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Abstract. Lattice-ordered abelian groups, or abelian �-groups in what follows, are cat-

egorically equivalent to two classes of 0-bounded hoops that are relevant in the realm of

the equivalent algebraic semantics of many-valued logics: liftings of cancellative hoops and

perfect MV-algebras. The former generate the variety of product algebras, and the latter

the subvariety of MV-algebras generated by perfect MV-algebras, that we shall call DLMV.

In this work we focus on these two varieties and their relation to the structures obtained

by forgetting the falsum constant 0, i.e., product hoops and DLW-hoops. As main results,

we first show a characterization of the free algebras in these two varieties as particular

weak Boolean products; then, we show a construction that freely generates a product al-

gebra from a product hoop and a DLMV-algebra from a DLW-hoop. In other words, we

exhibit the free functor from the two algebraic categories of hoops to the corresponding

categories of 0-bounded algebras. Finally, we use the results obtained to study projective

algebras and unification problems in the two varieties (and the corresponding logics); both

varieties are shown to have (strong) unitary unification type, and as a consequence they

are structurally and universally complete.

Keywords: Hoops, Free algebras, Product algebras, Perfect MV-algebras, Unification.

1. Introduction

This work aims at deepening our understanding of some relevant many-
valued logics that are deeply connected to lattice-ordered abelian groups
(abelian �-groups in what follows), and the role that the falsum constant 0
plays in them. Beyond their purely algebraic interest, abelian �-groups have
surely played an important role in the understanding and study of some
well-known varieties of algebras that constitute the equivalent algebraic se-
mantics in the sense of Blok–Pigozzi [12] of many-valued logics. In particular
MV-algebras, that are the equivalent algebraic semantics of infinite-valued
�Lukasiewicz logic [19], can be seen as intervals of lattice-ordered abelian
groups; the latter connection extends to Mundici’s categorical equivalence
between abelian �-groups with strong unit and MV-algebras [41]. In [32] the
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reader can find a general algebraic approach to Mundici’s construction that
delves into the connections between �-groups and algebras of many-valued
logics. Moreover, it is of particular interest for this work that the algebraic
category of abelian �-groups is equivalent to the algebraic categories asso-
ciated with the following classes of algebras: cancellative hoops (since they
are term-equivalent to negative cones of abelian �-groups [9,22]), liftings of
cancellative hoops [21], and perfect MV-algebras [27]; all these classes play
an important role in the study of many-valued logics, and are examples
of hoops, ordered algebras related to logic first defined in an unpublished
manuscript by Büchi and Owens and later on investigated in particular in
[2,11,28]. The lifting of a cancellative hoop C, usually written as 2 ⊕ C,
is obtained by adding a new bottom element to C; these algebras generate
the variety of product algebras, which is the algebraic semantics of one of
the main logics in Hájek’s framework of many-valued logics arising from
continuous t-norms [35], product logic. Perfect MV-algebras are instead an
interesting class of MV-algebras with infinitesimals and co-infinitesimals,
that can be described as the disconnected rotations [8,36] of negative cones
of �-groups. The first example of a perfect MV-algebra has been given by
Chang in [17], which is essentially the disconnected rotation of the negative
cone of the integers seen as an �-group. Chang’s algebra generates the whole
variety generated by perfect MV-algebras, which we will call in what follows
DLMV since it was first axiomatized by Di Nola and Lettieri in [27]. Both
liftings and disconnected rotations can be seen as instances of the more gen-
eral construction of generalized rotation as studied in the papers [8,16,23]
with different levels of generality. In this setting, the two constructions can
be thought of as ways to obtain 0-bounded structures starting from abelian
�-groups, and preserving all their categorical properties; moreover they con-
stitute two opposed and extreme ways to define negations: in the lifting, all
non-zero elements have as negation the new bound, 0, while disconnected
rotations are involutive structures (¬¬x = x for all elements x). These two
choices both result in structures that have a Boolean retraction term [21];
this entails that they can be described by means of their Boolean skeleton
(i.e. the Boolean subalgebra given by the complemented elements) and their
radical (i.e. the intersection of their maximal filters), which is the negative
cone of an �-group.

The main aim of this work is to deepen the understanding of the variety of
product algebras P and the variety DLMV generated by perfect MV-algebras,
investigating in particular the role of the falsum constant 0. In order to do
so, we study the relationship between product algebras and DLMV-algebras
and the varieties of residuated structures that one obtains when forgetting
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the 0; that is, the varieties of their 0-free subreducts: product hoops and
DLW-hoops. From the logical point of view, via algebraizability, we are
studying the falsum-free (and therefore also negation-free) fragment of the
corresponding logics. We observe that, while the two varieties of product
and DLMV-algebras have been deeply studied, and their relationship with
cancellative hoops has been quite well investigated (see for instance [21,40]),
their 0-free subreducts have received less attention. While DLW-hoops seem
absent from the literature, product hoops appear in the seminal work [2]
and the two recent works [34,38], that inspired this investigation; in the
former it is shown that product hoops coincide with the class of maximal
filters of product algebras seen as residuated lattices, and the latter gives a
functional representation of finitely generated free product hoops in terms
of real-valued functions.

In this work, a first main result is a characterization of the free algebras
over an arbitrary set of generators in the two varieties of product and DLW-
hoops; the latter are obtained as particular subreducts of the corresponding
free algebras in the 0-bounded varieties. More precisely, we obtain a repre-
sentation in terms of weak Boolean products of which we characterize the
factors; while this kind of description for 0-bounded residuated lattices is
present in the literature, we are not aware of analogous results for varieties of
residuated structures with just the constant 1. We observe that in a variety
that is the equivalent algebraic semantics of a logic, free (finitely generated)
algebras are isomorphic to the Lindenbaum–Tarski algebras of formulas of
the logic; thus their study is important from both the perspective of algebra
and logic.

As the next main outcome of this work, we go back from hoops to the
corresponding 0-bounded varieties, and we exhibit the free functor from the
varieties of hoops of interest to the corresponding 0-bounded varieties. In
other words, we show a construction that freely adds the falsum constant
0: starting from a product hoop (or a DLW-hoop) we obtain the product
algebra (DLMV-algebra) freely generated by it. The construction for DLW-
hoops is shown to coincide with the MV-closure introduced in [1].

Finally, we use the results obtained on free product hoops and free DLW-
hoops to characterize finitely generated projective algebras in the two vari-
eties, which turn out to be exactly the finitely presented algebras. From the
point of view of the associated logics, via Ghilardi algebraic approach to uni-
fication problems [33], this implies that their unification type is (strongly)
unitary: there is always a best solution to a unification problem, and it is
represented algebraically by the identity homomorphism; this is in parallel
to the case of product algebras and DLMV-algebras studied in [5]. The study
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of unification problems is strongly connected to the study of admissible rules
(or, in the algebraic setting, admissible quasiequations); a rule is said to be
admissible in a logic if every substitution that makes the premises a theorem
of the logic, also makes the conclusion a theorem of the logic. As a conse-
quence of our results, we get that the logics associated with both product
hoops and DLW-hoops are structurally complete, i.e. the admissibility of
rules coincides with their derivability; using results in [6], we can actually
conclude that the two logics are universally complete, that is, admissibility
coincides with derivability also for multiple-conclusion rules.

We also anticipate that the results we obtained do not only hold for the
varieties of product hoops and DLW-hoops; more precisely, we will carry out
the investigation in the setting of the 0-free subreducts of varieties with a
Boolean retraction term that are generated by the (previously mentioned)
generalized rotation construction. From a methodological point of view, our
novel approach shows how to transfer results and techniques from the 0-
bounded varieties (that are usually better known) to their 0-free subreducts.
It will become clear that, in order to be able to do so fruitfully, a key
role is played by the radical of the algebras being a cancellative hoop, or,
equivalently, the negative cone of an �-group.

2. Preliminaries

2.1. Residuated Lattices and Hoops

Lattice-ordered abelian groups, or abelian �-groups for short, are abelian
groups with a lattice order, with the group operation distributing over the
lattice operations. Here we will consider abelian �-groups as their term-
equivalent analogue within the theory of (commutative) residuated lattices.
For all the unexplained notions of universal algebra we refer to [14], and for
the theory of residuated lattices to [31].

A commutative residuated lattice is an algebra A = (A, ·,→,∧,∨, 1) of
type (2, 2, 2, 2, 0) such that:

(1) (A, ·, 1) is a commutative monoid;

(2) (A,∧,∨) is a lattice;

(3) the residuation law holds: x · y ≤ z iff y ≤ x → z.

We will often write xy for x ·y, and xn for x · . . . ·x (n times). A commutative
residuated lattice is: integral if the monoidal unit 1 is also the top of the
lattice structure; 0-bounded if there is an extra constant 0 that is the bottom
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element of the lattice. In 0-bounded structures we will consider a negation
operator defined as ¬x = x → 0, and with that a sum operation x + y =
¬(¬x · ¬y). Then we also write nx for x + . . . + x (n times).

Commutative residuated lattices are a variety (see [13]), that we denote
with CRL; we denote its subvariety given by integral algebras by CIRL, and
sometimes we refer to the algebras therein as CIRLs. 0-bounded commuta-
tive integral residuated lattices will be abbreviated as BCIRLs, while their
variety is usually denoted with FLew, since they are the equivalent algebraic
semantics of the Full Lambek Calculus with the structural rules of exchange
and weakening (see the textbook reference [31] for the connection between
residuated structures and substructural logics).

In this framework, abelian �-groups can be defined as commutative resid-
uated lattices satisfying:

x(x → 1) = 1. (2.1)

Given an abelian �-group G, its negative cone G− is the integral residuated
lattice with domain G− = {x ∈ G : x ≤ 1}, and with operations defined
starting from the ones of G as x ∗ y = x ∗G y for ∗ ∈ {·,∧,∨} and x → y
= (x →G y) ∧ 1 for all x, y ∈ G−. Negative cones of �-groups constitute a
variety LG− that can be axiomatized relatively to CIRL by divisibility:

x ∧ y = x(x → y) (div)

and cancellativity, expressed by the following identity:

x → xy = y. (canc)

We remark that satisfying the divisibility equation is equivalent to saying
that the order ≤ induced by the lattice operations is the inverse divisibility
ordering, that is, x ≤ y if and only if there exists z such that x = yz.

Both LG and LG− are semilinear varieties, i.e. they are generated by to-
tally ordered algebras. In fact, they are generated respectively by Z and its
negative cone Z−, where Z is the residuated lattice Z = (Z, +,	, min, max, 0)
given by the integers where the product is the sum, the unit is 0, the impli-
cation is the difference (x 	 y = y − x), and the order is the usual one.

Semilinearity in CIRLs is characterized by the prelinearity equation:

(x → y) ∨ (y → x) = 1. (prel)

Observe that in CIRLs that satisfy divisibility the meet operation can be
defined by means of product and implication (by the very definition of di-
visibility), and it is well-known that if we add prelinearity as well, then also
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the join can be rewritten by means of {·,→} as

x ∨ y = ((x → y) → y) ∧ ((y → x) → x). (2.2)

Thus such algebras can be written in the reduced language of hoops, {·,→, 1},
and are in fact usually called basic hoops. More precisely, a hoop is an algebra
A = (A, ·,→, 1) of type (2, 2, 0) such that (A, ·, 1) is a commutative monoid
and for all x, y, z ∈ A,

x → x = 1; x(x → y) = y(y → x); xy → z = x → (y → z).

In a hoop the relation defined by

x ≤ y if and only if x → y = 1

is a partial order that is not in general a lattice order but a ∧-semilattice
order; the meet operation can be defined as x∧y = x(x → y). In fact, hoops
could be defined as divisible commutative integral residuated ∧-semilattices.
See [2,11] for more details on the theory of hoops.

We call cancellative hoops basic hoops satisfying cancellativity, we denote
their variety with CH. Cancellative hoops are term-equivalent to negative
cones of �-groups; for simplicity, in what follows we will be speaking of can-
cellative hoops instead of negative cones of �-groups. Other relevant varieties
of hoops are given by Gödel hoops, that are basic hoops satisfying idempo-
tency:

x2 = x, (2.3)

and Wajsberg hoops. A Wajsberg hoop is a hoop which further satisfies

(x → y) → y = (y → x) → x. (2.4)

Any cancellative hoop is also a Wajsberg hoop, and all Wajsberg hoops
are basic hoops. Finally, a generalized Boolean algebra is an idempotent
Wajsberg hoop (thus it is also a Gödel hoop). Notice once again that all
these varieties are term-equivalent to varieties of CIRLs.

Let us now move to 0-bounded hoops, which are particularly relevant in
the realm of many-valued logics in Hájek’s framework [35]. Starting again
from residuated lattices, a BL-algebra is a BCIRL that further satisfies divis-
ibility and prelinearity; BL-algebras can once again be seen in the reduced
signature, in this case of 0-bounded hoops, {·,→, 0, 1}. BL-algebras consti-
tute a variety, BL, that is the equivalent algebraic semantics in the sense
of Blok–Pigozzi of Hájek’s basic logic, the logic of continuous t-norms [20].
The most relevant subvarieties of BL are Gödel, product, and MV-algebras.
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MV-algebras are BL-algebras satisfying involutivity:

x = ¬¬x; (2.5)

Gödel algebras are BL-algebras satisfying idempotency; product algebras
constitute the subvariety P of BL-algebras satisfying the following identity:

¬x ∨ ((x → (x · y)) → y) = 1, (2.6)

which in chains (i.e., totally ordered algebras) corresponds to cancellativity
for non-zero elements. Adding the equation x ∨ ¬x = 1 to any of these
varieties defines the variety of Boolean algebras BA in this signature. The
latter can equivalently be defined as BCIRLs where x·y = x∧y and x → y =
¬x∨y. Given a 0-bounded BCIRL A, a 0-free subreduct of A is a subalgebra
of the 0-free reduct of A. Given a variety of BCIRLs, the class of its 0-free
subreducts is a variety of CIRLs. We observe in passing that in general the
class of subreducts of algebras in a (quasi)variety is always a quasivariety as
shown by Mal’cev [37]; the fact that the class of 0-free subreducts V0 of a
variety of BCIRLs is in fact a variety can be easily shown using the fact that
commutative residuated lattices have the congruence extension property (for
a detailed proof see [44, Proposition 3.1]).

Proposition 2.1. Basic hoops, Wajsberg hoops, Gödel hoops, and general-
ized Boolean algebras are the 0-free subreducts of, respectively, BL-algebras,
MV-algebras, Gödel algebras, and Boolean algebras.

Cancellative hoops in turn are not the subreducts of a variety of bounded
hoops; indeed cancellativity implies that there are no nontrivial bounded
(and in particular no finite) models. In the next subsection we introduce
two constructions that allow to obtain bounded structures from unbounded
ones, and that preserve all the categorical properties.

Before moving on, we stress that since all the structures we are interested
in actually do have a term-definable lattice reduct, we will usually consider
them in the signature of (B)CIRLs (instead of the one of hoops).

2.2. Generalized Rotations

Given a CIRL A, its lifting is the algebra 2⊕A, having A ∪ {0} as domain,
and the operations extending those of A in the obvious way: for x ∈ A,
x · 0 = 0 · x = x → 0 = 0, and 0 → x = 1. Let us mention for the interested
reader that the notation makes it apparent that the lifting of A corresponds
to the ordinal sum construction of the two-element Boolean algebra 2 and
A. For a pictorial intuition, see Figure 1.
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Figure 1. The algebra 2 ⊕ A, given a CIRL A

Figure 2. On the left we have A ∈ CIRL and on the right its disconnected

rotation

Consider again a CIRL A; its disconnected rotation is a bounded involu-
tive structure obtained by gluing below A its rotated copy (see Figure 2).

More precisely, given a CIRL A, its disconnected rotation DR(A) is a
BCIRL whose lattice reduct is given by the union of A and its disjoint copy
A′ = {a′ : a ∈ A} with dualized order, placed below A: for all a, b ∈ A,

a′ < b, and a′ ≤ b′ iff b ≤ a.

In particular, the top element of DR(A) is the top 1 of A and the bottom
element of DR(A) is the copy 0 := 1′ of the top 1. A is a subreduct,
the products in A′ are all defined to be the bottom element 0 = 1′, and
furthermore, for all a, b ∈ A,

a · b′ = (a → b)′; a → b′ = (b · a)′; a′ → b′ = b → a.

Liftings and disconnected rotations can be seen uniformly via the gen-
eralized rotation construction (see [8,43] for details, and [30] for the non-
commutative version of this construction). The idea is to use nuclei to ex-
press both constructions uniformly. A nucleus on a residuated structure A
is a closure operator δ on A such that δ(x)δ(y) ≤ δ(xy), for all x, y ∈ A.
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Definition 2.2. Let A be a CIRL; a rotation operator for A is a nucleus
that preserves the lattice operations.

The generalized rotation Rotδ(A) of a CIRL A with respect to a rotation
operator δ on A differs from the disconnected rotation above in that it
replaces A′ with δ[A]′ = {δ(a)′ : a ∈ A}, where δ(a)′ is short for (δ(a))′. It is
easy to see that then with respect to the above order we have δ(a)′ ∧ δ(b)′ =
δ(δ(a) ∨ δ(b))′. Moreover, for all a ∈ A, b ∈ δ[A],

a → b′ = (δ(ba))′.

Then the reader can easily check that

(1) if δ(x) = 1̄(x) = 1 we get the lifting construction;

(2) if δ(x) = x, i.e. it is the identity map, we get the disconnected rotation.

The latter two operators are examples of term-defined rotation operators.

Definition 2.3. Let V be a variety of CIRLs; a term-defined rotation op-
erator for V is a unary term δ(x) in the language of CIRLs that defines a
rotation operator for each A in V.

Remark 2.4. In some relevant cases, the two introduced rotation operators
(the identity and the map 1̄) are the only ones that matter. For instance, as
observed in [3, §4], they are the only term-defined rotation operators for the
variety of cancellative hoops. Note that this does not mean that they are
the only rotation operators on such structures: in every distributive CIRL
A (so in particular in every cancellative hoop), fix an element a ∈ A, then
the map δ(x) = a ∨ x is a rotation operator.

Following [5] we identify a class of particularly well behaved varieties
generated by generalized rotations, which include all the relevant examples.

Definition 2.5. We say that a variety of BCIRLs V is a term-defined va-
riety of generalized rotations if V is generated by generalized rotations such
that the rotation operator is a fixed term-defined rotation δ(x).

If we start from a cancellative hoop C, then its lifting is a product alge-
bra, and its disconnected rotation is a perfect MV-algebra; in fact, perfect
MV-algebras can be defined as disconnected rotations of cancellative hoops.
Perfect MV-algebras do not form a variety, and the variety they generate is
axiomatized relatively to MV-algebras by

2x2 = (2x)2 (DL)
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as shown by Di Nola and Lettieri in [27] (in the same paper they also show
that perfect MV-algebras and abelian �-groups are categorically equivalent).
We call this variety DLMV. Similarly, liftings of cancellative hoops generate
the variety of product algebras. Both product algebras and DLMV-algebras
are term-defined varieties of generalized rotations. From all that we have
seen above, the following is easy to see. Recall that given a class of algebras
K, its associated algebraic category has the elements in K as objects, and
the homomorphisms as morphisms.

Theorem 2.6. The following algebraic categories are equivalent: LG, LG−,
perfect MV-algebras, liftings of cancellative hoops.

Thus perfect MV-algebras and liftings of cancellative hoops are 0-bounded
structures with the same categorical properties of abelian �-groups. We will
now be mostly interested in the class of structures obtained by forgetting
the 0 from the algebras in the variety of product algebras and DLMV-
algebras, generated respectively by liftings and disconnected rotations of
cancellative hoops. In particular, the 0-free subreducts of product algebras
and DLMV-algebras constitute, respectively, the varieties of product hoops
and of DL-Wajsberg hoops (DLW-hoops for short).

Product hoops are axiomatized in [2] as basic hoops satisfying:

(y → z) ∨ ((y → xy) → x) = 1; (2.7)

DLW-hoops, since �Lukasiewicz sum can be rewritten in a 0-free language as
x+ y = (x → (xy)) → y, can be axiomatized with respect to basic hoops by
the translation of the equation characterizing DLMV-algebras with respect
to MV, and thus by:

(x2 → x4) → x2 = ((x → x2) → x)2. (2.8)

2.3. Structure Theory and Boolean Retraction Terms

With respect to their structure theory, all the algebras we have introduced
are quite well behaved. In particular, they are congruence permutable and
1-regular, that is, the congruences are totally determined by their 1-blocks
(i.e., the equivalence class of 1), which we will call congruence filters (or
filters for short). It can be shown that a filter of a hoop (or a CIRL) A is a
nonempty subset of A closed under multiplication and upwards.

Filters form an algebraic lattice isomorphic with the congruence lattice
of A and if X ⊆ A then the filter generated by X in A is

FilA(X) = {a ∈ A : x1 · . . . · xn ≤ a, for some n ∈ N and x1, . . . , xn ∈ X}.

(2.9)
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We will drop the subscript A whenever there is no danger of confusion. The
isomorphism between the filter lattice and the congruence lattice is given by
the maps:

θ �−→ 1/θ = {a ∈ A : (a, 1) ∈ θ}
F �−→ θF = {(a, b) : a → b, b → a ∈ F},

where θ is a congruence and F a filter. In what follows, if F = 1/θ is a filter
of an algebra A, we shall write the corresponding quotient with either A/θ
or A/F . We call a filter F maximal if it is not properly contained in any
proper filter. Moreover, we call radical of an algebra A the intersection of its
maximal filters. The radical is a filter itself, and it is the domain of a CIRL
with the operations inherited from A, which we will denote by Rad(A).

Given a BCIRL A, another subset of its domain that will be relevant
in what follows is the Boolean skeleton of A. We call an element x ∈ A
complemented if x ∨ ¬x = 1, x ∧ ¬x = 0.

Definition 2.7. Let A be a BCIRL, its Boolean skeleton Bool(A) is the
Boolean algebra of all the complemented elements of A. We call an element
x of A Boolean if x ∈ Bool(A).

Notice how the Boolean skeleton always contains 0 and 1; moreover,
Bool(A) is the maximum Boolean algebra contained in A. The following
lemma is derived from [15, Lemma 2.5], and essentially follows from the
well-known fact that in directly indecomposable BCIRLs (and therefore in
subdirectly irreducible ones) the only Boolean elements are 0 and 1.

Lemma 2.8. Let V be a variety of BCIRLs, and let A ∈ V. For any b, b′ ∈
Bool(A) and x, y ∈ A the following hold:

(1) b · x = b ∧ x;

(2) b ∨ x = ¬b → x;

(3) x ∨ (b ∧ b′) = (x ∨ b) ∧ (x ∨ b′) and x ∧ (b ∨ b′) = (x ∧ b) ∨ (x ∧ b′);

(4) if b ∨ x = b ∨ y and b → x = b → y then x = y.

Definition 2.9. Given a variety V of BCIRLs, a Boolean retraction term
for V is a unary term t(x) in the language of BCIRLs such that for every
A ∈ V the interpretation of t in A defines a retraction from A onto Bool(A),
i.e. an idempotent homomorphism from A onto Bool(A).

These last notions are quite relevant in varieties generated by generalized
rotations; indeed, all such varieties have a Boolean retraction term (given by
2x2 or (2x)2 [8,24]). This also implies that such algebras are characterized
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by their radical, their Boolean skeleton, and an operator that intuitively
defines the join between elements of the Boolean skeleton and the radical, as
we will discuss more in detail later on (but see [8]). For now, we observe that,
in term-defined varieties of generalized rotations (such as product algebras
and DLMV-algebras) the radicals of the algebras in V constitute a variety
of CIRLs; we observe in passing that the latter property does not hold in
general (see [5, Example 2.6]). Given a variety V, we call the radical class
of V and denote it with RV the class

RV = {Rad(A) : A ∈ V}. (2.10)

Proposition 2.10. [5, Proposition 2.10] Let V be a term-defined variety of
generalized rotations. The radical class of V is a variety.

We also recall that in a variety with a Boolean retraction term t the
radical of an algebra A ∈ V is defined by:

Rad(A) = {x ∈ A : t(x) = 1}, (2.11)

while the Boolean skeleton is given by

Bool(A) = {x ∈ A : t(x) = x} = {t(x) : x ∈ A}. (2.12)

We observe that both product algebras and DLMV-algebras are term
defined varieties and their radical class is the variety of cancellative hoops.
Both product algebras and DLMV-algebras are then subvarieties of the va-
riety of all generalized rotations of cancellative hoops. We will call the latter
RCH. This variety is semilinear (since prelinearity is preserved by general-
ized rotations), and it can be axiomatized by prelinearity, the equation (DL)
characterizing semilinear varieties with a Boolean retraction term, and the
following identity

(t(x) ∧ t(y)) → ((x → xy) → y) ∧ (y → (x → xy)) = 1, (2.13)

where t(x) = 2x2, which entails that the radical of the algebras is a can-
cellative hoop (see [3]).

Remark 2.11. By Remark 2.4, the identity and 1̄ are the only term-defined
rotation operators for cancellative hoops; moreover, the trivial variety is the
only proper subvariety of cancellative hoops. Thus the only subvarieties of
RCH that are term-defined varieties of generalized rotations are: product
algebras (generated by rotations of cancellative hoops with the operator
1̄), DLMV-algebras (generated by rotations of cancellative hoops with the
identity) and Boolean algebras (since the 2-element Boolean algebra is the
rotation of the trivial algebra by any of those two operators).
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2.4. Free Algebras and Weak Boolean Products

In the most relevant varieties of bounded residuated lattices with a Boolean
retraction term, free algebras can be described by means of free Boolean
algebras and free algebras in the radical class [5,24]. In particular, this rep-
resentation is in terms of weak Boolean products indexed by the Stone space
of the Boolean skeleton of the free algebra, and the factors are generalized
rotations of free algebras in the radical class.

The underlying idea is that all varieties of BCIRLs are congruence dis-
tributive, and thus they have the Boolean Factor Congruence property or
BFC: the set of factor congruences of any algebra is a distributive sublattice
of its congruence lattice; this notion has been introduced by Chang, Jónsson
and Tarski [25]. The BFC implies that one can, to some extent, use the Stone
representation Theorem for Boolean algebras to characterize algebras in less
manageable varieties. Indeed algebras with constants in varieties with the
BFC are representable as weak Boolean products of directly indecomposable
algebras [26]. Precisely, a weak Boolean product of a family {Ai}i∈I of al-
gebras is a subdirect product A ≤ ∏

i∈I Ai, where I can be endowed with
a Boolean space topology such that: the set {i ∈ I : ai = bi} is open for all
a, b ∈ A; if a, b ∈ A and N ⊆ I is clopen, then the element c, defined by
ci = ai for i ∈ N and ci = bi for i ∈ I\N , belongs to A.

Thus, each algebra in a subvariety of BCIRLs can be represented as a
weak Boolean product of directly indecomposable algebras over the Stone
space of its Boolean skeleton. More precisely:
Theorem 2.12. [24] Let A be a BCIRL. Then A is representable as the
weak Boolean product of the family

{A/F ilA(U) : U is an ultrafilter of Bool(A)},

over the Boolean space given by the Stone topology on the ultrafilters of
Bool(A).

In order to use this description more fruitfully, one wishes to characterize
the factors of the decomposition; this can be done effectively in varieties with
a Boolean retraction term that are term-defined, and that satisfy another
extra condition; the following definitions are also used in [5].
Definition 2.13. Let V be a term-defined variety of generalized rotations,
with rotation operator δ(x). Let A,B ∈ RV, and let X be a set of generators
of A; f : X → B respects the rotation operator if x = δ(x) implies δ(f(x)) =
f(x). Then V is a radical-determined variety of generalized rotations if for
all A,B ∈ RV and X generating set of A, any map f : X → B respects the
rotation operator.
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It can be easily seen that product algebras and DLMV-algebras (and
all term-defined varieties whose rotation operator is either the identity or
the constant function 1̄) are radical-determined varieties of generalized ro-
tations. For such varieties, the factors of the weak Boolean product repre-
sentation are generalized rotations of free algebras in the radical class, as we
will now discuss; the reader can check [5, Theorem 3.9] for a representation
in the more general setting of term-defined varieties.

In what follows, given a variety V and a set X = {x1, . . . , xn}, we write
FV(X) for the free algebra over X in V. Now, notice that given a free Boolean
algebra over some set X, FBA(X), its ultrafilters are in one-one correspon-
dence with subsets of X, determining which generators belong to the ultra-
filter. Let us fix some notation we will be using in the rest of the section. Let
V be a variety of BCIRLs with a Boolean retraction term t, and consider a
set X. For each S ⊆ X, let US be the filter generated in Bool(FV(X)) in the
following way:

US = FilBool(FV(X))({t(x) : x ∈ S} ∪ {¬t(x) : x ∈ X \ S}); (2.14)

US is an ultrafilter of Bool(FV(X)), and it generates a filter FS of FV(X):

FS = FilFV(X)(US). (2.15)

The following results about the Boolean skeleton and the radical of free
algebras of varieties generated by generalized rotations are respectively from
[24, Theorem 4.1] and [5, Corollary 3.12].

Theorem 2.14. Let V be a variety of BCIRLs with a Boolean retraction
term t(x). Given any set X, Bool(FV(X)) is the free Boolean algebra over
the set of generators {t(x) : x ∈ X}.
Theorem 2.15. Let V be a radical-determined variety of generalized rota-
tions with Boolean retraction term t(x) and rotation operator δ(x). Given
any set X, FV(X) is representable as the weak Boolean product of the family
{FV(X)/FS : S ⊆ X}. In particular, for each S ⊆ X:

FV(X)/FS
∼= Rotδ(FRV

(XS)),

where XS = {x/FS : x ∈ S} ∪ {¬x/FS : x ∈ X\S}.
We observe that each factor FV(X)/FS in the above representation is a

directly indecomposable algebra that is a generalized rotation of its radical
with the rotation operator coinciding with its double negation ¬¬ (see [8]);
the radical in particular is the free algebra in RV generated by XS. For the
varieties we are interested in, we get that:
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(1) if the rotation operator is the identity, FV(X)/FS is the disconnected
rotation of the free algebra in RV with |X| many generators;

(2) if the rotation operator is the map 1̄ constantly equal to 1, FV(X)/FS

is the lifting of the free algebra in RV with |S| many generators.

Thus, for the varieties we are mostly interested in, the previous theorem
reads as follows.

Corollary 2.16. Let V be the variety of product algebras or of DLMV-
algebras. Then given any set X, Bool(FV(X)) is the free Boolean algebra
over the set {2x2 : x ∈ X}. Moreover FV(X) is representable as a weak
Boolean product indexed by the ultrafilters of Bool(FV(X)), and the factors
are isomorphic to:

(1) 2 ⊕ FCH(S), for each S ⊆ X, if V = P;

(2) DR(FCH(X)) if V = DLMV.

Finally, we observe that if X is a finite set, the weak Boolean prod-
uct representation actually yields an isomorphism onto the direct product;
therefore, if V is a variety generated by liftings of algebras in a variety RV,
if X is a finite set

FV(X) ∼=
∏

S⊆X

2 ⊕ FRV
(S) (2.16)

and if W is a variety generated by disconnected rotations of algebras in a
variety RW, with X a finite set

FW(X) ∼=
∏

S⊆X

DR(FRW
(X)). (2.17)

Thus in particular FP(X) ∼= ∏
S⊆X 2 ⊕ FCH(S) and FDLMV(X) ∼=∏

S⊆X DR(FCH(X)).

3. Free Algebras and Weak Boolean Products

We have seen that free algebras in some varieties of BCIRLs with a Boolean
retraction term can be nicely described in terms of weak Boolean prod-
ucts of directly indecomposable algebras characterizable as some particular
generalized rotations.

In varieties of non 0-bounded residuated lattices one does not have Boolean
subalgebras anymore, and while a weak Boolean product representation ex-
ists by general results (CIRLs are still congruence distributive), we are not
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aware of any existing effective description in varieties with just the constant
1 in the signature. In this section we will show how one can obtain a weak
Boolean product representation of free algebras in the varieties of product
hoops and DLW-hoops.

Let us start by observing that what makes these varieties special in this
scenario is the fact that the Boolean retraction term can be equivalently
written in the 0-free language. Recall that RCH is the semilinear variety
generated by generalized rotations of cancellative hoops.

Proposition 3.1. Let V be a subvariety of RCH. Then t(x) = (x2 → x4) →
x2 is a Boolean retraction term for V.

Proof. The term 2x2 is a Boolean retraction term for semilinear varieties
with a Boolean retraction term [24, Corollary 5.9]. We show that in RCH it
holds that 2x2 = (x2 → x4) → x2.

Let us observe that in varieties generated by generalized rotations
all directly indecomposable algebras (and thus in particular all subdirectly
irreducible algebras) are generalized rotations of algebras in the radical
class ([24, Lemma 3.5], [8, Theorem 2.8]). Thus it suffices to check that
2x2 = (x2 → x4) → x2 in all generalized rotations of cancellative hoops. Let
A be such an algebra. Then given a ∈ A, either a is in the radical of A or
it is in its rotated copy. In the first case, 2a2 = 1, and since the radical is a
cancellative hoop we get

(a2 → a4) → a2 = a2 → a2 = 1.

In the second case, 2a2 = 0, and

(a2 → a4) → a2 = (0 → 0) → 0 = 0.

Thus the two terms 2x2 and t(x) = (x2 → x4) → x2 are equivalent in RCH,
and t is therefore a Boolean retraction term for V.

We will now see how this fact is essential to show a characterization of
free algebras in the varieties of product hoops and DLW-hoops as particular
weak Boolean products. The starting idea comes from the following fact;
the proof is standard but for details see [44, Theorem 3.2] where the same is
used to show a representation of free Wajsberg hoops as subreducts of free
MV-algebras.

Theorem 3.2. Let V be a variety of BCIRLs, and V0 the variety of CIRLs
given by its 0-free subreducts. Then, for any set X, FV0(X) is isomorphic
to the subalgebra of the 0-free reduct of the free algebra FV(X) generated by
X.
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The previous fact allows one to give a representation for FV0(X) start-
ing from a representation of FV(X), by properly characterizing the 0-free
subreduct of FV(X) generated by X. Recall that we can see the elements
of a free algebra FV(X) as equivalence classes of terms in the language of
V written over variables in X; thus characterizing FV0(X) corresponds to
characterizing the equivalence classes of the 0-free terms.

Definition 3.3. Let V be a variety of bounded hoops, or BCIRLs. We will
call positive an element of FV(X) that is the equivalence class of a 0-free
term written with variables in X.

We now proceed to show how to “rewrite” elements of free algebras in
varieties with a Boolean retraction term, in order to be able to describe
the positive ones. Let X be a set of variables, and let p ∈ FV(X); notice
that there are x1, . . . , xn ∈ X such that p = u(x1, . . . , xn) for some term
u in the language of V. Let Xn = {x1, . . . , xn}, then p actually belongs
to the subalgebra FV(Xn) of FV(X). Let us now consider the atoms of the
Boolean skeleton of FV(Xn), FBA(t(Xn)) (where by t(Xn) we mean the set
{t(x1), . . . , t(xn)}). It is well known that the atoms of a finitely generated
free Boolean algebra can be written as all the possible meets of the generators
and their negations; that is, given any subset S of a finite set Xn, we can
associate an atom

aS =
∧

x∈S

t(x) ∧
∧

y∈Xn\S

¬t(y), (3.1)

and all atoms can be written in this way.

Notation 1. We shall write a+ for aXn
to simplify the notation, since this

particular atom will play an important role in what follows.

One can use the atoms of finitely generated free algebras to rewrite the
elements of possibly infinitely generated algebras; let X be any set, and let
p ∈ FV(X) as above, p = u(x1, . . . , xn). Then since

∨
S⊆Xn

aS = 1 and
∧

S⊆Xn
¬aS = 0,

p = p ∧
∨

S⊆Xn

aS =
∨

S⊆Xn

p ∧ aS (3.2)

and

p = p ∨
∧

S⊆Xn

¬aS =
∧

S⊆Xn

p ∨ ¬aS =
∧

S⊆Xn

aS → p; (3.3)

note that we have used Lemma 2.8 for the last equality and for the distribu-
tivity over a finitary join and meet of Boolean elements. We also observe
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that if we consider for each S ⊆ Xn an element pS ∈ FV(Xn) such that
aS → p = aS → pS then

p =
∧

S⊆Xn

aS → pS. (3.4)

Remark 3.4. With respect to the weak Boolean product representation

FV(X) ≤
∏

S⊆X

FV(X)/FS,

we observe that an element p ∈ FV(X) embeds into the tuple

(p/FS)S⊆X = ((aS → p)/FS)S⊆X ,

since aS ∈ US ⊆ FS and then aS/FS = 1/FS . We will often use this repre-
sentation in proofs.

One can then reduce the analysis of an element p in some free algebra to
its “components” aS → p = aS → pS . While the previous observations seem
promising, we are not aware of general methods to rewrite the elements of
the kind aS → p in order to check whether they are equivalent to positive
terms; however, we will see that a uniform approach is possible whenever the
Boolean retraction term t is positive, which is the case for product algebras
and DLMV-algebras (and actually for algebras in RCH in general). The
following is easy to prove.

Lemma 3.5. If b is an element of a free Boolean algebra, b is either positive
or b = ¬b′ and b′ is positive.

We can then prove the next key lemma.

Lemma 3.6. Let V be a variety of BCIRLs with a positive Boolean retraction
term t. Then b ∈ Bool(FV(X)) is positive if and only if b ∈ UX .

Proof. We start by showing the left-to-right direction by contrapositive;
assume that b /∈ UX . Then, since UX is an ultrafilter, ¬b ∈ UX , i.e., there
are x1, . . . , xn ∈ X such that t(x1) ∧ . . . ∧ t(xn) ≤ ¬b. Then we get that
b∧ t(x1)∧ . . .∧ t(xn) ≤ b∧¬b = 0, and thus b∧ t(x1)∧ . . .∧ t(xn) = 0. Since
we are assuming that t is positive, if b were to be positive then 0 would be
positive as well; the latter yields a contradiction, since 0 is not positive (to
see it, observe that 0 = ¬1 and so it is not positive by Lemma 3.5). Thus if
b /∈ UX , b is not positive.

Assume now that b is not positive, we show that b /∈ UX . Notice that since
b ∈ Bool(FV(X)), b is in the equivalence class of some p(t(x1), . . . , t(xn)),
p being some term. By Lemma 3.5, either p is positive or it is equivalent
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to the negation of a 0-free term; but since t is positive and b is not, we
get that necessarily p = ¬p′ for some p′ written in the 0-free language.
Now, each t(xi) ∈ UX by definition, and (ultra)filters are closed under the
operations {·,→,∧,∨}, thus p′(t(x1), . . . , t(xn)) ∈ UX , which implies that
b = ¬p′(t(x1), . . . , t(xn)) /∈ UX . This completes the proof.

It is now immediate to see that given a finite set Xn = {x1, . . . , xn}, the
only positive atom of FBA(t(Xn)) is a+ (since it is the only one in UXn

),
while all other atoms aS for S � Xn are not positive.

Lemma 3.7. Let V be a variety of BCIRLs with a positive Boolean retraction
term t. Let X be any set of variables, and consider p(x1, . . . , xn) ∈ FV(X);
then given Xn = {x1, . . . , xn}, for every S � Xn the Boolean element

aS =
∧

x∈S⊆Xn

t(x) ∧
∧

y∈Xn\S

¬t(y)

is such that aS → p is positive.

Proof. As observed right above, aS /∈ UXn
and then ¬aS ∈ UXn

, thus the
latter is positive by Lemma 3.6. Consider the term p′ obtained starting from
p and substituting each occurrence of 0 with ¬aS (if p has no occurrences
of 0, it means that it is positive, and we get p′ = p); p′ is 0-free and then
positive by construction.

We show that p ∨ ¬aS = p′ ∨ ¬aS . Let us consider their representative in
the weak Boolean product representation FV(X) ≤ ∏

S′⊆X FV(X)/FS′ , i.e.
respectively the tuples

(p ∨ ¬aS/FS′)S′⊆X and (p′ ∨ ¬aS/FS′)S′⊆X .

We distinguish two cases: ¬aS ∈ US′ and ¬aS /∈ US′ . In the former case, we
get that p∨¬aS, p′ ∨¬aS ∈ FS′ and then (p∨¬aS)/FS′ = (p′ ∨¬aS)/FS′ =
1/FS′ . In the latter case, ¬aS /∈ US′ implies that ¬aS/FS′ = 0/FS′ and then
by the definition of p′ we get that (p ∨ ¬aS)/FS′ = (p′ ∨ ¬aS)/FS′ . Thus
p ∨ ¬aS, which coincides with aS → p by Lemma 2.8, is positive.

The previous result is extremely useful for our purpose, since it yields that
in the case in which the Boolean retraction term is positive, the positivity
of a term p is completely determined by its “component” a+ → p. We will
now show that such an element is positive if and only if its component
(a+ → p)/FX in the weak Boolean product representation belongs to the
radical of the directly indecomposable factor.

Theorem 3.8. Let V be a radical-determined variety of generalized rota-
tions with a positive Boolean retraction term t. Let X be any set of variables,
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and consider p(x1, . . . , xn) ∈ FV(X); let a+ = t(x1) ∧ . . . ∧ t(xn). Then p is
positive if and only if a+ → p is positive if and only if t(a+ → p) ∈ UX .

Proof. The first equivalence follows directly from Lemma 3.7. We now
show that if a+ → p is positive then t(a+ → p) ∈ UX . Let us consider the
representation of the element a+ → p in the weak Boolean product, i.e., the
tuple ((a+ → p)/FS)S⊆X . Since we assume that a+ → p is positive, there is a
0-free term over variables x1, . . . , xn in X such that a+ → p = q(x1, . . . , xn).
Since t is a Boolean retraction term, by definition it induces a homomor-
phism, thus t(q(x1, . . . , xn)) = q(t(x1), . . . , t(xn)); since each t(xi) ∈ UX ,
and q is written with operations in {·,→,∧,∨} under which UX is closed,
t(a+ → p) = q(t(x1), . . . , t(xn)) ∈ UX .

Conversely, suppose that t(a+ → p) ∈ UX , we will show that a+ → p is
positive by finding a 0-free term q such that a+ → p = a+ → q; first we
assume without loss of generality that a+ → p = p′(x1, . . . , xn) for some
term p′ in the language of V. Notice that t(a+ → p) is an element of the free
Boolean algebra FBA(t(X)) = Bool(FV(X)) and therefore it can be written
in canonical normal form as a disjunction of conjunctions of literals over
variables t(x1), . . . , t(xn); it follows that if we consider the subalgebra of
FV(X) given by the finitely generated free algebra FV(Xn) (where we mean
Xn = {x1, . . . , xn}), then

t(a+ → p) ∈ UX ⊆ FV(X) if and only if t(a+ → p) ∈ UXn
⊆ FV(Xn),

since both statements are fully determined by the fact that t(x1), . . . , t(xn) ∈
UXn

⊆ UX .
Let us now consider the representation of FV(Xn) as a weak Boolean

product, i.e.

FV(Xn) ≤
∏

S⊆Xn

FV(Xn)/FS.

Let us have a look at the factor FV(Xn)/FXn
; this is a directly indecompos-

able algebra that is a generalized rotation of its radical FRV
(Xn).

Since we are assuming that t(a+ → p) ∈ UXn
⊆ FXn

, it follows that
t(a+ → p)/FXn

= 1/FXn
, which implies that a+ → p/FXn

belongs to
the radical FRV

(Xn) (by definition of radical, see identity (2.11)). Therefore,
there is a 0-free term q such that (a+ → p)/FXn

= q(x1, . . . , xn)/FXn
. We

will finally show that a+ → p = a+ → q; since the latter is positive, this will
conclude the proof. Consider a+ → p and a+ → q as their representatives
given by the tuples ((a+ → p/FS))S⊆Xn

and ((a+ → q)/FS)S⊆Xn
. Now if

S = Xn, then
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(a+ → p)/FXn
= q(x1, . . . , xn)/FXn

= (a+ → q(x1, . . . , xn))/FXn

since a+/FXn
= 1/FXn

. If S � Xn, then a+ /∈ US and also a+ /∈ FS , thus
a+/FS = 0/FS and then

(a+ → p)/FS = (a+ → q(x1, . . . , xn))/FS = 1/FS.

We have shown that a+ → p = a+ → q, and thus a+ → p is positive, which
concludes the proof.

Thus, we obtain the following.

Theorem 3.9. Let V be a radical-determined variety of generalized rota-
tions with a positive Boolean retraction term t, and let X be any set of
variables. The free algebra of V0 over X is the 0-free subreduct of the weak
Boolean product of FV(X) given by the elements p ∈ FV(X) such that
t(a+ → p) ∈ UX .

Remark 3.10. Notice that an element p ∈ FV(X) is such that t(a+ → p) ∈
UX if and only if p/FX = (a+ → p)/FX ∈ Rad(FV(X)/FX).

We can rephrase this result in terms of weak Boolean products in the
case of radical-determined varieties of generalized rotations. In order to do
so, we first restrict the filters FS for each S ⊆ X to the positive elements.

Notation 2. From now on, given a BCIRL A we write A0 for its 0-free
reduct.

Let V be a radical-determined variety of generalized rotations with a
positive Boolean retraction term t. Let X be any set, and for each S ⊆ X
set

GS = {t(x) : x ∈ S} ∪ {t(x) → (t(y) ∧ y) : x ∈ X \ S, y ∈ X}; (3.5)

and let F+
S be the filter generated by GS in FV0(X):

F+
S = FilFV0(X)(GS). (3.6)

Lemma 3.11. Let V be a radical-determined variety of generalized rotations
with a positive Boolean retraction term t. Let X be any set, then F+

S is the
restriction to FV0(X) of FS ⊆ FV(X).

Proof. Recall that FS is the filter of FV(X) generated by

{t(x) : x ∈ S} ∪ {¬t(x) : x ∈ X \ S}.

We will show that F+
S = FS ∩ FV0(X), i.e. F+

S is the restriction of FS to
positive elements. First we prove that x ∈ F+

S implies x ∈ FS ∩FV0(X). Let
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then x ∈ F+
S ; by definition F+

S is a filter of FV0(X) so we really only need
to show that x ∈ FS . By the definition of a filter generated by a set (see the
identity (2.9)), x ∈ F+

S implies that there are two finite subsets I, J that
select (possibly repeated) elements of GS , say PI = {t(xi) : i ∈ I, xi ∈ S}
and QJ = {t(xj) → (t(yj) ∧ yj) : j ∈ J, xj ∈ X\S, yj ∈ X} such that

x ≥
⊙

i∈I

t(xi) ·
⊙

j∈J

[t(xj) → (t(yj) ∧ yj)]

where we are using
⊙

to denote the iteration of the usual monoidal oper-
ation. Now, each t(xi) ∈ PI is also a generator of FS . Moreover, for each
xj /∈ S we have that ¬t(xj) ∈ FS , and in FV(X)

t(xj) → (t(yj) ∧ yj) ≥ t(xj) → 0 = ¬t(xj).

Therefore

x ≥
⊙

i∈I

t(xi) ·
⊙

j∈J

t(xj) → (t(yj) ∧ yj) ≥
⊙

i∈I

t(xi) ·
⊙

j∈J

¬t(xj) ∈ FS ,

and then x ∈ FS.

For the other direction, let x ∈ FS ∩ FV0(X), we show that then x ∈
F+

S . We will consider x as its representative in the weak Boolean product
FV(X) ≤ ∏

S′⊆X FV(X)/FS′ , that is, as the string (x/FS′)S′⊆X . Notice that
since x ∈ FS there are finite subsets I ′, J ′ selecting (possibly repeated)
elements among the generators of FS , say MI = {t(xi) : i ∈ I, xi ∈ S} and
NJ = {¬t(yj) : j ∈ J, yj ∈ X\S} such that

x ≥
⊙

i∈I

t(xi) ·
⊙

j∈J

¬t(yj).

Let us write z =
⊙

i∈I t(xi)·
⊙

j∈J ¬t(yj), then x ≥ z. Now, x = p(v1, . . . , vn)
for some positive term p and variables {v1, . . . , vn} ⊆ X; we will show that
there exists m ∈ N such that the following element z′ ∈ F+

S :

z′ =
⊙

i∈I

t(xi) ·
⊙

j∈J,k=1...n

(
t(yj) → (t(vk) ∧ vk)

)m

is such that z′ ≤ x. Note that this will conclude the proof. Precisely, let us
consider the term p(x1, . . . , xn) as an element of FCH({x1, . . . , xn}), and let
m be such that

p(x1, . . . , xn) ≥
⊙

k=1...n

xm
k ;
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such m exists since all elements of the free cancellative hoop can be written
as a join of meets of powers of the generators ( [7, Theorem 3.1.1]). In
particular,

p(x1, . . . , xn) =
∨

i∈I∗

∧

j∈J∗
x

mij

ij ≥
∧

j∈J∗
x

mi′j
i′j ≥

⊙

j∈J∗
x

mi′j
i′j

for i′ ∈ I∗, and then we take m = max{mi′j : j ∈ J∗}.

We proceed to prove that the desired inequality holds in each component,
i.e. z′/FS′ ≤ x/FS′ for each S′ ⊆ X. Notice first that z′/FS ≤ x/FS = 1/FS .
We now consider the cases where S′ ⊆ X,S′ �= S; for the next calculations
we will see once again FV0(X) as a subreduct of FV(X), in order to be able
to use the elements of the kind 0/FS′ .

(1) If for all i ∈ I and j ∈ J , xi ∈ S′ and yj /∈ S′, we have that z/FS′ =
1/FS′ . Thus since z ≤ x we get that also x/FS′ = 1/FS′ and then clearly
z′/FS′ ≤ x/FS′ ;

(2) if there exists i ∈ I such that xi /∈ S′ we get that z′/FS′ = 0/FS′ ≤
x/FS′ .

(3) If for all i ∈ I xi ∈ S′ and there exists j ∈ J such that yj ∈ S′ then
t(xi)/FS′ = t(yj)/FS′ = 1/FS′ and

z′/FS′ ≤
⊙

k=1...n

(vk ∧ t(vk))m/FS′ .

If there is a vk /∈ S′ we get that z′/FS′ = 0/FS′ ≤ x/FS′ . Otherwise, if all
v1 . . . vn are in S′ then it holds that v1/FS′ . . . vn/FS′ ∈ Rad(FV(X)/FS′)
which is a free cancellative hoop. Thus by the choice of m we get that

x/FS′ = p(v1, . . . , vn)/FS′ ≥
⊙

k=1...n

vm
k /FS′ = z′/FS′ .

Therefore, for each S′ ⊆ X, x/FS′ ≥ z′/FS′ , which shows that x ∈ F+
S and

concludes the proof.

Corollary 3.12. Let V be a radical-determined variety of generalized ro-
tations with a positive Boolean retraction term t and rotation operator δ.
FV0(X) is representable as the weak Boolean product over the Boolean space
given by the Stone topology on the ultrafilters of FBA(t(X)), given by the
family {FV0(X)/F+

S : S ⊆ X}. Moreover the factors can be represented as
follows:

FV0(X)/F+
S

∼= [Rotδ(FRV
(XS))]0
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for S � X and where XS = {x/F+
S : x ∈ S} ∪ {(x → t(x))/F+

S : x ∈ X\S},
and

FV0(X)/F+
X

∼= FRV
(X).

Proof. By Theorem 3.9, FV0(X) embeds in the 0-free reduct of
∏

S⊆X

FV

(X)/FS via the map i : x �→ (x/FS)S⊆X , which selects only the positive
elements; in symbols

FV0(X) ↪→ [
∏

S⊆X

FV(X)/FS]0 =
∏

S⊆X

[FV(X)/FS]0.

In particular, Theorem 3.9 (together with Remark 3.10) yields that the
image of i is the product

∏

S�X

[FV(X)/FS]0 × Rad(FV(X)/FX).

Now, it follows from the fact that F+
S is the restriction of FS to positive

elements (Lemma 3.11) and the representation of positive elements in the
weak Boolean product that for each S � X

FV0(X)/F+
S

∼= [FV(X)/FS]0,

and

FV0(X)/F+
X

∼= Rad(FV(X)/FX).

In particular, the reader can check that the isomorphism is given by the
maps x/F+

S �→ x/FS . Therefore, FV0(X) embeds into
∏

S⊆X

FV0(X)/F+
S .

This embedding actually gives a subdirect representation, since the com-
position of the embedding with the projection to the factor indexed by
S ⊆ X, πS , is onto. Moreover, it is easy to check that it is a weak Boolean
product as a consequence of the fact that FV(X) had a weak Boolean
product representation with respect to the same Boolean space. Indeed,
the product is indexed over the Boolean space given by the ultrafilters of
FBA(t(X)) with the Stone topology, as in the 0-bounded case. Moreover, for
all a, b ∈ FV0(X),

{S ⊆ X : a/F+
S = b/F+

S } = {S ⊆ X : a/FS = b/FS}
and then they are both open; finally, for all a, b ∈ FV0(X) and N ⊆ P(X)
clopen, we can see that the element c defined by c/F+

S = a/F+
S if S ∈ N

and c/F+
S = b/F+

S otherwise, belongs to FV0(X). Indeed we know that c/F+
X

belongs to FV(X); now, c/F+
X belongs to FV0(X) if and only if c/F+

X = p/F+
X
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for some p positive; the latter follows from the fact that c/F+
X is either a/F+

S

or b/F+
S , and both a and b are positive elements.

Finally, it follows from Theorem 2.15, and the observation that x →
t(x)/FS = ¬x/FS for all x ∈ X\S, that for each S � X:

FV0(X)/F+
S

∼= [FV(X)/FS]0 ∼= [Rotδ(FRV
(XS))]0,

and

FV0(X)/F+
X

∼= Rad(FV(X)/FX) ∼= FRV
(X).

Applying this corollary to the two varieties we are interested in, PH and
DLWH, we get the following.

Corollary 3.13. The free algebra of PH over a set X is representable as
the weak Boolean product over the Boolean space given by the Stone topology
on the ultrafilters of FBA(t(X)), where t(x) = (x2 → x4) → x2, and the
factors are given by the family

{(2 ⊕ FCH(S))0 : S � X} ∪ {FCH(X)}.

Corollary 3.14. The free algebra of DLWH over a set X is representable
as the weak Boolean product over the Boolean space given by the Stone topol-
ogy on the ultrafilters of FBA(t(X)), where t(x) = (x2 → x4) → x2, and the
factors are given by the family

{DR(FCH(X))0 : S � X} ∪ {FCH(X)}.

Once again, when considering a finite set of variables, the representation
yields an isomorphism and we get the following representations.

Corollary 3.15. Let V be a radical-determined variety of generalized ro-
tations, with rotation operator δ, and positive Boolean retraction term t. For
every finite set X it holds that

FV0(X) ∼= ( ∏

S�X

[Rotδ(FRV
(XS))]0

) × FRV
(X),

where XS = {x/F+
S : x ∈ S} ∪ {(x → t(x))/F+

S : x ∈ X\S}. In particular:

FPH(X) ∼= ( ∏

S�X

(2 ⊕ FCH(S))0
) × FCH(X),

FDLWH(X) ∼= ( ∏

S�X

DR(FCH(X))0
) × FCH(X).
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We observe that the result for product hoops in the finitely generated
case has also been obtained in [38] using different methods (more precisely,
via a functional representation of finitely generated product hoops).

Remark 3.16. Note that given any set X, FV0(X) is a maximal filter of
FV(X). This is a direct consequence of Theorem 3.9 and Remark 3.10; in-
deed, in the representation, FV0(X) is the algebra with domain:

{p ∈ FV(X) : t(a+ → p) ∈ UX} = {p ∈ FV(X) : p/FX ∈ Rad(FV(X)/FX)}.

This set is a filter, since if p/FX , q/FX ∈ Rad(FV(X)/FX) then also
p ·q/FX = p/FX ·q/FX ∈ Rad(FV(X)/FX), and if p/FX ∈ Rad(FV(X)/FX)
and p ≤ q then p/FX ≤ q/FX ∈ Rad(FV(X)/FX). Moreover it is maximal;
indeed, let F be a proper filter of FV(X) and FV0(X) � F , then there is
z ∈ F\FV0(X); since a+ ∈ FV0(X) � F also t(a+ → z) ∈ F given that t is
positive. But from the fact that z /∈ FV0(X) it follows that t(a+ → z) /∈ UX ,
hence ¬t(a+ → z) ∈ UX ⊆ FV0(X) � F , a contradiction.

To conclude this section let us finally comment that, intuitively, one can
see that the whole free product algebra (or DLMV-algebra) can be recovered
using the information encoded in its maximal filter given by the correspond-
ing free product hoop (DLW-hoop). In the next section we will expand on
this intuition, and show in generality how given any hoop that is in the va-
riety RCH0 of 0-free subreducts of RCH one can construct the RCH-algebra
freely generated by it.

4. Free Functors

As anticipated, in this section we will give a description of the free functor
from the relevant subvarieties of RCH0 to their 0-bounded correspondent. In
other words, we present a way to freely construct a product algebra starting
from a product hoop and a DLMV-algebra starting from a DLW-hoop; we
will call the first construction product closure and show that the latter corre-
sponds to the MV-closure construction in [1] (introduced to freely construct
an MV-algebra from a Wajsberg hoop). The construction we introduce can
be seen as a way to introduce freely and uniformly the falsum constant 0 to
both product hoops and DLW-hoops.

4.1. Representation in Triples and Quadruples

As briefly mentioned in the preliminaries, both product algebras and DLMV-
algebras can be uniquely determined by a triple consisting of a Boolean
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algebra, a cancellative hoop, and a binary operator representing the join op-
eration between their elements. In order to give more context to the reader,
we mention that in lattice theory triples constructions date back to Chen
and Grätzer’s 1969 decomposition theorem for Stone algebras: each Stone al-
gebra is characterized by the triple consisting of its lattice of complemented
elements, its lattice of dense elements, and a map associating these struc-
tures [18]. Their approach has been generalized for instance in [42] to semi-
groups, and more recently it has been extended to account for residuated
structures in [15,16]. Here we follow the slightly different (but equivalent
in this context, see [43, §2.6]) approach independently initiated in [40] to
describe product algebras, and later followed in [8] to represent the algebras
in varieties generated by generalized rotations.

We now recall the representation in triples in more details, since we will
use it to define the free constructions we are interested in. The starting idea
is that the elements can be rewritten in terms of a Boolean component and
a radical component (see [16, Corollary 4.11], [8, Proposition 2.10]).

Proposition 4.1. Let V be a variety of BCIRLs generated by generalized
rotations, and let A ∈ V. Then for every x ∈ A:

x = (b(x) ∨ ¬c(x)) ∧ (¬b(x) ∨ c(x))

where b(x) = 2x2 ∈ Bool(A) and c(x) = x ∨ ¬x ∈ Rad(A).

However, Boolean skeleton and radical are not sufficient to characterize an
algebra in a variety with a Boolean retraction term, since one can find non-
isomorphic algebras with the same Boolean skeleton and the same radical;
see [40, Theorem 3.3] for a proof in the case of product algebras. The idea in
[8,40] is to add a binary operator intuitively representing the join between
a Boolean and a radical element. Let us be more precise.

Definition 4.2. Let B be a Boolean algebra and C be a CIRL, and let, for
b ∈ B and c ∈ C,

hb(x) = b ∨e x, kc(x) = x ∨e c.

A map ∨e : B × C → C is an external join between B and C if it satisfies
the following:

(V1) For fixed b ∈ B and c ∈ C, hb is an endomorphism of C and kc is a
lattice homomorphism from (the lattice reduct of) B into (the lattice
reduct of) C.

(V2) h0 is the identity on C, and h1 is constantly equal to 1.
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(V3) For all b, b′ ∈ B and for all c, c′ ∈ C, hb(c) ∨ hb′(c′) = hb∨b′(c ∨ c′) =
hb(hb′(c ∨ c′)).

(V4) For all b ∈ B and for all c, c′ ∈ C, (b∨e c) ·c′ = (¬b∨e c′)∧(b∨e (c ·c′)).

Both product algebras and DLMV-algebras are equivalent to a category
whose objects are triples of the form (B,C,∨e), where B is a Boolean algebra,
C is a cancellative hoop and ∨e is an external join between B and C (and
therefore, they are also equivalent to each other [8]). In order to deal with
different rotations operators uniformly, one has to also take into account the
rotation operator as well.

Definition 4.3. A Boolean quadruple is a quadruple of the form (B,C,∨e, δ),
where B is a Boolean algebra, C is a CIRL, ∨e is an external join between
B and C, and δ is a rotation operator on C.

Boolean quadruples are the objects of a category BQ whose morphisms
are called good morphism pairs and are defined as follows.

Definition 4.4. A good morphism pair from a quadruple (B,C,∨e, δ) to
another quadruple (B′,C′,∨′

e, δ
′) is a pair (h, k) where:

(1) h is a homomorphism from B to B′;

(2) k is a homomorphism from C to C′ such that k ◦ δ = δ′ ◦ k;

(3) (h, k) respects the external join, i.e. k(x∨ey) = h(x)∨′
ek(y) for all x ∈ B

and y ∈ C,.

We also mention that in the category of Boolean quadruples, given two
good morphism pairs (h, k) and (h′, k′), the composition is defined as (h, k)◦
(h′, k′) = (h ◦ h′, k ◦ k′).

Boolean quadruples are categorically equivalent to (the algebraic cate-
gory of) the variety generated by all generalized rotations, called MVR2

and axiomatized in [16,43]. In particular, given any algebra A in MVR2, A
corresponds to the quadruple (Bool(A), Rad(A),∨,¬¬). Vice versa, starting
from a quadruple (B,C,∨e, δ) one can define a BCIRL in the following way.
First, one fixes an equivalence relation on the direct product B × C intu-
itively describing which pairs (b, c) represent the same element: for every
(b, c), (b′, c′) ∈ B × C, (b, c) ∼ (b′, c′) if and only if

b = b′, ¬b ∨e c = ¬b ∨e c′ and b ∨e δ(c) = b ∨e δ(c′). (4.1)

We will write [b, c] for (b, c)/∼. Then the BCIRL corresponding to the quad-
ruple (B,C,∨e, δ) is the algebra

B ⊗δ
∨e

C = (B × C/∼,�,⇒,�,�, [0, 1], [1, 1])
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where the operations are defined as follows (and hb(x) = b ∨e x as above):

[b, c] � [b′, c′] = [b ∧ b′, hb∨¬b′(c′ → c) ∧ h¬b∨b′(c → c′) ∧ h¬b∨¬b′(c · c′)]

[b, c] ⇒ [b′, c′] = [b → b′, hb∨b′(δ(c) → δ(c′)) ∧ h¬b∨b′(δ(c · c′)) ∧ h¬b∨¬b′

(c → c′)]

[b, c] � [b′, c′] = [b ∧ b′, hb∨b′(c ∨ c′) ∧ hb∨¬b′(c) ∧ h¬b∨b′(c′) ∧ h¬b∨b′(c ∧ c′)]

[b, c] � [b′, c′] = [b ∨ b′, hb∨b′(c ∧ c′) ∧ hb∨¬b(c′) ∧ h¬b∨b′(c) ∧ h¬b∨¬b′(c ∨ c′)].

Moreover, any algebra A in a variety of generalized rotations is isomorphic
to Bool(A) ⊗¬¬

∨ Rad(A).

Remark 4.5. Despite their cumbersome look, the previous operations can
be easily parsed if the reader thinks of them as a “definition by cases”. The
idea is to think of the Boolean and radical components of an element as their
representative in a subdirect representation, where the Boolean component
is either 0 or 1. Then, given an element x with components (b, c) and an
element y with components (b′, c′), e.g. the radical component of the product
xy reads: if b = 0 and b′ = 1 then the product is c′ → c; if b = 1 and b′ = 0
it is c → c′; if b = b′ = 1 it is cc′; if b = b′ = 0 it is 1.

We described the relationship between the objects of MVR2 and BQ;
with respect to the morphisms, given A,B ∈ MVR2 and a homomorphism
h : A → B, this corresponds to the good morphism pair given by the
restrictions: (h�Bool(A), h�Rad(A)); vice versa, given a good morphism pair
(h, k) : (B,C,∨e, δ) → (B′,C′,∨′

e, δ
′), the corresponding homomorphism is

given by the map f : B ⊗δ
∨e

C → B′ ⊗δ′
∨′

e
C defined by

f [b, c] = [h(b), k(c)]. (4.2)

As shown in [5], the category of DLMV-algebras is equivalent to the full
subcategory of BQ where the CIRLs are cancellative hoops and the rotation
operator is δ = id, and the category of product algebras is equivalent to
the full subcategory of BQ where the CIRLs are cancellative hoops and the
rotation operator is δ(x) = 1. Thus any DLMV-algebra A can be seen as
B(A) ⊗id

∨ C(A) and any product algebra A as B(A) ⊗1̄
∨ C(A). We will use

this construction in the next subsection.

4.2. Closure Construction

In order to be able to use the previous representation to talk about the
0-free subreducts, one needs to rewrite the Boolean and radical components
in the 0-free language. In the previous section we have considered varieties
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with a positive Boolean retraction term; here this request does not suffice,
indeed we need to be able to express the radical component x ∨ ¬x of an
element x without the use of 0 (or ¬) as well.

While the latter tasks seems rather hopeless to tackle in general, it can
easily be achieved if the radical is a cancellative hoop. Let us consider again
the variety RCH, generated by generalized rotations of cancellative hoops.
Recall by Proposition 4.1 that b(x) = 2x2 ∈ Bool(A) and c(x) = x ∨ ¬x ∈
Rad(A).

Lemma 4.6. Let V be a subvariety of RCH. Then for any A ∈ V, x ∈ A,

b(x) = (x2 → x4) → x2, c(x) = x → x2.

Proof. The fact that the Boolean component is b(x) = (x2 → x4) → x2

is shown in Proposition 3.1. For the second part, observe that it suffices to
show that

x → x2 = x ∨ ¬x

in directly indecomposable algebras; recall that the latter are generalized
rotations of cancellative hoops. Let then A be a generalized rotation of a
cancellative hoop C, and let x ∈ A. Either a ∈ Rad(A) = C, or it is in its
rotated copy.

If x ∈ C, then x → x2 = x by cancellativity and x ∨ ¬x = x by construc-
tion. If x belongs to the rotated copy of C, then by construction ¬x ∈ C
and then

x ∨ ¬x = ¬x = x → 0 = x → x2.

The proof is complete.

The two terms above will be used in the rest of the section; let us denote
them by β and γ:

β(x) = (x2 → x4) → x2, γ(x) = x → x2. (4.3)

Combining Lemma 4.6 and the representation of the elements in Proposition
4.1 we get the following.

Proposition 4.7. Let V be a subvariety of RCH. Then for any A ∈ V and
x ∈ A

x = (β(x) ∨ (γ(x) → β(x))) ∧ (β(x) → γ(x)).

In particular, if A is a product algebra then

x = β(x) ∧ γ(x).
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Proof. The fact that b(x) = β(x), c(x) = γ(x) is shown in Lemma 4.6.
The representation of the elements in Proposition 4.1 can be rewritten as
above given the fact that b(x) ∨ (c(x) → b(x)) = b(x) ∨ ¬c(x), as it can
be easily shown using the subdirect representation. The fact that b(x) →
c(x) = ¬b(x) ∨ c(x) follows from Lemma 2.8.

Finally, for the result about product algebras, it can be shown again using
the subdirect representation that

(b(x) ∨ (c(x) → b(x))) ∧ (b(x) → c(x)) = b(x) ∧ c(x),

which concludes the proof.

Observe that if one considers any algebra A in RCH0 (e.g. a product hoop
or a DLW-hoop), A is a 0-free subreduct of some bounded algebra B in RCH.
Therefore any x ∈ A can be seen as an element of B, and thus it can be
represented by means of its Boolean and radical component by Proposition
4.7. Since b(x), c(x), and the representation itself is written in the 0-free
language, the following result holds:

Proposition 4.8. Let A ∈ RCH0, then for any x ∈ A:

x = (β(x) ∨ (γ(x) → β(x))) ∧ (β(x) → γ(x)).

If A is a product hoop then

x = β(x) ∧ γ(x).

We now follow some ideas used in [34], where a similar strategy has been
used to show that all product hoops are maximal filters of product algebras;
let S ∈ RCH0, we consider the following two sets:

G(S) = {β(x) : x ∈ S}, C(S) = {γ(x) : x ∈ S}. (4.4)

The proof of the following Lemma is the same as in [34, Lemma 3.1].

Lemma 4.9. Let S be an algebra in RCH0; then G(S) is a generalized Boolean
algebra and C(S) is a cancellative hoop.

Our aim is to use Boolean quadruples to define a product algebra starting
from a product hoop and a DLMV-algebra starting from a DLW-hoop; the
idea is to use the intuition stemming from the representation of free product
hoops as subreducts of free product algebras (and free DLW-hoops as sub-
reducts of free DLMV-algebras) shown in the previous section (Corollaries
3.13, 3.14 and 3.15). Let us focus for instance on the case of product hoops;
the idea is to reconstruct a free product algebra FP(X) from its maximal
filter given by the corresponding free product hoop FPH(X). With respect



V. Giustarini et al.

to the Boolean skeleton, a Boolean element is either in the maximal filter or
its negation is; the radical of FP(X) is instead all included in FPH(X). The
only piece of information left is the join between Boolean and cancellative
elements; notice that if b ∈ FPH(X), then also b∨c ∈ FPH(X) for all elements
c in the radical; while if b /∈ FPH(X), then b ∨ c = ¬b → c (Lemma 2.8) and
¬b ∈ FPH(X). This circle of ideas leads to the following choices.

Let V be a term-defined subvariety of RCH, S ∈ V0, and consider the
generalized Boolean algebra G(S) defined above. We first obtain a Boolean
algebra B(S) of which G(S) is isomorphic to a maximal filter by applying
the MV-closure construction in [1]. Let A be a Wajsberg hoop, then its MV-
closure is the MV-algebra MV(A) with domain A ∪ A∗, with A∗ = {a∗ :
a ∈ A} and the operations extending those of A in the following way:

a · b∗ = (a → b)∗; a∗ · b∗ = (a ⊕ b)∗;

a → b∗ = (a · b)∗; a∗ → b = a ⊕ b; a∗ → b∗ = b → a

where a ⊕ b = (a → ab) → b. Notice that the negation is then such that
¬a = a∗, ¬(a∗) = a, and then MV(A) is the disjoint union of A and
¬A = {¬a : a ∈ A} = A∗. Since generalized Boolean algebras are idempo-
tent Wajsberg hoops we can apply the MV-closure construction to them in
particular, and we can observe the following.

Proposition 4.10. [34] Let A be a generalized Boolean algebra, then its
MV-closure MV(A) is a Boolean algebra of which A is a maximal filter.

Thus, given S in RCH0, let

B(S) = MV(G(S)). (4.5)

Moreover, for any b ∈ B(S) and c ∈ C(S), we set

b ∨f c =
{

b ∨ c if b ∈ G(S),
¬b → c otherwise (4.6)

We observe that b∨f c : B(S)×C(S) −→ C(S), since the domain of C(S),
that is the set {c(x) : x ∈ S} = {x ∈ S : b(x) = 1}, is closed upwards.
Moreover, the following result holds:

Lemma 4.11. Let S ∈ RCH0 and let δ be a rotation operator for C(S), then
(B(S),C(S),∨f , δ) is a Boolean quadruple.

Proof. By definition B(S) ∩ C(S) = {1}, and the facts that B(S) is a
Boolean algebra and C(S) is a cancellative hoop follow from Lemma 4.9
and Proposition 4.10. It is left to show that ∨f is an external join, i.e. that
properties V 1-V 4 in Definition 4.2 hold.
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We will use once again the subdirect representation in order to show that
some identities involving elements b ∈ G(S) and c ∈ C(S) hold. Notice that
even though S is not a bounded structure, it is a 0-free subreduct of an
algebra in RCH; moreover, since G(S) and C(S) are images of the domain of
S via the terms β and γ, a 0-free identity involving elements b ∈ G(S) and
c ∈ C(S) is satisfied in any algebra S ∈ V0 ⊆ RCH0 if and only if the same
equation is satisfied in (the 0-free reduct of) any totally ordered algebra A
in V with b ∈ Bool(A), c ∈ Rad(A). Thus, in order to check some of the
following identities we will restrict to considering the elements b ∈ G(S) to
be either 1 or 0 (the latter seen as a bottom element rather than a constant
operation).

Let us start with V1. It follows straightforwardly from the definition that
for a fixed b ∈ B(S) the map hb is an endomorphism of C(S). The fact that kc

is a lattice homomorphism from (the lattice reduct of) B(S) into (the lattice
reduct of) C(S) can be shown by cases using the subdirect representation;
we show that

kc(b ∧ b′) = kc(b) ∧ kc(b′), kc(b ∨ b′) = kc(b) ∨ kc(b′) (4.7)

in the case where b ∈ G(S), b′ /∈ G(S) (thus ¬b′ ∈ G(S)), and we leave
the other cases to the reader. Note that b ∧ b′ /∈ G(S) while b ∨ b′ ∈ G(S).
Moreover, since B(S) is a Boolean algebra, ¬(b ∧ b′) = b → ¬b′ ∈ G(S) and
b ∨ b′ = ¬b′ → b ∈ G(S). Using this, the identities above in (4.7) become

(b → ¬b′)→c = (b ∨ c) ∧ (¬b′ → c) and (¬b′ → b) ∨ c = b ∨ c ∨ (¬b′ →c),

which can be easily shown using the subdirect representation of S. The other
cases are shown similarly.

V2 is easily seen to hold, i.e., h0 is the identity on C(S), and h1 is con-
stantly equal to 1. Recall that V3 asks that for all b, b′ ∈ B(S) and for all
c, c′ ∈ C(S),

hb(c) ∨ hb′(c′) = hb∨b′(c ∨ c′) = hb(hb′(c ∨ c′)).

If both b, b′ ∈ G(S) then the identities hold since the external join is the
join of the hoop, which satisfies the requested properties; if b, b′ /∈ G(S),
then the external join behaves once again as a join, given the fact that S is
a subreduct of some bounded algebra and by Lemma 2.8 ¬b → x = b ∨ x
in BCIRLs if b is Boolean. The other cases can be shown via the subdirect
representation. For instance, if b ∈ G(S) and b′ /∈ G(S) (thus ¬b′ ∈ G(S))
one needs to show that

(b ∨ c) ∨ (¬b′ → c′) = (¬b′ → b) ∨ (c ∨ c′) = b ∨ (¬b′ → (c ∨ c′)),
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which follows by trivial calculations by considering all the cases of b, ¬b′ ∈
{0, 1} in the subdirect representation of S. In particular if b = ¬b′ or b =
1,¬b′ = 0 then all members of the identities are 1, while if b = 0,¬b′ = 1
then they are all c ∨ c′.

Finally, with the same technique one can show that V4 holds, that is, for
all b ∈ B(S) and for all c, c′ ∈ C(S), (b ∨f c) · c′ = (¬b ∨f c′) ∧ (b ∨f (c · c′)).
If b ∈ G(S) the identity becomes

(b ∨ c) · c′ = (b → c′) ∧ (b ∨ (c · c′))

which if b = 0 gives cc′ = cc′ and if b = 1 it yields c′ = c′; if b /∈ G(S) (and
then ¬b ∈ G(S)) it is

(¬b → c) · c′ = (¬b ∨ c′) ∧ (¬b → (c · c′))

which holds since if ¬b = 0 it becomes c′ = c′ and if ¬b = 1 it is cc′ = cc′.
This completes the proof.

Recall that by Remark 2.11, the only subvarieties of RCH that are term-
defined varieties of generalized rotations are product algebras, DLMV-
algebras, and Boolean algebras (where the radical is always the trivial alge-
bra). Thus in what follows we really only care about P and DLMV; we still
write the results uniformly for simplicity. Let then V be either P or DLMV,
and let δ be the corresponding rotation operator; given any S ∈ V0, one can
define the Boolean quadruple (B(S),C(S),∨f , δ). We now define the closure
of S as the algebra

K(S) = B(S) ⊗δ
∨f

C(S).

Let us specify the construction in the two separate cases of product hoops
and DLW-hoops. In order to do so, first observe that since G(S) is a maximal
filter of B(S), we can actually split the domain of K(S) in two parts:

{[b, c] : b ∈ G(S)} and {[¬b, c] : b ∈ G(S)}.

The first subset is the domain of the subreduct of K(S) that is isomorphic
to S. Let [b, c]• = [¬b, c]. Thus, up to isomorphism, we can see the domain
of K(S) as the disjoint union

{[b, c] : b ∈ G(S)} and {[b, c]• : b ∈ G(S)}
With this in mind, let us rephrase the closure construction in the following
way. Let S• = {x• : x ∈ S}, and consider the equivalence relation (induced
by the one defined for the quadruple-construction in (4.1)) s ≡ s′ if and only
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if

β(s) = β(s′), ¬β(s) ∨f γ(s) = ¬β(s) ∨f γ(s′)

and β(s) ∨f δ(c(s)) = β(s) ∨f δ(γ(s′)).

Let the domain of K(S) be

K(S) = S ∪ S•/ ≡ .

The operations of K(S) extend those of S, and for the other elements the
reader can adapt the operations from the definition of B(S) ⊗δ

∨f
C(S) to

this notation using the representation of the elements; however, given that
they are quite complex, this does not add any further intuition. However, in
the cases of both product hoops and DLW-hoops considered separately, the
operations significantly simplify.

4.2.1. Product Closure Let us start from the case of S being a product
hoop. Then

K(S) = S ∪ S•/ ≡
where s ≡ s′ if and only if β(s) = β(s′) and ¬β(s) ∨f γ(s) = ¬β(s) ∨f γ(s′).
The operations of K(S) extend those of S as follows; let x, y ∈ S, and let us
write for simplicity β(x) = b, γ(x) = c, β(y) = b′, γ(y) = c′. Then:

xy• = ((b → b′) ∧ cc′)•;

x•y• = ((b ∨ b′) ∧ cc′)•;

x• → y• = (b′ → b) ∧ (b ∨ (c → c′));

x• → y = (b ∨ b′) ∧ (b ∨ (c → c′));

x → y• = (b ∧ b′ ∧ (bc → c′))•.

The previous identities can be shown to hold using the usual trick of the
subdirect representation of the elements. For instance, let us consider x• →
y•. Since the resulting structure is a product algebra,

x• = β(x•) ∧ γ(x•), y• = β(y•) ∧ γ(y•).

By construction, β(x•) = ¬b, β(y•) = ¬b′, γ(x•) = c, and γ(y•) = c′. We
then show that the identity x• → y• = (b′ → b) ∧ (b ∨ (c → c′)) holds for all
choices of b, b′ ∈ {0, 1}. If b = 1, then

(¬b ∧ c)→(¬b′ ∧ c′)=0 → (¬b′ ∧ c′)=1=1 ∧ 1=(b′ → b) ∧ (b ∨ (c → c′));

If b = 0, b′ = 1 then

(¬b ∧ c) → (¬b′ ∧ c′) = c → 0 = 0 = 0 ∧ (c → c′) = (b′ → b) ∧ (b ∨ (c → c′));
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finally, if b = b′ = 0 we get:

(¬b ∧ c) → (¬b′ ∧ c′) = c → c′ = 1 ∧ (c → c′) = (b′ → b) ∧ (b ∨ (c → c′)).

The proof for the other cases is left to the reader.

Remark 4.12. In [34] it is presented a way to construct a product algebra
from a product hoop that follows a similar line of thought, but with the aim
of showing that product hoops coincide exactly with the maximal filters of
product algebras. We remark that the product algebra we obtain here with
the product closure is not isomorphic to the one constructed in [34], since
the definition of external join is different.

4.2.2. (DL)MV-Closure We now show that if S is a DLW-hoop, then the
closure K(S) is (isomorphic to) the MV-closure construction. The key ob-
servation is that x• in this case is the negation of x, ¬x; indeed notice that
in B(S) ⊗id

∨f
C(S):

¬[b, c] = [¬b, δ(c)] = [¬b, c] = [b, c]•.

The last observation does not hold in general; in product algebras, for in-
stance, ¬[b, c] = [¬b, 1] which can be different from [¬b, c] = [b, c]•.

We get K(S) = S ∪ S•/ ≡ where s ≡ s′ if and only if

β(s) = β(s′), ¬β(s) ∨f γ(s) = ¬β(s) ∨f γ(s′) and

β(s) ∨f γ(s) = β(s) ∨f γ(s′).

Then by Lemma 2.8 we get that s ≡ s′ if and only if β(s) = β(s′) and
γ(s) = γ(s′), i.e. ≡ is the identity in this case. Let then s, s′ ∈ K(S) such that
β(s) ∈ G(S). The following can be shown via the subdirect representation,
or using the fact that the resulting structure is involutive:

a · b• = (a → b)•; a• · b• = (a ⊕ b)•;

a → b• = (a · b)•; a• → b = a ⊕ b; a• → b• = b → a

where a ⊕ b = (a → ab) → b, that are exactly the operations of the MV-
closure. This also shows that the MV-closure construction applied to a DLW-
hoop yields a DLMV-algebra.

4.3. Free Functors

We will now show that the closure construction is free.

Definition 4.13. Let V0 be the variety of 0-free subreducts of a variety V
of BCIRLs (or bounded hoops). Let H ∈ V0. We say that an algebra K ∈ V
is free over H if H is (isomorphic to) a subreduct of K that generates K,
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and given any CIRL (or hoop) homomorphism h : H −→ A ∈ V, h extends
uniquely to a bounded homomorphism ĥ : K −→ A.

Note that any CIRL homomorphism h commutes with the two rotation
operators δ = id, δ = 1̄, i.e. hδ = δh.

Theorem 4.14. Let V be either P or DLMV. Then given any H ∈ V0, K(H)
is free over H.

Proof. We write the proof uniformly for both V = P or V = DLMV. Let
H ∈ V0, A ∈ V, a hoop homomorphism h : H −→ A. We can identify
H with the subalgebra of K(H) given by the elements {[b, c] : b ∈ G(H)}.
We will show that h extends uniquely to a bounded hoop-homomorphism
ĥ : K(H) −→ A.

H K(H)

A

h
ĥ

By the categorical equivalence between algebras in RCH and the correspond-
ing quadruples, any homomorphism between RCH-algebras is uniquely de-
termined by its restrictions to the Boolean skeleton and the radical. More
precisely, to define a homomorphism from K(H) to A it suffices to de-
fine a homomorphism f : Bool(K(H)) → Bool(A), a homomorphism g :
Rad(K(H)) → Rad(A), such that

(1) gδ = δg;

(2) g(b ∨ c) = f(b) ∨ g(c), for b ∈ Bool(K(H)), c ∈ Rad(K(H)).

Now, given h : H −→ A, we consider the restrictions

h�G(H) : G(H) −→ A h�C(H) : C(H) −→ A.

Notice that h�G(H) : G(H) −→ Bool(A), h�C(H) : C(H) −→ Rad(A), since
the two subsets of the domain are term-defined in the 0-free language (see
identities (4.4)) and so preserved by homomorphisms.

We define g = h�C(H), while f is the extension of h�G(H) to B(H) defined
as

f(b) =
{

h(b) if b ∈ G(H),
¬h(¬b) otherwise.

The map g is a homomorphism since it coincides with the restriction of
h; it is easy to check that f is the unique extension of h�G(H) to a homomor-
phism from B(H) to Bool(A) (see [1, Theorem 3.6] for a proof).
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We now show that g(b ∨ c) = f(b) ∨ g(c) holds for any b ∈ B(H) and
c ∈ C(H). If b ∈ G(H), then

g(b ∨ c) = h(b ∨ c) = h(b) ∨ h(c) = f(b) ∨ g(c).

If b �∈ G(H), then ¬b ∈ G(H) and using Lemma 2.8

g(b ∨ c) = h(¬b → c) = h(¬b) → h(c) = ¬h(¬b) ∨ h(c) = f(b) ∨ g(c).

Since it is clear that in both cases (δ = id and δ = 1̄) hδ = δh, the pair of
homomorphisms (f, g) define a homomorphism from K(H) to A. Using the
description of morphisms in (4.2) and the representation of the elements in
Proposition 4.1, we can write

ĥ[b, c] = (f(b) ∨ ¬g(c)) ∧ (¬f(b) ∨ g(c)).

It is clear that ĥ extends h; the fact that it is the unique homomorphism
that does so follows again from the fact that any homomorphism is fully
determined by its restriction to the radical and Boolean skeleton, and the
observation that a homomorphism on B(H) is fully determined by its re-
striction on G(H) (that is a maximal filter). Thus, the claim follows.

Let us now show how our results translate to the categorical setting.
That is to say, we exhibit the free functor from PH to PA and from DLWH
to DLMV (seen as algebraic categories), i.e. the left adjoint to the forgetful
functor ΥPA : PA → PH and ΥDLMV : DLMV → DLWH that forgets the
falsum constant 0. We observe that such left adjoint always exists by cat-
egorical arguments, but there are no general techniques to actually exhibit
the construction.

Let V be either P or DLMV, and correspondingly let V0 be either PH
or DLWH. With a slight abuse of notation, we denote in the same way the
corresponding algebraic categories. We define the maps KV0 : V0 −→ V in
the following way; given any A,B ∈ V0, h : A −→ B,

KV0(A) = K(A);

KV0(h) = ĥ,

where ĥ : KV0(A) → KV0(B) is defined by ĥ[b, c] = [f(b), h(c)] and

f(b) =
{

h(b) if b ∈ G(H),
¬h(¬b) otherwise.

Lemma 4.15. Let V be either P or DLMV. KV0 is a functor from V0 to V.
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Proof. Let A,B ∈ V0, h : A −→ B. Clearly K(A) ∈ V. Now, seeing A and
B as their copies in KV0(A) and KV0(B), we have that h is a hoop homomor-
phism from A to KV0(B); thus within the proof of Theorem 4.14 we have
shown that KV0(h) is a homomorphism from KV0(A) to KV0(B). It is clear
that KV0 preserves the identity; we need to show that it preserves composi-
tions of morphisms. Consider h : A −→ B and k : B −→ C homomorphisms,
then one needs to show that

KV0(k ◦ h) = KV0(k) ◦ KV0(h) = k̂ ◦ ĥ.

The latter follows from the fact that KV0(k ◦ h), KV0(k), and KV0(h) are
fully determined by their restrictions to A and B, that is, by h and k.

We say that KV0 is the left adjoint to ΥV if there is a natural isomorphism

φ : homV(KV0−,−) −→ homV0(−, Υ−).

This means that for all objects A ∈ V0 and P ∈ V, φ gives a natural bijection
between the morphism sets homV(KV0(A),P) −→ homV0(A, Υ(P)), i.e. the
following diagram commutes:

homPA(KV0(A1),P1))
φ

��

��

homPH(A1, Υ(P1))

��

��

homPA(KV0(A2),P2))
φ

�� homPH(A2, Υ(P2))��

for all homomorphisms h : P1 −→ P2 and k : A2 −→ A1, where the vertical
arrows are induced by composition. In particular, given A ∈ V0,P ∈ V, and
f : KV0(A) −→ P, let

φ(f) = f�A.

The fact that φ is a bijection follows from Theorem 4.14, while the naturality
condition can be checked by direct computation. The proof of the following
theorem is then standard.

Theorem 4.16. KPH is the free functor from PH to PA, and KDLWH is the
free functor from DLWH to DLMV.

5. Applications: Projectivity, Unification, and Structural
Completeness

In this section we use our results to study projective algebras and unification
problems; in particular, as a consequence of the results in this section, we
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will show that both the varieties of product and DLW-hoops have strong
unitary unification type, and they are structurally (and actually universally)
complete.

By unification problem for a logic one usually means the following: given
two formulas (or terms) p, q, find a uniform replacement of the variables
(i.e. a substitution) occurring in p and q, called a unifier, that makes p and
q equal. If equality is given up to some equational theory, then one speaks
about equational unification. The latter has been studied in the framework
of algebraizable logics, and it is shown by Ghilardi to have a purely algebraic
counterpart [33], which we are going to follow here; his approach is based
on finitely presented and projective algebras in a variety.

We say that an algebra A in a variety V is finitely presented if, intu-
itively, it can be defined by a finite number of generators and finitely many
identities; more precisely, we call A ∈ V finitely presented if there exists a
finite set X and a finitely generated congruence θ ∈ Con(FV(X)) such that
FV(X)/θ ∼= A. The other fundamental concept that we need is the defini-
tion of projective algebras: an algebra P is projective in a class of algebras
K if for all A,B ∈ K, homomorphism f : P → A, surjective homomorphism
g : B → A, there is k : P → B such that f = gk. This notion is simplified if
K is a (quasi)variety. Indeed, an algebra is projective in a (quasi)variety V
if and only if it is a retract of a free algebra F ∈ V, that is, there exist ho-
momorphisms f : P → F, g : F → P such that gf = idP. Thus, in particular,
all free algebras are projective.

Now, a unification problem for a variety V is a finitely presented algebra
A in V and a solution for the said problem is a homomorphism u : A → P
where P is a projective algebra in V; u is called a unifier for A and we say
that A is unifiable. If u1, u2 are two different unifiers for A (with projective
algebras P1 and P2) we say that u1 is more general than u2 if there exists
a homomorphism m : P1 → P2 such that mu1 = u2. The relation “being
more general than” is a preordering on the set of all the unifiers of A thus,
if we consider its associated equivalence relation, the equivalence classes
form a partially ordered set UA of equally general unifiers. We say that the
unification type of A is: unitary if UA has a maximum; finitary if it is not
unitary and there are finitely many maximal elements; infinitary if it is not
finitary and there are infinitely many maximal elements; finally, if UA has
no maximal elements we say that the type is nullary. The type of a variety
is the worst type of its finitely presented algebras (considering the “best”
case to be the unitary type, and the worst being the nullary one).

If A has unitary type then the maximum of UA is called the most gen-
eral unifier (mgu) of A, which can be seen as the “best solution” for the
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unification problem. We say that A has strong unitary type if its mgu is the
identity; a variety V has strong unitary type if every unifiable finitely pre-
sented algebra A in V has strong unitary type. We observe that the property
of having strong unitary type in a variety can be reformulated in a simpler
way.

Proposition 5.1. Let V be any variety, then the following are equivalent:

(1) V has strong unitary type;

(2) for any finitely presented algebra A ∈ V, A is unifiable if and only if it
is projective.

It is an easy observation that for an algebra A to be unifiable corresponds
to having a homomorphism to the least free algebra FV (i.e. the 0-generated
one if the variety has a constant, the 1-generated one otherwise). Indeed,
such algebra is projective, and there is a homomorphism from every free
(and therefore also from every projective) algebra to FV (see [6, Lemma
2.22]).

Now, in a variety V of hoops or CIRLs (in which the only constant is
1), the smallest free algebra is the trivial one, i.e. FV = 1. Clearly, every
algebra has 1 as a homomorphic image, so, in a variety of CIRLs, every
finitely presented algebra is unifiable, therefore Proposition 5.1 becomes:

Proposition 5.2. Let V be any variety of CIRLs (or hoops), then the fol-
lowing are equivalent:

(1) V has strong unitary type;

(2) every finitely presented algebra A ∈ V is projective.

Projectivity in varieties of hoops and (B)CIRLs has been studied in [4];
in the latter paper it is shown that all locally finite varieties of hoops and
bounded hoops have strong unitary type. Moreover, local finiteness does
not characterize this property, since the same holds for cancellative hoops.
Indeed, projective and finitely generated �-groups coincide with finitely pre-
sented �-groups, as shown in [10]; since the properties of being projective,
finitely presented, and finitely generated in every variety is categorical, i.e.,
it can be described in the abstract categorical setting by properties of mor-
phisms, all these notions are preserved by categorical equivalences. There-
fore, we have the following result.

Proposition 5.3. Finitely presented cancellative hoops are exactly the
finitely generated and projective in their variety. Therefore, cancellative hoops
have strong unitary unification type.



V. Giustarini et al.

Other non-locally finite varieties of (bounded) hoops however do not share
this property; for instance, MV-algebras have nullary type [39], and the
same holds for Wajsberg hoops [44]. All the last mentioned results have
been obtained via geometrical methods using categorical dualities; we are
not aware of general methods to study projectivity and the unification type
in non-locally finite varieties of hoops or CIRLs.

In the rest of the section we will adapt the techniques introduced in [4] to
study projectivity in varieties of BCIRLs generated by generalized rotations,
in order to obtain analogous results for the corresponding varieties of 0-free
subreducts; in particular, we will see that product hoops and DLW-hoops
have strong unitary unification type, in analogy with product algebras and
DLMV-algebras. In algebraic terms, we will see that in these classes of al-
gebras finitely generated projective algebras coincide with finitely presented
ones. In fact, this will be shown to hold in all varieties of basic hoops that
are obtainable by means of generalized rotations from cancellative hoops.
The following essentially adapts the proof of [5, Theorem 4.10]. Recall once
again that the only radical-determined varieties of generalized rotations that
are subvarieties of RCH are Boolean algebras, product algebras, and DLMV-
algebras.

Theorem 5.4. Let V ⊆ RCH be a radical-determined variety of generalized
rotations. Every finitely presented algebra in V0 is projective.

Proof. Let A ∈ V0 be finitely presented, that is, there is a finite set X and
a compact congruence θ ∈ Con(FV0(X)) such that FV0(X)/θ ∼= A. We will
prove that A is a retract of FV0(X); by Corollary 3.15 we have that

FV0(X) ∼= ( ∏

S�X

[Rotδ(FCH(XS))]0
) × FCH(X).

Now, since CIRLs have distributive congruences, all congruences of a finite
direct product are product congruences, thus we can see θ as

∏
S θS, where

each θS is exactly the restriction of the congruence θ on the component of
the direct product indexed by S ⊆ X (where θX is the restriction to the last
component FCH(X)). Then A ∼= FV0(X)/θ is isomorphic to

(
( ∏

S�X

[Rotδ(FCH(XS))]0
) × FCH(X)

)

/θ ∼=
( ∏

S�X

[Rotδ(FCH(XS))]0/θS

)

×FCH(X)/θX .

Since θ is finitely generated, each congruence θS is finitely generated as well.
For the last coordinate, we get immediately that FCH(X)/θX is a finitely
presented cancellative hoop, hence, by Proposition 5.3, it is projective; this,
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by the definition of projectivity, implies that FCH(X)/θX is a retract of the
free algebra it is a quotient of, FCH(X). If S � X, we distinguish two cases:

• if θS is the total congruence, then [Rotδ(FCH(XS))]0/θS is the trivial al-
gebra, that is a retract of [Rotδ(FCH(XS))]0;

• if θS is not total, then it is completely determined by its restriction θ′
S

to the radical FCH(XS), since proper congruence filters of a generalized
rotation are fully determined by their restriction to the radical; the lat-
ter can be easily observed by noticing that proper filters in a generalized
rotation are filters of the radical. Now, FCH(XS)/θ′

S is again a finitely
presented cancellative hoop, thus by Proposition 5.3 it is also projec-
tive, and then it follows again from the definition of projectivity that
FCH(XS)/θ′

S is a retract of FCH(XS); the previous retraction can be lifted
to show that [Rotδ(FCH(XS)/θ′

S)]0 ∼= [Rotδ(FCH(XS))]0/θS (the latter iso-
morphism is easy to check but for details see [5, Lemma 2.3]) is a retract
of [Rotδ(FCH(XS))]0 (for details, see the completely analogous proof of [5,
Theorem 4.7]).

Thus we get that the quotient on the free algebra FV0(X) induces a retrac-
tion on each component of the product; say that for each component the
homomorphisms testifying the retraction are iS , jS , with jS ◦ iS = id. Then,
the maps

i :
( ∏

S�X

[Rotδ(FCH(XS))]0/θS

)
×FCH(X)/θX

( ∏

S�X

[Rotδ(FCH(XS))]0
)
×FCH(X)

j :
( ∏

S�X

[Rotδ(FCH(XS))]0
)
×FCH(X) →

( ∏

S�X

[Rotδ(FCH(XS))]0/θS

)
×FCH(X)/θX

defined as

i((x/θS)S⊆X) = (iS(x/θS))S⊆X , j((yS)S⊆X) = (jS(yS))S⊆X ,

testify that the quotient algebra
( ∏

S�X [Rotδ(FCH(XS))]0/θS

)×FCH(X)/θX

is a retract of
( ∏

S�X [Rotδ(FCH(XS))]0
) ×FCH(X), and thus A is a retract

of the free algebra FV0(X). Therefore in V0 every finitely presented algebra
is projective.

On the same lines, we adapt the proof of [5, Theorem 4.8] to show a
converse to the previous theorem.

Theorem 5.5. Let V ⊆ RCH be a radical-determined variety of general-
ized rotations. Every finitely generated projective algebra in V0 is finitely
presented.
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Proof. Let A be a projective and finitely generated algebra in V0, thus it
is a retract of a finitely generated free algebra FV0(X), with X finite. So
A ∼= FV0(X)/θ for some congruence θ. We will show that θ is a compact
(i.e. finitely generated) congruence. As in the proof of Theorem 5.4, we can
write θ as

∏
S θS , and then A ∼= FV0(X)/θ is isomorphic to

(
( ∏

S�X

[Rotδ(FCH(XS))]0
) × FCH(X)

)

/θ ∼=
( ∏

S�X

[Rotδ(FCH(XS))]0/θS

)
×FCH(X)/θX .

It suffices to show that each θS is compact, that is, θS is finitely generated
for every S ⊆ X. Notice that if θS is the total congruence for S � X,
then it is finitely generated by the pair (0, 1) where 0 is the bottom of the
rotation; while if θX is the total congruence it is generated by the finite set
{(x, 1) : x ∈ X}.

Suppose now that θS is not the total congruence, and consider A as its
isomorphic copy

(∏
S�X [Rotδ(FCH(XS))]0/θS

)
×FCH(X)/θX , and the free

algebra FV0(X) as its isomorphic copy
∏

S�X [Rotδ(FCH(XS))]0
) × FCH(X);

let us enumerate all subsets of X as S1, . . . , Sk (where k = 2|X|), and let g
be the homomorphism projecting from FV0(X) onto every factor,

g(x1, . . . , xk) = (x1/θS1 , . . . , xk/θSk
).

Since A is projective, there is a (injective) homomorphism f : A → FV0(X)
such that gf = idA i.e.

f(x1/θS1 , . . . , xk/θSk
) = (y1, . . . , yk) where xiθSi

yi for i = 1 . . . k.

From f and g we can obtain maps that testify the retraction in each coordi-
nate, i.e. maps fS and gS such that gS ◦ fS is the identity on the coordinate
indexed by S. In particular, gSi

(x) = x/θSi
and

fSi
(x/θSi

) = πSi
◦ f(1/θS1 , . . . , 1/θSi−1 , x/θSi

, 1/θSi+1 , . . . , 1/θSk
)

where πSi
is the natural projection onto the Si-th component of the direct

product. The map is well defined since f is, and direct computation shows it
is a homomorphism and that gSi

◦fSi
= id on the Si-th factor. It follows that

each [Rotδ(FCH(XS))]0/θS and FCH(X)/θX are also projective. In particular:

• FCH(X)/θX is a projective cancellative hoop, hence, by Proposition 5.3,
it is finitely presented and this means that θX is finitely generated;

• if S � X, consider θ′
S to be the restriction of θS to the radical FCH(XS),

then given that Rot(FCH(XS)/θ′
S) ∼= [Rotδ(FCH(XS))]0/θS, we consider

the restriction f ′
S of fS on FCH(X)/θ′

S and the restriction g′
S of gS on
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FCH(XS). Now g′
S ◦f ′

S is still the identity on FCH(XS)/θ′
S, so FCH(XS)/θ′

S

is projective and, by Proposition 5.3, this means that θ′
S is finitely gen-

erated. Finally, notice that, since θS is not total, it is determined by its
restriction to the radical, and thus θS is generated by the same elements
of θ′

S , hence θS is finitely generated too.

Therefore θ is a factor congruence determined by finitely many finitely gener-
ated congruences, hence it is finitely generated, which completes the proof.

Summarizing, we get the following.

Corollary 5.6. Let V0 be one among the varieties of generalized Boolean
algebras, product hoops, and DLW-hoops. Finitely presented algebras in V0

are exactly the finitely generated and projective ones.

5.1. Admissibility and Structural Completeness

The study of unification problems is strictly connected to the study of ad-
missible rules (or, algebraically, admissible quasiequations). A rule Γ ⇒ ε
(where Γ is a finite set of formulas and ε is a single formula, all on the ap-
propriate language) is said to be admissible in a logic if every substitution
that makes the premises in Γ a theorem of the logic, also makes ε a theorem
of the logic. On the algebraic side, a quasiequation Σ ⇒ δ is given by a
finite set of equations Σ followed by a single equation δ. A quasiequation is
said to be admissible in a (quasi)variety Q if every substitution that makes
all the identities in the premises valid in Q also makes the conclusion valid
in Q. A logic is said to be structurally complete if every admissible rule is
derivable, and similarly a quasivariety is structurally complete if every ad-
missible quasiequation is valid. A logic whose equivalent algebraic semantics
is a quasivariety Q is structurally complete if and only if Q is. These no-
tions can be extended to multiple-conclusion rules, and from the algebraic
side to clauses. A clause Σ ⇒ Δ is given by two finite set of equations
Σ, Δ; a clause Σ ⇒ Δ is valid in a quasivariety Q if the universal sentence
(∀x̄)(

∧
Σ ⇒ ∨

Δ) is valid in Q, and it is admissible in Q if every substitu-
tion that makes all the identities in Σ valid in Q also makes at least one of
the identities in Δ valid in Q. A quasivariety is universally complete if every
admissible clause is valid (the reader can derive the corresponding notions
for a logic). Of course universal completeness implies structural complete-
ness, and both of them can be studied in the purely algebraic setting. In
particular, [6, Corollary 3.6] shows that if all finitely presented algebras in
a quasivariety are projective, the quasivariety is universally complete, and
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therefore also structurally complete. The following is then a consequence of
Corollary 5.6.

Corollary 5.7. Let V0 be one among the varieties of generalized Boolean
algebras, product hoops, and DLW-hoops. V0 has strong unitary unification
type and it is structurally and universally complete.

6. Conclusions and Future Work

The results we have obtained in this work rely on the fact that the classes
of hoops we considered are subreducts of varieties with a Boolean retraction
term, whose radical class is the variety of cancellative hoops. In particular,
we have seen that cancellativity allows one to term-define both Boolean ele-
ments and the elements of the radical within the 0-free language; this seems
not to be the case in general. In future work, we plan to investigate whether
one can obtain different term-defined rotations operators in different sub-
varieties of CIRLs, and we shall also explore weaker notions of definability,
which might allow us to apply our methods to larger classes of structures.
We also mention that our techniques will most likely apply to the more gen-
eral case of algebras with an MV-retraction term studied in [16], again in the
case of having a cancellative radical. A different and interesting line of work
would be to investigate the dual representation of the triple constructions
developed in [29], in order to apply it to the varieties of 0-free subreducts
considered here.

Moreover, another research topic underlying this investigation involves
the understanding of how to freely add the falsum constant in other inter-
esting varieties of hoops; for instance, to the best of our knowledge, it is not
known how to freely obtain a Gödel algebra from a Gödel hoop. Despite the
fact that Gödel algebras have a Boolean retraction term, our methods can-
not be directly applied there, since it seems not straightforward to write the
elements of the Boolean skeleton and of the radical in the 0-free language
(in fact, it might not be possible). In order to deepen the understanding
of the falsum constant in Gödel logic, one might also wonder how to ob-
tain a description of free Gödel hoops as subreducts of free Gödel algebras;
the descriptions currently available in the literature are indeed not in these
terms.
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