multicluster systems. In
3rd International Symposium on Cluster Computing and the Grid, pp. 302–309, May 2003.

3. C. Ernemann, V. Hamscher, A. Streit, and R. Yahyapour. Enhanced algorithms for multi-site scheduling. In
Grid Computing—GRID 2002, Third International Workshop, Baltimore, MD, USA, November 18, 2002,
Proceedings, pp. 219–231, 2002.

4. C. Ernemann, V. Hamscher, A. Streit, R. Yahyapour, and U. Schwiegelshohn. On adgantages of grid computing
for parallel job scheduling. In 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid
(CCGRID’02) Berlin Germany May 21, pp. 31–38, 2002.

5. D. G. Feitelson. Metrics for parallel job scheduling and their convergence. In Job Scheduling Strategies for
Parallel Processing, vol. 2221, pp. 188–206, 2001.

6. D. Jackson, Q. Snell, and M. Clement. Core algorithms of the maui scheduler. In 7th Workshop on
Job Scheduling Strategies for Parallel Processing. In conjunction with ACM Sigmetrics 2001, June
2001.

7. W. M. Jones, L. W. Pang, D. Stanzione, and W. B. Ligon III. Bandwidth-aware co-allocating meta-schedulers
for mini-grid architectures. In Proc. of the IEEE International Conference on Cluster Computing, September
2004.

8. W. M. Jones, L. W. Pang, D. Stanzione, and W. B. Ligon III. Job communication characterization and its
impact on meta-scheduling co-allocated jobs in a mini-grid. In Proc. of the IEEE 18th International Parallel
and Distributed Processing Symposium: Performance Modeling, Evaluation, and Optimization of Parallel
and Distributed Systems, April 2004.

9. D. Lifka. The ANL/IBM SP scheduling systems. In Proc. of the 1st Workshop on Job Scheduling Strategies
for Parallel Processing, vol. 949, pp. 295–303. LNCS, 1995.

10. J. Sinaga, H. Mohamed, and D. H. J. Epema. A dynamic co-allocation service in multicluster systems. In 10th
Workshop on Job Scheduling Strategies for Parallel Processing (in conjunction with Sigmetrics-Performance
2004), New York, June 2004.

CHARACTERIZATION OF BANDWIDTH-AWARE META-SCHEDULERS 163

11. S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan. Characterization of backfilling strategies for
parallel job scheduling. In IEEE International Conference on Parallel Processing Workshops, pp. 514–519,
August 2002.

12. Y. Zhang, H. Franke, J. Moreira, and A. Sivasubramaniam. An integrated approach to parallel scheduling
using gang-scheduling, backfilling, and migration. In IEEE Transactions On Parallel and Distributed Systems,
vol. 14, pp. 236–247, March 2003.

