
The Journal of Supercomputing, 32, 231–250, 2005
C© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Distributed Unidirectional and Bidirectional Heuristic
Search: Algorithm Design and Empirical Assessment

ABDEL-ELAH AL-AYYOUB ayyoub@acm.org
Faculty of Computer Studies, Arab Open University, P.O. Box 18211, Bahrain

Abstract. Since its introduction three decades ago, bidirectional heuristic search did not deliver the expected
performance improvement over unidirectional search methods. The problem of search frontiers passing each
other is a widely accepted conjecture led to amendments to steer the search using computationally demanding
heuristics. The computation cost associated with front-to-front evaluations crippled further investigation and hence
bidirectional search was long neglected. However, recent findings demonstrate that the initial conjecture is wrong
since the major search effort is spent after the frontiers have already met [7]. In this paper we reconsider bidirectional
search by proposing a new generic approach based on cluster computing. The proposed approach is then evaluated
and compared with its unidirectional counterparts. The obtained results reveal that cluster computing is a viable
approach for distributed heuristic search. Particularly, clustered bidirectional search is capable of solving problems
beyond unidirectional search capabilities and in the same time outperforms unidirectional approaches in terms of
memory space and execution time.

Keywords: cluster computing, distributed heuristic search, performance evaluation

1. Introduction

A variety of problems in planning, decision-making, theorem proving, expert systems, com-
binational problems, constraint satisfaction problems, and discrete optimization problems
involve extensive computational power to inspect a space of possible alternatives [8, 12, 14].
There are two categories of search algorithms, brute force and informed (heuristic) search
algorithms. The first category evaluates alternatives one after another with no distinction
between alternatives which induces huge amounts of computation. Heuristic search, on
the other hand, is the standard artificial intelligence technique to alleviate the search load.
Heuristic search can be viewed as a path-fining problem in an implicit graph. The search
begins by generating the successors of a start node. At the subsequent steps, one of the pre-
viously generated nodes is expanded until a goal node is found, assuming that one exists,
where the solution path is constructed by following the pointers from the goal node back to
the start node. Figure 1 explains this process diagrammatically.

The heuristic search is characterized by the 4-tuple 〈σ, τ, ξ, f 〉, where σ is the start node,
τ is the goal node, ξ = {g1, g2, . . . , gk} is the set of generators used to expand nodes, and f
is the evaluation function which for each node n gives the estimated cost of the solution path
from σ to τ constrained to go through n. This function, referred to as f (n), is composed of
a known part g(n) that represents the cost of the path from σ to n plus an estimated part h(n)
that represents the cost of the path from n to τ . The latter part, called the heuristic function,
is based on application-specific heuristics that are obtained from the problem domain.

232 AL-AYYOUB

Figure 1. Heuristic search process.

There are a number of heuristic search algorithms proposed in the literature [13, 14]. The
main difference between the various heuristic search algorithms lay in their completeness
and admissibility [14].

The main objective of heuristic search is to cope with the huge demand on memory
space and computing time. Iterative deepening search [8] alleviates the demand on memory
space (on the expense of search time) by performing a series of incrementally deepen-
ing depth-first searches. Some other search algorithms such as the front-to-front heuristic
search [4] puts a lot of emphasis on the heuristic information to reduce the explored search
space.

Bidirectional search is another attempt proposed three decades ago [4, 15] to cope
with the exponential space and time requirements. This approach maintains two search
spaces; one rooted at σ and grows downward and the other rooted at τ and grows upward.
When the search frontiers meet in a middle point the algorithm terminates with the
solution path. The expected reduction in search effort, see Figure 2, was not observed
in the experiments [15], and hence there was a consensus that bidirectional search is
afflicted by the so called missile metaphor; the problem of search frontiers passing
each other without intersecting. However, recent findings blemished this conjecture
[7]. The authors showed that the major search effort is spent after the frontiers have
already met in order to satisfy the optimality concerns. The work in [7] proposes to
reconsider new generic approaches for bidirectional search without the time-consuming
front-to-front evaluations. The obtained results are encouraging and hence the authors
suggest that bidirectional search be reconsidered as an attractive alterative for unidirectional
counterparts.

DISTRIBUTED UNIDIRECTIONAL AND BIDIRECTIONAL HEURISTIC SEARCH 233

Figure 2. Unidirectional versus bidirectional search space.

Motivated by these findings, this paper reconsiders bidirectional search by proposing
a new generic approach based on cluster computing. The paper shows that distributed
bidirectional search using the proposed approach can solve faster and also can solve samples
that are not solvable using sequential unidirectional or bidirectional searches.

The rest of the paper is organized as follows: In the next section some related work is dis-
cussed. Section 3 overviews distributed heuristic search and presents two generic algorithms
to carry out distributed unidirectional and bidirectional heuristic search. Performance eval-
uation of the proposed algorithms is given in Section 4, followed by experimental results in
Section 5. Finally, the paper is concluded with a recount of obtained results and some open
questions.

2. Related work

Many bidirectional search algorithms have appeared in the literature including the two main
traditional approaches, these are front-to-end and front-to-front searches. Both approaches
encompass two algorithms searching in both directions. The difference between the two
approaches is in the way heuristic values are calculated.

The front-to-end approach [7] employs heuristic evaluation functions that estimates the
cost from a given node to the root of the opposite tree. Nodes are expanded alternately from
the smaller tree until a common node n between the two search trees is found (the search
continues from the upper tree when the two trees are equal in size). The cost of this node is
g1(n) + g2(n), where g1 and g2 are the cost from σ to n and the cost from τ to n; respectively.
It should be noticed that even though the two sub-paths are optimal, the concatenated path
is not necessarily optimal. Hence, this approach uses a special termination condition [7].
The obtained solution is optimal if the estimated cost g1(n) + g2(n) is lower than f1(n1) and
f2(n2) for any n1 and n2 in the open lists of the upward and downward searches; respectively.
Here, f1 and f2 are similarly the evaluation functions for the two searches; the upward and
downward searches, respectively.

At a first glance the approach might seem to suffer large overhead due to optimality test.
Adding to it the misleading conjecture (the missile metaphor), the front-to-end approach
has been neglected [15]. The induced optimality overhead can be simply skipped for faster
solutions; however the misleading missile metaphor conjecture lead to proposing amend-
ments to steer the search frontiers towards each other. The front-to-front approach is one
alternative.

234 AL-AYYOUB

The front-to-front approach uses wave-shaping [4] to force the search fronts to meet.
Examples of algorithms are BHFFA [4], BHFFA2 [3], and d-node retargeting [16] which
can be efficient in terms of the number of generated nodes. Yet, these algorithms are com-
putationally demanding as they have to compare the heuristic estimates between all nodes
in one search frontier against all nodes in the other, which results in huge computational
overhead. The time needed to select a node for expansion is proportional to the product of
the sizes of the two search trees; which is a very time consuming activity though it can be
reduced to the size of the opposite tree with the use of appropriate data structures, yet still
high overhead.

In order to cope with the large node selection overhead, a number of techniques have
been proposed in the literature to restrict comparison to only a small number of “promising”
nodes in the opposite tree. Premier search [11] is one example which showed reasonable
improvement on node selection time while maintaining solution quality. The idea is to store
only one search frontier, instead of both frontiers, so the opposing search targets this frontier
(the perimeter) as a more visible goal with more accurate heuristic estimate (recall that the
perimeter nodes are in the middle way between a node in the opposing search tree and the
actual goal).

This paper’s approach is based on this improved bidirectional search. First, two perimeters
are generated in parallel, one surrounding the goal node and the other surrounding the start
node. Heuristic values in the subsequent stages are calculated from a search frontier to
the opposite perimeter. Before we go into the details of the proposed distributed approach
we will discuss some of the known distributed heuristic search approaches that have been
discussed in the literature.

Due to the wide applicability and to the computation-intensive nature of heuristic search,
distributed computing approaches have been investigated thoroughly [5] in an attempt to
benefit from today’s high performance parallel computing. A common formulation of paral-
lel heuristic search is called distributed tree search [5], where the search space is partitioned
into “disjoint” portions that are then distributed across individual processors. Each proces-
sor works on its portion of the search space independently or in coordination with other
processors until a goal is found and a certain solution quality test is met.

Another approach, referred to as parallel window search [17], well-suited for parallel
depth-first search. This approach distributes the iteration space to the available processors,
and each processor then searches its iteration sub-space independently.

The two approaches (parallel window search and distributed tree search) can be combined
so each iteration of the a parallel window search is completed in distributed tree search
manner, or each part of the tree in distributed tree search is completed in parallel window
search manner. This combined approach was tested on Sequent Balance 21000, Intel iPSC
Hypercube, and BBN Butterfly using the 15-puzzle and shown to achieve reasonable speed
up [10, 18].

The first approach (distributed tree search) is more suitable for parallelizing bidirectional
search. Hence, we concentrate on this approach in developing distributed unidirectional and
bidirectional algorithms well-suited for cluster computing. We argue that distributed tree
search with perimeter based-bidirectional search is a viable alternative that outperforms its
traditional approaches. In the subsequent sections we present and support this claim.

DISTRIBUTED UNIDIRECTIONAL AND BIDIRECTIONAL HEURISTIC SEARCH 235

3. Distributed heuristic search

In this section we present two generic approaches for distributed heuristic search, one
for unidirectional and another for bidirectional heuristic search. In both approaches, hosts
perform independent searches beginning with distinct start nodes and searching through
their sub-trees until one of the hosts encounters a goal node. Hosts might replicate each
others’ work, however the associated high communication cost that would be needed to avoid
search replication is prohibitive. Eliminating replicas in the search spaces requires that all
hosts have access to each others’ search spaces, an extremely costly scenario in distributed
environments, though hashing and transition tables might seem practical solutions. Hence,
in the two approaches for distributed heuristic search that will be presented next, replicated
sub-search is partially overlooked in favor of lower communication costs. The effect of this
on the solution quality will also be measured.

3.1. Distributed unidirectional heuristic search

The distributed unidirectional heuristic search proposed in this paper can be characterized
by the 5-tuple 〈�, τ, ξ, f, A〉, where � = {n1, n2, . . . , nu} is the set of u start nodes and A is
a sequential heuristic search algorithm used to carry out the independent parallel searches.
Figure 3 illustrates a generic approach for realizing unidirectional heuristic search in a
distributed manner; this approach is referred to by Uni DHS.

The available hosts in Uni DHS generate/pick their share from � in a verity of mapping
methods. We may have e ≥ 1 hosts from the available p hosts perform breadth-first searches

Figure 3. Diagrammatical representation of Uni DHS.

236 AL-AYYOUB

to generate � and then broadcast subsets from � to the relevant hosts. The value e is decided
empirically and depends on the network speed. Low speed networks perform better with
low e values in favor of reduced communication overhead. Generally, the mapping can be
expressed by the unified function

ρ :
∏

→ 2
∑

where � = {π1, π2, . . . , πp} is the set of p hosts in the cluster. The function ρ(πi) identifies
the subset of start nodes from � assigned to the host πi , 1 ≤ i ≤ p. This unified mapping
covers a wide range of load distribution methods that can be used in Uni DHS as well as the
bidirectional approach that will be presented next. For example, an even distribution method
can be represented by ρ(πi) = {n j |(i − 1)�u/p� < j ≤ min(i�u/p�, u)}, 1 ≤ i ≤ p and
u = |�|. This instance of ρ achieves reasonably balanced load while maintaining minimum
replicated work as the adjacent start nodes are likely to generate overlapping search spaces.
Hence assigning these adjacent start nodes to the same host would minimize the overall
search replication as far as the 15-puzzle is concerned. It should be noticed that this might
not be the case in other problem domains.

In Uni DHS each host maintains its open and closed lists independently. Once a host
encounters a goal node, it broadcasts this node and signals a termination request. At this
point, if the solution path is acceptable then all hosts terminate their searches. A sufficient
condition for an optimal solution path up to a goal node τ is that f (τ) is the best among all
nodes in all open lists in the independent searches. This requires all hosts compare the found
goal with their local open lists to see if better nodes exist. If this is the case then the search
should continue until an optimal solution is found. This process for ensuring the quality of
the obtained solutions can be achieved through two distributed tasks; namely termination-
request (Treq) and termination-reply (Trep). These tasks will be explained in the sequel.

In order to simplify the presentation of the algorithm Uni DHS, we will use the following
notation: β[, λ] denotes broadcasting the data set 	 to a subset of hosts λ from �, α[, i]
denotes receiving the data set 	 broadcasted by the host πi , and �[n, τ, ξ, f, A] denotes
performing 〈n, τ, ξ, f 〉 using the algorithm A. Using this notation the two tasks Treq and
Trep are outlined in Figures 4 and 5 respectively.

The above algorithms for termination request-and-reply sequence use the notation
�[m, τ, ξ, f, A] for all m ∈ ρ(πk) to denote the search space generated by the host πk

Figure 4. Distributed termination-request.

DISTRIBUTED UNIDIRECTIONAL AND BIDIRECTIONAL HEURISTIC SEARCH 237

Figure 5. Distributed termination-reply.

starting with ρ(πk). Even though this notation suggests that elements of ρ(πk) originate
disjoint search trees, a practical implementation would add ρ(πk) to a common open list
and consequently the host πk would maintain only one common replication-free search
space.

The algorithm Uni DHS which uses the termination request-and-reply sequence is given
in Figure 6. The algorithm initially starts with an open list containing ρ(πk) and then
progressively searches using the search algorithm A until one of the two events happen: a
goal node is encountered or a termination request is received.

Signaling termination requests and responds in the algorithm Uni DHS can be achieved
through interrupts or periodic tests once per iteration of �[m, τ, ξ, f, A] for all m ∈ ρ(πk).
An iteration involves selecting and then expanding a node, which could be too soon for
another termination request-and-reply sequence; hence a threshold on the number of itera-
tions might be used. Note that interrupts or periodic tests may not work for other types of
problem domains; yet work fine in the 15-puzzle.

Using the above described termination request-and-reply sequence it can be easily veri-
fied that Uni DHS terminates with an optimal solution if there is one. An inherently parallel
version of the Uni DHS can be obtained if the optimality concerns are disregarded. Ob-
viously only empirical knowledge can tell which of these versions is the most effective in
terms of performance/solution-quality trade-off assessment. This will be investigated in the
coming sections.

Figure 6. Distributed unidirectional heuristic search algorithm.

238 AL-AYYOUB

Figure 7. Diagrammatical representation of Bi DHS.

3.2. Distributed bidirectional heuristic search

The distributed bidirectional heuristic search algorithm, abbreviated Bi DHS, consists of
two sets of distributed unidirectional heuristic searches running in opposite directions.
These are downward and upward searches. The distributed bidirectional heuristic search
can be characterized by the 6-tuple (�υ, �δ, σ, τ, ξ, f, A), where �υ = {n1, n2, . . . , nu}
and �δ = {m1, m2, . . . , md} are the set of start nodes in upward-search and downward-
search, respectively. These sets are used as starting nodes for distributed heuristic search
in each direction and also as perimeters [11] for the opposite direction to which the search
is steered. Figure 7 illustrates a generic approach for carrying out bidirectional heuristic
search in a distributed manner.

The major differences between Uni DHS and Bi DHS are related to the way the function
f is computed, the termination condition, and the quality of the obtained solutions. In
calculating f (n) for some newly generated node n, two exact (g1 and g2 below) and one
accurate estimates are used. A host in the downward-search calculates f1(n) for any node
n in as follows:

f1(n) = g1(n) + min
m∈∑

δ

(h(n, m) + g2(m)) (1)

DISTRIBUTED UNIDIRECTIONAL AND BIDIRECTIONAL HEURISTIC SEARCH 239

Figure 8. Distributed bidirectional heuristic search algorithm.

and a host in the upward-search calculates f2(n) any node n in as follows:

f2(n) = g2(n) + min
m∈∑

υ

(h(n, m) + g1(m)). (2)

Here we extend the functions h to include the relative node from which the cost is calculated,
e.g. the cost h(n, m) is the estimated distance from n to m. Furthermore we assume that
the same heuristic function will be used in both searches; yet this restriction is needless as
different heuristics can be used. Of course admissibility [14] in both directions is a must to
ensure optimal solutions.

The downward-search in the algorithm Bi DHS presented in Figure 8 executes on the p
hosts, one copy per host (the upward-search is similar and is skipped for brevity). The p
hosts are divided into two groups one works top-down �υ = {π1, π2, . . . , π�p/2�} and the
other works bottom-up �δ = {π�p/2�+1, π�p/2�+2, . . . , πp}.

In traditional bidirectional search methods, the two searches (upward-search and
downward-search) have access to each others’ search spaces, hence termination condi-
tions can be evaluated in a straightforward manner: once a common node is encountered
in the two searches, then a solution is found. However, in Bi DHS hosts have no access to
each others’ search spaces, thus traditional termination tests are unachievable in distributed
bidirectional heuristic search.

The termination condition in the algorithm Bi DHS is based on the set �δ (respectively
�υ) and a subset of nodes received from �δ(respectively �υ) in the upward-search (respec-
tively downward-search). For instance in the upward-search, if a node in �δ is encountered
or a node received from a host in �δ that already exists in the upward-search, then a solution
path is obtained. This path is optimal if no other node in both the upward and the downward
searches has better f -value. Any host in �υ can broadcast to all nodes in �δ promising
nodes it comes across. Of course, a threshold based on the evaluation function f can used

240 AL-AYYOUB

to identify promising nodes that should be sent to the opposite tree. Similar processing will
take place in the downward-search.

For a reasonable load balancing, the size of the two sets �υ and �δ should be multiple
integrals of the number of hosts in the relevant direction. Again, the function ρ can be used
to distribute the set of start nodes (the perimeters) to the hosts. A tree-based parallel model
will be sufficient to generate and distribute the two perimeters. In this model, duplicate
nodes may appear which may cause redundant search efforts, but this is inconsequential
when large number of hosts is available. The empirical results presented in the next section
confirm this observation.

4. Framework for assessing the performance of Uni DHS and Bi DHS

In this section we present a framework for assessing the performance of the proposed
algorithms. In this assessment we focus on four fundamental measures, these measures
are execution time, memory space, solution quality and search effectiveness. The execution
time is measured by the actual execution time taken until a goal is found and a termination
request succeeds. In this section all termination requests are acceptable which means the
termination request-and-reply sequence is relaxed and hence the first obtained solution will
abort the search. The effect of this relaxation will be exposed on the solution quality as we
will see next.

The execution time can be estimated in terms of average counts on the major search activ-
ities such as node expansion, heuristic distance calculation, node duplicate checking, and so
on (these parameters can also be used to give indication on the search effectiveness as well).
This method has been used in [1] to develop machine-independent performance assessment
models for unidirectional and bidirectional sequential heuristic search algorithms. These
models are partially applicable in assessing the performance of Uni DHS and Bi DHS with
the exception that communication overhead has to be accounted for. The next section por-
trays the average counts on the major activities performed by the two algorithms Uni DHS
and Bi DHS.

The memory space can be solely expressed by the number of nodes generated by the
algorithm until a goal node is found. In parallel search, there are two ways to record this
count: average and accumulate number of nodes generated by hosts in the cluster. The
difference between these two can easily be noticed if we think of the cluster as a single
computer with multiple processing units or as separate machines with single processors.
The latter image is a common one and hence the information in all of the subsequent figures
are based on the averages.

The solution quality is quantified by the ratio of the actual and the obtained solution path
lengths [2]. Hence, the term (w − l)/ l shows the increase in the length of the solution path
as a percentage of the optimal length, where w is the length of the obtained solution path
and l is the optimal length. This percentage is close to zero when the length of the obtained
solution path is close to the optimal length.

A better indication on the search quality should take into account the amount of search
effort spent on obtaining a solution path. One such measure is the search effectiveness [2],
which is given by b · w/c where b is the average branching factor of the search graph and c

DISTRIBUTED UNIDIRECTIONAL AND BIDIRECTIONAL HEURISTIC SEARCH 241

is the size of the generated search space. The search effectiveness gives indication on how
much the search effort was directed towards the goal. Larger ratios mean more focused
search.

The above measures depend basically on the following factors: the problem domain,
the underlying machine and the employed heuristic functions. The answer to the obvious
question “how effective was the search to find a solution of this quality?” can be provided if
we have correct estimates on b, w, and c. Such values for a given heuristic search algorithm
can be obtained by finding averages over all possible problems in the problem domain.
Experimental results on this issue are presented in the next section.

5. Experimental results on the 15-puzzle

The two distributed search approaches (Uni DHS and Bi DHS) have been tested on a cluster
of 16 dual processor Intel Xeon with 512 MB RAM hosts hocked together by two types of
Gigabit networks: Ethernet and Myrinet.

The problem domain is the 15-puzzle [9] which is still computationally intensive problem
for the most powerful computing systems. The heuristic function used in the experiments is
called Linear-conflict [6]. Each of the two algorithms has been tested against 528 samples
selected from the 15-puzzle space with optimal solution paths ranging from 20 to 74 moves.
The samples are randomly selected from the space with 10 samples at depth 20, 10 at depth
21, and so on. Some samples at large depth exhausted the physical memory of the cluster
and hence they were excluded from the experiments.

On each sample, the algorithms are executed until a solution is found or the physical
memory is consumed in one of the hosts, triggering an automatic self-termination. Upon
successful completion, the raw data are automatically collected and recorded in the associ-
ated databases. In what follows we summarize the obtained results.

The actual execution times for the two approaches using 4, 8 and 16 hosts are shown in
Figures 9–12. The four figures show execution times for disjoints sets of samples, ranging
from easy to very hard. Figure 9 suggests that increasing the number of hosts searching
on easy problems does not necessarily speedup the search. This is expected because, for
easy problems, one host finds the solution rather quickly and even before other hosts have
had a chance to start searching. This is true for both Uni DHS and Bi DHS. In other
words, both algorithms become more of a sequential type as the samples become easier to
solve.

This observation discontinues for middle and hard problems (Figures 10 and 11) in both
Uni DHS and Bi DHS and again the same trend continues for some samples in the class
of very hard problems, however, only in Bi DHS this time (Figure 12). The reason behind
this could be the increase in the number of Ethernet collisions. We believe that the overall
delay introduced due to Ethernet collisions outweighs the expected decrease in execution
time.

In this experiment timers are used to control the rate of promising node transmission so
that the rate decreases as the number of hosts increases. The reason behind the increase in
the number of Ethernet collisions as the number of hosts increases is not due to the increase
in the number of promising nodes exchanged. Rather, its due to the more likelihood of timers

242 AL-AYYOUB

Figure 9. Average execution time on easy samples.

Figure 10. Average execution time on middle samples.

being synchronized enough that many hosts try to send their promising nodes at almost the
same instant. An algorithm to ensure that two hosts do not try to send a promising node at
the same time is needed. However, this is difficult to achieve especially since the time at
which hosts start searching is out of control. As hosts typically send promising nodes every

DISTRIBUTED UNIDIRECTIONAL AND BIDIRECTIONAL HEURISTIC SEARCH 243

Figure 11. Average execution time on hard samples.

Figure 12. Average execution on very hard samples.

tens of milliseconds or so, it is then difficult to devise a synchronization algorithm that can
synchronize timers within that resolution, especially since when we only have access to
the Ethernet at the MPI level only. The Bi DHS has been tested more than once for some
samples and the execution time fluctuated wildly. This supports the above explanation.

244 AL-AYYOUB

Figure 13. Percentages of solvable samples (hard to very hard categories).

The discontinuous plotting in Figure 12 are due to the samples that could not be solved
using Uni DHS before the physical memory is consumed. Bi DHS was able to solve all
samples using 4, 8, or 16 hosts. Figure 13 shows the percentages of samples solved from
hard to very hard categories. Uni DHS was able to solve small percentage of the hard and
very hard samples. This fact has been taken into consideration when averaging samples
for comparisons. The parameters for unsolvable samples are excluded from the averages in
order to avoid ambiguous interpretations.

The gained speedup for the two approaches is shown in Figure 14. Both algorithms
run much faster than their sequential counterparts. There are sample categories where
Bi DHS runs over 30 times faster using 16 hosts and 20 times faster using only 8 hosts,
which is not common in parallel computing terms. This observation supports the asser-
tion that wider perimeter might end up in a faster search. Therefore, the gained speedup
is ascribed not only to the larger number of hosts incorporated in the search but also
to the induced wider perimeter. This assertion becomes more evident if we look at the
speedup gain in Uni DHS which is significantly less than Bi DHS. Thus, confirming the
claim made in this paper about the effectiveness of combining perimeter search with dis-
tributed bidirectional approaches. The discontinuous curves in Figure 14 are due to the
fact that sequential unidirectional and bidirectional searches where unable to solve hard
and very hard sample categories; and hence the speedup on these samples cannot be
calculated.

The effect of relaxing quality control in both Uni DHS and Bi DHS is depicted in
Figure 15. This figure shows the quality measure as discussed in the previous section.
Uni DHS offers higher quality solutions (a maximum of 2% loss) compared to Bi DHS
(a maximum of 14% loss). Yet another observation that merits being mentioned here is

DISTRIBUTED UNIDIRECTIONAL AND BIDIRECTIONAL HEURISTIC SEARCH 245

Figure 14. Speedup gain.

Figure 15. The effect of relaxing quality control.

that adding more hosts doesn’t negatively affect the solution quality. This is clear in the
figure with the exception of Uni DHS using 16 hosts to solve easy problems. There are
instances where the 16 hosts Bi DHS obtains better solutions than on 4 or 8 hosts. The
explanation for this behavior could be the wider perimeter when using larger number of
hosts.

246 AL-AYYOUB

Figure 16. Search effectiveness.

Figure 16 gives indication on the search effectiveness for the two heuristic search ap-
proaches as defined in the previous section. The search effectiveness decreases for harder
problems. The figure also suggests that Bi DHS is more effective than Uni DHS. This
observation agrees with what is known about sequential unidirectional and bidirectional
search approaches [1, 2].

The last set of findings is presented in Figures 17—20. In these figures we can see that
Bi DHS expands and generates lesser nodes than Uni DHS. Of course all these qualities
translate into faster execution and lower memory consumption.

The use of perimeters induces more emphasis on heuristic information. Bi DHS has two
perimeters towards which the two search frontiers are steered through repeated heuristic
distance calculation. The information in Figure 20 demonstrate the fact that Bi DHS con-
sumes more time in assuring accurate heuristic estimates for each newly generated node.
As it can be seen from the above results the consumed time paid off.

6. Epilogue

The two distributed search algorithms presented in this paper are based on cluster com-
puting approaches. The first approach uses distributed tree search; while the second
approach combines distributed tree search, perimeter search, and bidirectional search.
The second approach provides faster and more effective search yet with lower solution
quality than unidirectional approach. Table 1 summarizes the results of applying dif-
ferent performance assessment parameters on the two approaches. The information in
the table is obtained by averaging all sample categories. These averages add little new

DISTRIBUTED UNIDIRECTIONAL AND BIDIRECTIONAL HEURISTIC SEARCH 247

Figure 17. Average number of expanded nodes.

Figure 18. Average size of generated search space.

observations over the previous figures, yet they give an overview on the algorithms’
behavior.

Some issues that need more investigation include determining the optimal number of
start nodes each host should get. This relates to developing smart instances of the function
ρ that distribute the set of start nodes so the overall replicated work is reduced. The reader

248 AL-AYYOUB

Figure 19. Average number of node duplicate checks.

Figure 20. Average number of times heuristic distance is calculated.

should not be deceived by the information in the row “Replication percentage” in Table 1.
These are percentages of replicas found in each host and not in the overall search (inter-
node replication cannot be measured). The small percentages in all cases indicate that the
huge amount or node duplicate checks (notice the large numbers in the node comparison

DISTRIBUTED UNIDIRECTIONAL AND BIDIRECTIONAL HEURISTIC SEARCH 249

Table 1. Overall averages

Uni DHS Bi DHS

Parameter 4 Hosts 8 Hosts 16 Hosts 4 Hosts 8 Hosts 16 Hosts

Execution time 18.59 13.47 8.28 3.68 3.05 2.94
Speed up 1.26 1.70 2.53 3.60 4.36 4.79
Node expansion 1,466,521 936,426 550,103 160,273 112,768 85,831
Node generation 4,368,415 2,790,478 1,640,090 478,695 336,947 256,209
Heuristic distance 4,368,415 2,790,478 1,640,090 957,390 1,347,788 2,049,673
Node comparison 204,221,411 127,759,932 71,621,193 48,249,260 31,599,130 23,031,989
Duplicate nodes found 1,725,778 1,096,411 637,774 181,302 126,643 95,800
Replication percentage 0.85% 0.86% 0.89% 0.38% 0.40% 0.42%
Obtained path length 40 40 40 42 42 42
Quality loss 0.24% 0.60% 1.74% 5.42% 5.07% 4.07%
Search effectiveness 8.27% 10.05% 8.56% 9.33% 11.88% 13.32%
Solvable hard samples 35% 46% 56% 100% 100% 100%

row) might be needless. Of course overlooking duplicates might lead to higher loss in the
solution quality. Again this area needs more empirical knowledge.

Finally, identifying promising nodes and the frequency of broadcasting them need addi-
tional heuristic knowledge that depends on the characteristics of the hardware, the commu-
nication network, and the number of hosts participating in the search.

7. Future work

The major limiting factor on the performance of Uni DHS and Bi DHS is the inter-node
replicated search efforts. One obvious way to lessen the amount of replicated work is to have
the hosts send nodes to each other. However, the performance gains using this approach are
limited at best. Additionally, this approach undoubtedly introduces an overhead that may
backfire and reduce the performance.

A less obvious way is a clever distribution of the start nodes. Future work includes
experimentation using different distribution functions in order to reduce replicated search
efforts. The distribution functions obviously depend on the employed heuristic function.

The more the amount of replicated work is minimized in the early stages of the search, the
lesser it will be in later stages of the search. Therefore, a technique for avoiding replicated
work in the early stages of the search may be advantageous, even if it were a costly one.
This is especially true for hard samples. One such technique is to have each host run a
number of best-first searches after the breadth-first search executes and before the main
best-first search is executed. The best-first searches are used to prune the paths that will
result in replicated work in the early stages of the search. For a host πi to prune paths that
will result in replicating the work of another host π j it must run a best-first search using the
start nodes of host π j to determine which nodes should be put on its closed list before the
main best-first search is executed.

250 AL-AYYOUB

Many questions must be answered before this technique can be fully implemented, in-
cluding: How many best-first searches should each host execute and for which hosts? What
is the strategy used to terminate the best-first searches and how does it affect the solution
quality?

Acknowledgments

The author would like to the thank the anonymous referees for their comments and sug-
gestions which improved the paper. Many thanks also go to Nayef Abu-Ghazaleh and to
the Department of Computer Science at State University of New York at Binghamton for
allowing him do the tests on their cluster.

References

1. A. Al-Ayyoub and F. Masoud. Heuristic search revisited. Journal of Systems and Software, 55(2):103–113,
2000.

2. A. Al-Ayyoub and F. Masoud. Search quality and effectiveness for intelligent systems. In Proceedings of the
8th International Conference on Intelligent Systems, Denver, Colorado, USA, pp. 146–149, June 24–26, 1999.

3. D. DeChampeaux. Bidirectional heuristic search again. Journal of the ACM, 30(1): 22–32, 1983.
4. D. DeChampeaux and L. Sint. An improved bidirectional heuristic search algorithm. Journal of the ACM,

24(2):177–191, 1977.
5. A. Grama and V. Kumar. A survey of parallel search algorithms for discrete optimization. Technical Report

Number 93-11. Department of Computer Science and Engineering, The University of Minnesota, 1993.
6. O. Hansson, A. Mayer, and M. Yung. Criticizing solutions to relaxed models yields powerful admissible

heuristics. Information Science, 63(3):207–227, 1992.
7. H. Kaindl and G. Kainz. Bidirectional heuristic search reconsidered. Journal of Artificial Intelligence Research,

7:283–317, 1997.
8. R. Krof. Depth-first iterative-deepening: An optimal admissible tree search. Artificial Intelligence, 27(1):97–

109, 1985.
9. R. Korf. Linear-space best-first search. Artificial Intelligence, 62(1):41–78, 1993.

10. V. Kumar and V. Rao. Scalable parallel formulation of depth-first search. In V. Kumar, P. Gopalakishnan, and
L. Kanal, eds. Parallel Algorithms for Machine Intelligence and Vision, Springer-Verlag, New York, 1990.

11. G. Manzini. BIDA*: An improved perimeter search algorithm. Artificial Intelligence, 75(2):347–360, 1995.
12. N. Nadal. Tree search and arc consistency in constraint satisfaction algorithms. In L. Kanal and V. Kumar,

eds. Search in Artificial Intelligence, Springer-Verlag, New York, 1988.
13. N. Nilsson. Principles of Artificial Intelligence. Tioga Publishing Company, Palo Alto, 1980.
14. J. Pearl. Heuristic-Intelligence Search Strategies for Computer Problem Solving. Addison-Wesley, Reading

MA, 1984.
15. I. Phol. Bi-directional search. Machine Intelligence, 6:127–140, 1971.
16. G. Politowski and I. Pohl. D-node Retargeting in Bidirectional Heuristic Search. In Proceedings of the Fourth

National Conference on Artificial Intelligence, Menlo Park, CA, pp. 274–277, 1984.
17. C. Powley and R. Korf. Single-agent parallel window search. IEEE Transactions on Pattern Analysis and

Machine Intelligence, PAMI–13(5):466–477,1991.
18. V. Rao and V. Kumar. Parallel depth-first search, Part I: implementation. International Journal of Parallel

Programming, 16(6):479–499, 1987.

