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Abstract. In this paper we study the varietyWL of bounded distributive lattices endowed

with an implication, called weak Lewis distributive lattices. This variety corresponds to the

algebraic semantics of the {∨,∧,⇒,⊥,�}-fragment of the arithmetical base preservativity

logic iP−. The variety WL properly contains the variety of bounded distributive lattices

with strict implication, also known as weak Heyting algebras. We introduce the notion

of WL-frame and we prove a representation theorem for WL-lattices by means of WL-

frames. We extended this representation to a topological duality by means of Priestley

spaces endowed with a special neighbourhood relation between points and closed upsets

of the space. These results are applied in order to give a representation and a topological

duality for the variety of weak Heyting–Lewis algebras, i.e., for the algebraic semantics of

the arithmetical base preservativity logic iP−.
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1. Introduction

In this paper we study, from an algebraic and topological point of view, an
implication, called weak Lewis implication or weak strict implication, that
extends two known implications: the intuitionistic implication and the strict
Lewis implication, which also appears in certain extensions of intuitionistic
logic, called Preservativity logics.

Let us first analyze this weak strict implication in the framework of
Preservativity logics. In [32] Visser defines and axiomatizes the preserva-
tivity logic iPH as an extension of the intuitionistic logic with a new connec-
tive of strict implication. This logic is studied in detail by Iemhoff in [17,18]
(see also [19,23]). Iemhoff defines the basic logic iP−, called the arithmetical
base preservativity logic, and the extension of iP− with the axiom Dp called
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Disjunctive Principle, which is denoted as iP. The logic iP is called the se-
mantic base preservativity logic for reasons that will be explained below [18,
p. 232]. Note that the logic iP is called Heyting–Lewis Logic in [23] and it is
denoted by iA. The relational semantics for iP is given by the iP-frames or
Heyting Lewis frames (see [18, Section 3.2] and [23, Section 3]). An iP-frame
a is a triple 〈X, ≤, R〉 where ≤ is a partial order and R is a binary rela-
tion such that ≤ ◦R ⊆ R. In [18, Proposition 7] or [17, Proposition 4.1.1]
Iemhoff proves that iP is complete with respect to the class of all iP-frames.
This completeness can be also deduced from the well known results on rep-
resentation for Heyting algebras, and the results on representation for weak
Heyting algebras given in [6], or applying the techniques developed in [5]
for subintuitionistic logics. The algebraic semantics of iP is the class of al-
gebras 〈A,∨,∧,→,⇒, 0, 1〉 where 〈A,∨,∧,→, 0, 1〉 is a Heyting algebra [2]
and 〈A,∨, ∧,⇒, 0, 1〉 is a weak Heyting algebra [6]. These algebras are called
Heyting–Lewis algebras in [23].

The algebraic semantics for IP− is defined in [24, Section 3.1], although it
was not studied in detail. As far as we know there is no relational semantics
for IP−. In this paper we propose an algebraic semantics and a relational
semantics for the {⊥,�,∨,∧,⇒}-fragment of the logic iP−. We introduce
the class of bounded distributive lattices with a strict implication weaker
than the strict implication considered for the weak Heyting algebras. These
algebras will be called weak Lewis distributive lattices, or WL-lattices, and
they correspond to weak subintuitionistic logics in the same sense that weak
Heyting algebras correspond to subintuitionistic logics. Thus, if we take
Heyting algebras with weak strict implication, then we obtain the variety of
iA−-algebras defined in [24].

The relational semantics for iP− is more general that the relational se-
mantics for subintuitionistic logics. We introduce a class of intuitionistic
Kripke frames with a neighbourhood relation, called weak Lewis neighbour-
hood frames. The neighbourhood relation is used to interpret the weak strict
implication and the partial order is used to interpret the intuitionistic im-
plication. Using the standard techniques of canonical models, or using the
representation theorem for WL-lattices (Theorem 14 ), we can prove that a
formula φ is a theorem of iP− if and only if φ is valid in every weak Lewis
neighbourhood frame. That is, the logic iP− is complete with respect to the
weak Lewis neighbourhood frames. These results along with a more detailed
study of some extensions of iP− will be presented in a future paper. Here
we will only dedicate ourselves to the study of the {⊥,�,∨,∧,⇒}-fragment
of the logic iP− from an algebraic and topological point of view.
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Subintuitionistic logics can be defined as those logics in the intuitionis-
tic language that arise from weakening the frame conditions of the Kripke
semantics for the intuitionistic logic. As far as we know, the first study on
subintuitionist logics using Kripke models are the papers of Visser [31] and
Corsi [7]. Later, subintuitionistic logics were also investigated by Restall [29],
Došen [11], Celani and Jansana [5], and Maleki and De Jongh [25].

Modal logic was initially conceived as an extension of the classical propo-
sitional logic with an implication called Lewis strict implication [20–22]. In
the classical setting, the Lewis strict implication is interdefinable with a
normal modal box. From the algebraic point of view this fact is equivalent
to say that in Boolean algebras the notion of a normal modal operator � is
interdefinable with the notion of the strict Lewis implication ⇒ (see Lemma
4 and also [22]). However, this interdefinability is not valid in the intuition-
istc case. Since the intuitionistic negation is not involutive, the operator
� (defined as �p := � ⇒ p) is not interdefinable with the strict Lewis
implication.

There exists a strong connection between subintuitionistic logics and nor-
mal modal logics. In Kripke frames, the semantic interpretation of the subin-
tuitionistic implication coincides with the interpretation of Lewis strict im-
plication. Recall that the Lewis strict implication ⇒ is interpreted in the
modal propositional language {∨,∧,⊃,�} as ϕ ⇒ α := �(ϕ ⊃ α). Seman-
tically we have the following interpretation. If 〈X,R〉 is a Kripke frame, i.e.,
X is a set and R a binary relation on X, then the strict implication ⇒ is
defined as

U ⇒R V = �R(U c ∪ V ) = {x ∈ X : R(x) ∩ U ⊆ V },

for each U, V ∈ P(X), where P(X) denotes the powerset of X. This defi-
nition coincides with the definition of subintuitionistic implication given in
[7,11,29].

Recall that a modal operator in a Boolean algebra A is a function � : A →
A. We say that � is monotone if �(a∧ b) ≤ �a∧�b, for every a, b ∈ A, and
we say that � is normal if �1 = 1 and �(a∧b) = �a∧�b, for every a, b ∈ A.
A monotone modal algebra is a pair 〈A,�〉 where A is a Boolean algebra
and � is a monotone modal operator. Analogously, a modal algebra is a pair
〈A,�〉 where A is a Boolean algebra and � is a normal modal operator. As
we have mentioned before, the class of modal algebras is interdefinable with
the the class of Boolean algebras with a strict implication. More precisely, a
Boolean weak Heyting algebra, or Boolean algebra with a strict implication, is
an algebra 〈A,∨,∧,⇒,¬, 0, 1〉 such that 〈A,∨,∧,⇒, 0, 1〉 is a weak Heyting
algebra [6] and 〈A,∨,∧,¬, 0, 1〉 is a Boolean algebra. It is not very difficult to



I. Calomino et al.

prove that the class of Boolean weak Heyting algebras is term equivalent to
the class of Boolean algebras with a normal modal operator � (see Lemma
4 or [6]).

From an algebraic point of view we could interpret the connection be-
tween subintuitionistic logics and normal modal logics in the following way.
By the representation theorems given in [6] we have that the variety of weak
Heyting algebras is the variety generated by the {∨,∧,⇒, 0, 1}-subreducts
of the variety generated by the following class of Boolean algebras with strict
implication:

KA = {〈P(X),⇒R〉 : 〈X,R〉 is a Kripke frame}.

Since the semantic interpretation of the connective of subintuitionistic
implication coincides with the semantic interpretation of Lewis strict impli-
cation, it is fair to also call the weak Heyting algebras as Lewis distributive
lattices.

The interpretation of the subintuitionistic implication ⇒ depends on the
relational semantics chosen and also of the notion of valuation. In the case
of neighbourhood semantics we have more options, as we will explain below.

Recall that a neighbourhood frame is a pair 〈X,M〉, where X is a non-
empty set and M is a relation between X and P(X). A monotone neigh-
bourhood frame is a neighbourhood frame 〈X,M〉 such that for every x ∈ X
and U, V ∈ P(X), if U ⊆ V and U ∈ M(x), then V ∈ M(x) [27] , where
M(x) = {Y ⊆ X : (x, Y ) ∈ M}. In P(X) we can define a monotone modal
operator mM as

mM (U) = {x ∈ X : U ∈ M(x)}.

It can be seen that 〈P(X),mM 〉 is a monotone modal algebra [4,27]. The
variety generated by the class of algebras of the form 〈P(X),mM 〉 is the
variety MonBA of monotone Boolean algebras. By means of the operator
mM we can define a binary operation �→M on P(X) as

U �→M V = mM (U c ∪ V ),

for each U, V ∈ P(X). Since mM (U) = X �→M U , for all U ∈ P(X), it is
easy to see that the monotone modal operator mM is interdefinable with
�→M . The algebra 〈P(X), �→M 〉 is an example of monotone Lewis algebra
[10, Definition 7.2]. By the representation results given in [10] we can ensure
that the variety MLA of monotone Lewis algebras is the variety generated
by the following class of algebras

{〈P(X), �→M 〉 : 〈X,M〉 is a monotone neighbourhood frame}.



On Weak Lewis Distributive Lattices

Moreover, the variety MonBA is term equivalent to the variety MLA [10].
Now, we consider a neighbourhood frame 〈X,M〉, not necessarily mono-

tone. In P(X) we define a modal operator �M as follows:

�M (U) = {x ∈ X : ∀Y ∈ M(x)(Y ⊆ U)}. (1.1)

It can be checked that 〈P(X),�M 〉 is a normal modal algebra, and that the
variety MA of normal modal algebras is also generated by the class

{〈P(X),�M 〉 : 〈X,M〉 is a neighbourhood frame}.

The interpretation of a normal modal operator � in neighbourhood frames
by means of the clause (1.1) is not new. The same interpretation is used,
for example, in [3,15]. With this interpretation we can define another type
of implication ⇒M as follows:

U ⇒M V = {x ∈ X : ∀Y ∈ M(x)(Y ⊆ U implies Y ⊆ V )},

for all U, V ∈ P(X). Note that �M (U) = X ⇒M U , for all U ∈ P(X). Also
note that this definition is the same that the definition given in [26, Defi-
nition 2.4] to interpret intuitionistic logic by using a special kind of neigh-
bourhood frames. Later, in Section 7, we will compare these neighbourhood
frames with the results of this paper.

An important difference between the class KA and the class

NA = {〈P(X),⇒M 〉 : 〈X,M〉 is a neighbourhood frame}
is the following. Even though the modal operator �M is normal, the implica-
tion ⇒M may not produce a subintuitionistic implication, i.e., 〈P(X),⇒M 〉
is not necessarily a weak Heyting algebra, as we show in the following ex-
ample.

Example 1. Take the set X = {x, y} and the neighbourhood relation

M = {(x, ∅), (y, ∅), (x,X), (y, X)}.

Let U = {x} and V = {y}. Then

(U ⇒M ∅) ∩ (V ⇒M ∅) = X � (U ∪ V ) ⇒M ∅ = X ⇒M ∅ = ∅.

Thus, the algebra 〈P(X),⇒M 〉 is not a weak Heyting algebra.

At this point we can formulate two problems:

• Problem 1: Study the {∨,∧, �→,⊥,�}-subreducts of the variety MLA.

• Problem 2: Study the {∨,∧,⇒,⊥,�}-subreducts of the class NA.

Problem 1 is studied in [10]. The {∨,∧, �→,⊥,�}-subreducts of monotone
Lewis algebras are the distributive lattices with a monotone implication [10,
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Definition 3.6]. The variety of distributive lattices with a monotone implica-
tion is the algebraic semantics of the weak subintuitionistic logic P�→ defined
in [10]. The logic P�→ can be seen as the positive fragment of monotone modal
logic in the same way that the subintuitionistic logic F given by Corsi in [7]
can be interpreted as the positive fragment of normal modal logic. By this
fact the extensions of P�→ are called monotone subintuitionistics logics.

Addressing Problem 2 is the main goal of this paper. Although the variety
of algebras generated by the algebras of the form 〈P(X),�M 〉 is the variety
MA of normal modal algebras, the variety generated by the {∨,∧,⇒,⊥,�}-
reducts of the variety generated by the class NA is not the variety of weak
Heyting algebras as we have shown above. In this paper we axiomatize and
study this new variety, which coincides with the {∨,∧,⇒,⊥,�}-subreducts
of the class NA. In a future work we are going to study the associated logics
of this new variety following the research line developed in [5].

The paper is organized as follows. In Section 2 we recall some results that
will be useful for the rest of this paper. In particular, we recall Priestley
duality and some properties about weak Heyting algebras [6]. In Section 3
we study the variety whose members are WL-lattices (see Definition 5),
which properly contains the variety of weak Heyting algebras. We also give
a representation theorem for the members of this variety; more precisely, we
prove that every WL-lattice is isomorphic to a subalgebra of a WL-lattice
whose underlying bounded distributive lattice is the bounded distributive
lattice of upsets of a poset. We also show that the variety of WL-lattices co-
incides with the {∨,∧,⇒,⊥,�}-subreducts of NA. In Section 4 we give the
main result of this paper, which is a Priestley style duality for the algebraic
category of WL-lattices. In Section 5 we compare the dual categorical equiv-
alence above mentioned with that developed in [6] for the algebraic category
of weak Heyting algebras. More precisely, we study the link between WL-
spaces and WH-spaces, which are the dual objects of WH-algebras [6]. In
Section 6 some subvarieties of the variety of WL-lattices are introduced and
studied. In Sectionrefsec:Connectionspswithspsintuitionistic we study the re-
lation that there exists between certain class of WL-frames, introduced in
Definition 6, in order to prove a representation theorem for WL-lattices,
and the class of intuitionistic neighbourhood frames defined in [26, Defini-
tion 2.1]. In Section 8 we study the lattice of congruences of RWL-lattices,
where a RWL-lattice is defined as a WL-lattice which satisfies the additional
inequality a∧ (a ⇒ b) ≤ b, or equivalently, the following condition: for every
a, b, c, if a ⇒ b ≤ c then a∧ b ≤ c. We finish this section by giving a descrip-
tion of the simple and subdirectly irreducible algebras of RWL-lattices, and
also a characterization of the principal congruences of any RWL-lattice. In
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Section 9 we study how the topological duality developed for WL-lattices in
Section 4 can be applied to the case of Heyting algebras with a weak strict
implication.

2. Preliminaries

In this section we recall some results which will be usefull in this paper. First
we recall Priestley duality [28], which describes a dual categorical equiva-
lence for the algebraic category of bounded distributive lattices by means
of ordered topological spaces known as Priestley spaces, thus establishing
that the mentioned algebraic category is dually equivalent to the category of
Priestley spaces and continuous order preserving maps. Then we also recall
some elemental properties of weak Heyting algebras [6].

2.1. Bounded Distributive Lattices and Priestley Duality

Let 〈X, ≤〉 be a poset. For each Y ⊆ X, let [Y ) = {x ∈ X : ∃y ∈ Y (y ≤ x)}
and (Y ] = {x ∈ X : ∃y ∈ Y (x ≤ y)}. We will say that Y is an upset of X (a
downset of X) if Y = [Y ) (Y = (Y ]). If Y = {y}, then we will write [y) and
(y] instead of [{y}) and ({y}], respectively. Note that [y) = {x ∈ X : x ≥ y}
and (y] = {x ∈ X : x ≤ y}. We also write P(X) and Up(X) for the set of
all subsets and upsets of X, respectively. The complement of Y ⊆ X will be
denoted by Y c.

Let 〈A,∨,∧, 0, 1〉 be a bounded distributive lattice. If there is no ambi-
guity, this algebra will be identified with its carrier set A. A subset F ⊆ A
is a filter of A if it is an upset, 1 ∈ F and a ∧ b ∈ F whenever a, b ∈ F . The
filter generated by a non-empty subset X ⊆ A, denoted by Fig(X), is the
least filter (with respect to the inclusion) that contains X. It can be shown
that

Fig(X) = {a ∈ A : ∃a1, . . . , an ∈ X(a1 ∧ · · · ∧ an ≤ a)}.

In particular, Fig({a}) = [a). We denote by Fi(A) the set of filters of A. A
filter F of A is said to be proper if F �= A. A proper filter P is called prime
if for every a, b ∈ A, a∨b ∈ P implies a ∈ P or b ∈ P . We write X(A) for the
set of prime filters of A. If there is no ambiguity, this set will be identified
with the poset 〈X(A),⊆〉. A set I ⊆ A is an ideal of A if it is a downset,
0 ∈ I and a ∨ b ∈ I whenever a, b ∈ I. The ideal generated by a non-empty
subset X ⊆ A, denoted by Idg(X), is the least ideal (with respect to the
inclusion) that contains X. We have that

Idg(X) = {a ∈ A : ∃a1, . . . , an ∈ X(a ≤ a1 ∨ · · · ∨ an)}.
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In particular, Idg({a}) = (a]. We write Id(A) to indicate the set of ideals of
A. Let ϕ : A → Up(X(A)) be the map defined by

ϕ(a) = {P ∈ X(A) : a ∈ P},

which is an embedding of bounded distributive lattices.
In what follows we recall the definition of Priestley space.

Definition 2. A Priestley space is a triple 〈X, ≤, τ〉 such that 〈X, ≤〉 is
a poset, 〈X, τ〉 is a compact topological space and the Priestley separation
axiom is satisfied, which means that for every x, y ∈ X such that x � y
there exists a clopen upset U such that x ∈ U and y /∈ U .

If there is no ambiguity, a Priestley space 〈X, ≤, τ〉 will be identified with
its carrier set X. If X is a Priestley space, then the family of clopen up-
sets of X will be denoted by D(X). It is known that D(X) is a bounded
distributive lattice. Let A be a bounded distributive lattice. Consider the
map ϕ : A → P(X(A)) given by ϕ(a) = {P ∈ X(A) : a ∈ P}, for each
a ∈ A. The triple 〈X(A),⊆, τA〉 is a Priestley space, where τA is the topol-
ogy generated by the subbase {ϕ(a) : a ∈ A} ∪ {ϕ(a)c : a ∈ A}. Moreover,
since D(X(A)) = {ϕ(a) : a ∈ A} we have that A and D(X(A)) are isomor-
phic. If X is a Priestley space, then the map ε : X → X(D(X)) defined by
ε(x) = {U ∈ D(X) : x ∈ U} is a homeomorphism and an order-isomorphism.
Let A and B be two bounded distributive lattices. If h : A → B is a homo-
morphism of bounded distributive lattices, then the map h∗ : X(B) → X(A)
defined by h∗(P ) = h−1(P ) is a continuous and monotone map. Conversely,
if X and Y are Priestley spaces and f : X → Y is a continuous and monotone
map, then the map f∗ : D(Y ) → D(X) defined by f∗(U) = f−1(U) is a ho-
momorphism of bounded distributive lattices. Moreover, there exists a dual
equivalence between the algebraic category of bounded distributive lattices
and the category whose objects are Priestley spaces and whose morphisms
are continuous and monotone maps.

Let A be a bounded distributive lattice. We denote by CUp(X(A)) to
the family whose members are the closed upsets of X(A). It is part of the
folklore of Priestley spaces that the lattices Fi(A) and CUp(X(A)) are dually
isomorphic [8]. More precisely, if F ∈ Fi(A), then ̂F = {P ∈ X(A) : F ⊆
P} ∈ CUp(X(A)). Conversely, if Y ∈ CUp(X(A)), then the set FY = {a ∈
A : Y ⊆ ϕ(a)} ∈ Fi(A). Moreover, for every F ∈ Fi(A) and Y ∈ CUp(X(A))
we get F = F

̂F and Y = ̂FY . Furthermore, for every F,G ∈ Fi(A), F ⊆ G

if and only if ̂G ⊆ ̂F . Note that for every P ∈ X(A), ̂P = [P ).
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2.2. Heyting Algebras

We recall that a Heyting algebra (also known as pseudo-Boolean algebra)
is a bounded lattice A equipped with a binary operation ⇒ such that for
every a, b, c ∈ A, a ∧ b ≤ c if and only if a ≤ b ⇒ c [2,13]. Every Boolean
algebra is a Heyting algebra where a ⇒ b coincides with ¬a ∨ b. The class
of Heyting algebras is a variety [2].

A very important example of Heyting algebra is the following. Let 〈X, ≤〉
be a poset. Then the algebra 〈Up(X),∪,∩,⇒≤, ∅, X〉 is a Heyting algebra
where the implication ⇒≤ is defined as U ⇒≤ V = {x ∈ X : [x) ∩ U ⊆ V },
for each U, V ∈ Up(X).

2.3. Weak Heyting Algebras

The variety of weak Heyting algebras, or WH-algebras for short, was intro-
duced in [6] as the algebraic counterpart of the least subintuitionistic logic
wK consider in [5]. A WH-algebra is a bounded distributive lattice with
a binary operation which satisfies the properties of the strict implication
in the modal logic K. Each one of the varieties of weak Heyting algebras
studied in [6] corresponds to two propositional logics wKσ and sKσ defined
in [5]. The logics wKσ and sKσ are the strict implication fragments of the
local and global consequence relations defined by means of Kripke models,
respectively.

Definition 3. An algebra 〈A,∨,∧,⇒, 0, 1〉 of type (2, 2, 2, 0, 0) is a weak
Heyting algebra, or WH-algebra for short, if 〈A,∨,∧, 0, 1〉 is a bounded dis-
tributive lattice and the following conditions are satisfied for every a, b, c ∈
A:

(1) a ⇒ (b ∧ c) = (a ⇒ b) ∧ (a ⇒ c),

(2) (a ∨ b) ⇒ c = (a ⇒ c) ∧ (b ⇒ c),

(3) (a ⇒ b) ∧ (b ⇒ c) ≤ a ⇒ c,

(4) a ⇒ a = 1.

Examples of WH-algebras that appear in the literature are Heyting al-
gebras, Basic algebras introduced by Ardeshir and Ruitenburg in [1] and
subresiduated lattices of Epstein and Horn in [12].

Let 〈A,∨,∧,¬, 0, 1〉 be a Boolean algebra. A binary operation ⇒ on A
is called a weak Heyting implication if 〈A,∨,∧,⇒, 0, 1〉 is a weak Heyting
algebra.

The following result is known (see [6, p. 224]). For details see also Lemma
[10, Lemma 7.5].
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Lemma 4. Given a Boolean algebra A, there is a bijective correspondence
between normal modal operators on A and weak Heyting implications on A,
which is defined as follows. If � is a normal modal operator, then the binary
operation ⇒ given by a ⇒ b := �(¬a ∨ b) is a weak Heyting implication,
and if ⇒ is a weak Heyting implication, then the unary map � given by
�a := 1 ⇒ a is a normal modal operator.

3. Weak Lewis Distributive Lattices

In this section we introduce and study a variety, whose members will be
called weak Lewis distributive lattices (WL-lattices for short), that properly
contains the variety of WH-algebras. We give a representation theorem for
WL-lattices. More precisely, we prove that every WL-lattice is isomorphic to
a subalgebra of a WL-lattice whose underlying bounded distributive lattice
is the bounded distributive lattice of upsets of a poset.

Definition 5. An algebra 〈A,∨,∧,⇒, 0, 1〉 of type (2, 2, 2, 0, 0) is a weak
Lewis distributive lattice, or WL-lattice for short, if 〈A,∨,∧, 0, 1〉 is a
bounded distributive lattice and the following conditions are satisfied for
every a, b, c ∈ A:

(1) a ⇒ (b ∧ c) = (a ⇒ b) ∧ (a ⇒ c),

(2) (a ∨ b) ⇒ c ≤ (a ⇒ c) ∧ (b ⇒ c),

(3) (a ⇒ b) ∧ (b ⇒ c) ≤ a ⇒ c,

(4) a ⇒ a = 1.

The variety of WL-lattices will be denoted by WL. The difference between
the definition of a WL-lattice and a WH-algebra is that in WL-lattices the
inequality (a ⇒ c) ∧ (b ⇒ c) ≤ (a ∨ b) ⇒ c is not necessarily satisfied (see
Example 9).

We recall that a neighbourhood frame is a pair 〈X,M〉 where X is a set
and M is a neighbourhood relation, i.e., M ⊆ X × P(X). Neighbourhood
semantics is used for the classical modal logics that are strictly weaker than
the normal modal logic K [27]. Given a neighbourhood frame 〈X,M〉 we can
define in the Boolean algebra P(X) an implication ⇒M as U ⇒M V = {x ∈
X : ∀Y ∈ M(x)(Y ⊆ U implies Y ⊆ V )}. In Corollary 15 we will prove that
the variety WL coincides with the class of {∨,∧,⇒,⊥,�}-subreducts of the
class NA = {〈P(X),⇒M 〉 : 〈X,M〉 is a neighbourhood frame}.

Below we define a generalization of this notion that will allow us to in-
terpret the weak strict implication ⇒.
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Definition 6. A weak Lewis neighbourhood frame, or WL-frame, is a struc-
ture 〈X, ≤,M〉 such that 〈X, ≤〉 is a poset, M ⊆ X×P(X) and the following
condition is satisfied

∀x, y ∈ X, ∀Y ∈ P(X) (x ≤ y and (y, Y ) ∈ M imply (x, Y ) ∈ M) . (∗)

Let 〈X, ≤〉 be a poset and M ⊆ X × P(X). Note that with the notation
M(x), condition (∗) can be formulated as

∀x, y ∈ X, ∀Y ∈ P(X) (x ≤ y implies M(y) ⊆ M(x)) . (∗)

The following lemma will be used throughout this paper.

Lemma 7. Let F = 〈X,≤,M〉 be a WL-frame. For every U, V ∈ Up(X),
the set defined by

U ⇒M V = {x ∈ X : ∀Y ∈ M(x) (Y ⊆ U implies Y ⊆ V )}
in an upset. Moreover, A(F) = 〈Up(X),∪,∩,⇒M , ∅, X〉 is a WL-lattice.

Proof. It is immediate that 〈Up(X),∪,∩, ∅, X〉 is a bounded distributive
lattice. We will show that ⇒M defines a binary operation on Up(X). Indeed,
let U, V ∈ Up(X). In order to show that U ⇒M V ∈ Up(X), let x, y ∈ X
such that x ≤ y and x ∈ U ⇒M V . Let Y ∈ M(y) such that Y ⊆ U .
Then (y, Y ) ∈ M , so by (∗) we get (x, Y ) ∈ M . Since x ∈ U ⇒M V ,
we have Y ⊆ V . Thus, y ∈ U ⇒M V . Hence, U ⇒M V ∈ Up(X). We
have proved that ⇒M defines a binary operation on Up(X). Furthermore, a
straightforward computation shows that 〈Up(X),∪,∩,⇒M , ∅, X〉 is a WL-
lattice.

Remark 8. Let A be a lattice with a binary operation ⇒. A direct compu-
tation shows that the following quasi-identies are equivalent:

(1) If a ≤ b then b ⇒ c ≤ a ⇒ c.

(2) b ⇒ c ≤ (a ∧ b) ⇒ c.

(3) (a ∨ b) ⇒ c ≤ (a ⇒ c) ∧ (b ⇒ c).

A direct computation also shows that the following quasi-identities are
equivalent:

(1) If a ≤ b then c ⇒ a ≤ c ⇒ b.

(2) c ⇒ a ≤ c ⇒ (a ∨ b).

(3) c ⇒ (a ∧ b) ≤ (c ⇒ a) ∧ (c ⇒ b).

The class of WH-algebras forms a proper subvariety of WL, as is shown
by the following example.
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Example 9. Let A be the Boolean algebra of four elements, where a and b
are the atoms. Define the following binary operation ⇒ on A:

⇒ 0 a b 1
0 1 1 1 1
a 1 1 1 1
b 1 1 1 1
1 0 0 0 1

A straightforward computation shows that A endowed with the binary op-
eration ⇒ is a WL-lattice which is not a WH-algebra because

(a ∨ b) ⇒ 0 �= (a ⇒ 0) ∧ (b ⇒ 0).

We know show how to construct a WL-frame from a WL-lattice.
Let A ∈ WL. Recall that

CUp(X(A)) = {Y ⊆ X(A) : Y = ̂G for some G ∈ Fi(A)}.

We define the relation

MA ⊆ X(A) × CUp(X(A))

by

(P, ̂G) ∈ MA iff ∀a, b ∈ A (if P ∈ ϕ(a ⇒ b) and ̂G ⊆ ϕ(a) then ̂G ⊆ ϕ(b)).

In other words,

(P, ̂G) ∈ MA iff ∀a, b ∈ A (if a ⇒ b ∈ P and a ∈ G then b ∈ G).

The proof of the following lemma follows from a direct computation.

Lemma 10. Let A ∈ WL. Then 〈X(A),⊆,MA〉 is a WL-frame.

Lemma 11. Let A ∈ WL. Then 〈Up(X(A)),∪,∩,⇒MA
, ∅, X(A)〉 is a WL-

lattice.

Proof. It follows from Lemmas 7 and 10.

Let A ∈ WL. We also define the relation

MA ⊆ Fi(A) × CUp(X(A))

as the extension of MA on Fi(A), i.e., for every F,G ∈ Fi(A),

(F, ̂G) ∈ MA iff ∀a, b ∈ A (if a ⇒ b ∈ F and a ∈ G then b ∈ G).

The definition of MA will be used in the next proposition and lemma
respectively.
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Let A ∈ WL and F ∈ Fi(A). Consider the operation DF : P(A) → P(A)
given by

DF (X) =
{

a ∈ A : ∃Y ⊆ X finite such that
∧

Y ⇒ a ∈ F
}

,

where
∧

Y is the infimum of Y .
The proof of the following result is similar to the proof of [6, Proposi-

tion 3.4] and [6, Proposition 3.5].

Proposition 12. Let A ∈ WL. Let F ∈ Fi(A) and X ⊆ A. The following
conditions hold:

(1) DF is a finitary closure operator.

(2) DF (X) ∈ Fi(A).

(3) (F, D̂F (X)) ∈ MA.

(4) DF (X) is the least filter G of A containing X such that (F, ̂G) ∈ MA.

(5) (F, ̂G) ∈ MA if and only if DF (G) = G, for all F,G ∈ Fi(A).

The following lemma will play a fundamental role in this paper in order
to give a representation theorem for WL-lattices.

Lemma 13. Let A ∈ WL. Let a, b ∈ A and F ∈ Fi(A). Then a ⇒ b /∈ F if
and only if there exists G ∈ Fi(A) such that (F, ̂G) ∈ MA, a ∈ G and b /∈ G.

Proof. Let a, b ∈ A. Suppose that a ⇒ b /∈ F . Let G = DF ([a)), so a ∈ G.
We will see that (F, ̂G) ∈ MA. Let c, d ∈ A such that c ⇒ d ∈ F and c ∈ G.
Then there exists f ∈ [a) such that f ⇒ c ∈ F . Since (f ⇒ c) ∧ (c ⇒ d) ≤
f ⇒ d and F is a filter, f ⇒ d ∈ F . Hence, d ∈ G. Thus, (F, ̂G) ∈ MA.
Moreover, b /∈ G. Indeed, suppose that b ∈ G. Then there exists f ∈ [a)
such that f ⇒ b ∈ F . Besides, f ⇒ b ≤ a ⇒ b. Taking into account that F
is an upset, we get a ⇒ b ∈ F , which is a contradiction. Then b /∈ G. The
converse is immediate.

Let A ∈ WL. It follows from Lemma 11 that 〈Up(X(A)),∪,∩,⇒MA

, ∅, X(A)〉 is a WL-lattice. In the following theorem we will prove that ev-
ery WL-lattice is isomorphic to a WL-lattice which is a subalgebra of the
WL-lattice of upsets of some WL-frame.

Theorem 14. Let A ∈ WL. Then the map ϕ : A → Up(X(A)) defined by
ϕ(a) = {P ∈ X(A) : a ∈ P} is an embedding of WL-lattices.

Proof. Let A ∈ WL. Recall that ϕ is an embedding of bounded distributive
lattices, so we only need to show that ϕ(a ⇒ b) = ϕ(a) ⇒MA

ϕ(b), for every
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a, b ∈ A. In order to prove it, let a, b ∈ A. Let P ∈ X(A) and suppose that
a ⇒ b /∈ P . By Lemma 13 there exists G ∈ Fi(A) such that (P, ̂G) ∈ MA,
a ∈ G and b /∈ G, i.e., (P, ̂G) ∈ MA, ̂G ⊆ ϕ(a) and ̂G � ϕ(b). So, P /∈
ϕ(a) ⇒MA

ϕ(b). Hence, ϕ(a) ⇒MA
ϕ(b) ⊆ ϕ(a ⇒ b). The converse inclusion

is immediate.

It follows from Theorem 14 that every WL-lattice is an isomorphic image
of a subalgebra of the {∨,∧,⇒,⊥,�}-reduct of an algebra of NA, i.e., the
variety WL is contained in the class of {∨,∧,⇒,⊥,�}-subreducts of NA. The
converse inclusion is immediate. Therefore, we obtain the following result.

Corollary 15. The variety WL coincides with the {∨,∧,⇒,⊥,�}-subreducts
of NA.

4. Categorical Duality

In this section we introduce the dual objects to WL-lattices, called WL-
spaces. We focus on the construction of a topological duality for the al-
gebraic category of WL-lattices. Since WL-lattices are a generalization of
WH-algebras, in Section 5 we study the link between WL-spaces and WH-
spaces, which are the dual objects of WH-algebras [6].

4.1. Topological Representation

Let us consider a structure 〈X,M〉 such that X is a Priestley space and
M ⊆ X × CUp(X). For each U ∈ D(X), we take the set

LU = {Y ∈ CUp(X) : Y ⊆ U}.

It is clear that LU∩V = LU ∩ LV and LU ∪ LV ⊆ LU∪V , for all U, V ∈
CUp(X). Also, L∅ = {∅} and LX = CUp(X). For every U, V ∈ D(X) the
set U ⇒M V defined in Lemma 7 can be written as

U ⇒M V = {x ∈ X : ∀Y ∈ M(x) (Y ∈ LU then Y ∈ LV )} .

Also note that x ∈ U ⇒M V if and only if M(x) ⊆ Lc
U ∪ LV .

Definition 16. A structure 〈X,M〉 is a WL-space if X is a Priestley space,
M ⊆ X × CUp(X) and the following conditions are satisfied:

(WLS1) U ⇒M V ∈ D(X), for every U, V ∈ D(X).

(WLS2) M(x) =
⋂{Lc

U ∪ LV : U, V ∈ D(X) and x ∈ U ⇒M V }, for all
x ∈ X.
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Let 〈X,M〉 be a WL-space. Note that it follows from (WLS1) that ⇒M

defines a binary operation on D(X).

Remark 17. Let 〈X,M〉 be a WL-space. Then 〈X,M〉 is a WL-frame. In
order to show it, let x, y ∈ X such that x ≤ y. Let Y ∈ M(y) and suppose
that Y /∈ M(x). It follows from condition (WLS2) that there exist U, V ∈
D(X) such that x ∈ U ⇒M V and Y /∈ Lc

U ∪ LV . Moreover, it follows from
(WLS1) that U ⇒M V ∈ D(X), so y ∈ U ⇒M V . Thus, M(y) ⊆ Lc

U ∪ LV .
Hence, Y ∈ M(y) ⊆ Lc

U ∪ LV , which is a contradiction. Therefore, M(y) ⊆
M(x).

Remark 18. Let X be a Priestley space and M ⊆ X × CUp(X). It follows
from Remark 17 and Lemma 7 that 〈X,M〉 is a WL-space if and only if
〈X,M〉 is a WL-frame which satisfies (WLS2) and the following additional
condition: for every U, V ∈ D(X), U ⇒M V is clopen.

Proposition 19. Let 〈X,M〉 be a WL-space. Then 〈D(X),∪,∩,⇒M , ∅, X〉
is a WL-lattice.

Proof. It follows from Remark 17 and Lemma 7.

Let X be a Priestley space. Taking into account that ε : X → X(D(X)),
which is defined by ε(x) = {U ∈ D(X) : x ∈ U}, is a homeomorphism and
an order-isomorphism, we have that for every closed upset Z the set ε[Z]
is a closed upset. If 〈X,M〉 is a pair where M ⊆ X × CUp(X) and condi-
tion (WLS1) is satisfied, then we define the relation MD(X) ⊆ X(D(X)) ×
CUp(X(D(X))) in terms of the binary operation ⇒M , as it was done for
the case of WL-lattices.

Lemma 20. Let 〈X,M〉 be a pair such that X is a Priestley space, M ⊆ X×
CUp(X) and condition (WLS1) is satisfied. Then the following conditions
are equivalent:

(1) M(x) =
⋂{Lc

U ∪ LV : U, V ∈ D(X) and x ∈ U ⇒M V }, for all x ∈ X.

(2) For every x ∈ X and for every Z ∈ CUp(X), if (ε(x), ε[Z]) ∈ MD(X),
then (x, Z) ∈ M .

Proof. Suppose that condition (1) is satisfied. Let x ∈ X and Z ∈ CUp(X)
such that (ε(x), ε[Z]) ∈ MD(X). In particular, there exists F ∈ Fi(D(X))
such that ε[Z] = ̂F . Suppose that (x, Z) /∈ M . Thus, it follows from hypoth-
esis that there exist U, V ∈ D(X) such that x ∈ U ⇒M V and Z /∈ Lc

U ∪LV .
Since U ⇒M V ∈ D(X) we get U ⇒M V ∈ ε(x). On the other hand,
Z ∈ LU ∩ Lc

V , i.e., Z ⊆ U and Z � V . We will see that U ∈ F . Suppose
that U /∈ F . Then it follows from the prime filter theorem that there exists
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P ∈ X(D(X)) such that F ⊆ P and U /∈ P . Taking into account that ε is
onto we have that there exists y ∈ X such that ε(y) = P . Thus, F ⊆ ε(y)
and U /∈ ε(y). Then ε(y) ∈ ̂F = ε[Z], i.e., y ∈ Z and y /∈ U , which is a
contradiction. So U ∈ F . Now we will prove that V /∈ F . In order to show
it, note that since Z � V , there exists z ∈ Z such that z /∈ V . Hence,
ε(z) ∈ ε[Z] = ̂F . Thus, F ⊆ ε(z) and V /∈ ε(z), so V /∈ F . In consequence,
U ⇒M V ∈ ε(x), U ∈ F and V /∈ F which is a contradiction because
(ε(x), F ) ∈ MD(X). Hence, (x, Z) ∈ M . Thus, condition (2) is satisfied.

Conversely, assume that condition (2) is satisfied and let x ∈ X. Suppose
that there exists Z ∈ CUp(X) such that

Z ∈
⋂

{Lc
U ∪ LV : U, V ∈ D(X) and x ∈ U ⇒M V }

and Z /∈ M(x), i.e., (x, Z) /∈ M . It follows from hypothesis that (ε(x), ε[Z]) /∈
MD(X). In particular, there exists F ∈ Fi(D(X)) such that ε[Z] = ̂F . Then
there exist U, V ∈ D(X) such that U ⇒M V ∈ ε(x), U ∈ F and V /∈ F .
Thus, Z ∈ Lc

U ∪ LV . We have two cases:

• Suppose that Z ∈ Lc
U , so Z � U . Thus, there is z ∈ Z such that z /∈ U .

So, ε(z) ∈ ε[Z] = ̂F , i.e., F ⊆ ε(z) and U /∈ ε(z). Then U /∈ F , which is
a contradiction.

• Suppose that Z ∈ LV , so Z ⊆ V . Since V /∈ F , it follows from the
prime filter theorem that there exists P ∈ X(D(X)) such that F ⊆ P
and V /∈ P . Thus, there is y ∈ X such ε(y) = P . Hence, F ⊆ ε(y). So,
ε(y) ∈ ̂F = ε[Z]. Then y ∈ Z and y /∈ V , which is again a contradiction.

We conclude that (x, Z) ∈ M . Thus,
⋂

{Lc
U ∪ LV : U, V ∈ D(X) and x ∈ U ⇒M V } ⊆ M(x).

The other inclusion is immediate. Therefore, condition (1) is satisfied.

Proposition 21. Let 〈X,M〉 be a WL-space. Then for every x ∈ X and
Z ∈ CUp(X), (x, Z) ∈ M if and only if (ε(x), ε[Z]) ∈ MD(X).

Proof. Let x ∈ X and Z ∈ CUp(X). Suppose that (x, Z) ∈ M . Let U, V ∈
D(X) such that U ⇒M V ∈ ε(x) and U ∈ Fε[Z]. We will see that V ∈ Fε[Z].
We have that ε[Z] ⊆ ϕ(U) if and only if Z ⊆ U , so Fε[Z] = {U ∈ D(X) : Z ⊆
U}. Since Z ∈ M(x), Z ⊆ U and x ∈ U ⇒M V we get Z ⊆ V , i.e., V ∈ Fε[Z].
Hence, (ε(x), ε[Z]) ∈ MD(X). The fact that (ε(x), ε[Z]) ∈ MD(X) implies that
(x, Z) ∈ M follows from Lemma 20.

Proposition 22. Let A ∈ WL. Then 〈X(A),MA〉 is a WL-space.
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Proof. It follows from Theorem 14 that condition (WLS1) is satisfied. In
order to show (WLS2), let P ∈ X(A). We need to prove that

MA(P ) =
⋂

{

Lc
ϕ(a) ∪ Lϕ(b) : a, b ∈ A and a → b ∈ P

}

.

Let F ∈ Fi(A) such that ̂F /∈ MA(P ), so there exist a, b ∈ A such that
a → b ∈ P , a ∈ F and b /∈ F . In particular, ̂F ∈ Lϕ(a). Besides, ̂F /∈ Lϕ(b).
Indeed, taking into account that b /∈ F we get that there exists P ∈ X(A)
such that b /∈ P and F ⊆ P , so P ∈ ̂F and P /∈ ϕ(b). Thus, ̂F /∈ Lϕ(b).
Hence, ̂F /∈ Lc

ϕ(a) ∪ Lϕ(b). We have proved that
⋂

{

Lc
ϕ(a) ∪ Lϕ(b) : a, b ∈ A and a → b ∈ P

}

⊆ MA(P ).

The other inclusion follows from a straightforward computation. Thus, con-
dition (WLS2) is satisfied.

4.2. Topological Duality

In this subsection we present a dual equivalence for the algebraic category
of WL-lattices.

Note that if X and Y are Priestley spaces and f : X → Y is a continuous
and monotone map, then for every Z ∈ CUp(X), [f [Z]) ∈ CUp(Y ). Indeed,
let f : X → Y be a continuous and monotone map between Priestley spaces.
Consider Z a closed subset of X. It is known that f [Z] is a closed subset of
Y . Moreover, since f [Z] is a closed subset of Y and Y is a Priestley space,
then [f [Z]), which is the upset generated by f [Z], is a closed subset of Y .
Besides, [f [Z]) is an upset. Therefore, [f [Z]) is a closed upset of Y .

It is interesting to note that the previous property is not necessarily
satisfied if we change [f [Z]) by f [Z], as we show in the following example
provided by one of the referees. Let X = {0, 1} with 0 �= 1 and let τ
be the discrete topology on X. Define the following two partial orders on
X: ≤= {(0, 0), (1, 1)} and ≤′

= {(0, 0), (0, 1), (1, 1)}. It is immediate that
〈X, ≤, τ〉 and 〈X, ≤′

, τ〉 are Priestley spaces. Let f : 〈X, ≤, τ〉 → 〈X, ≤′
, τ〉

be the identity map on X, which is a continuous and monotone map. We
have that {0} is a closed upset of 〈X, ≤, τ〉. Howewer, f [{0}] = {0} is not a
closed upset of 〈X, ≤′

, τ〉.

Definition 23. Let 〈X1,M1〉 and 〈X2,M2〉 be two WL-spaces. A contin-
uous and monotone map f : X1 → X2 is a WL-morphism if the following
conditions are satisfied:
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(MF1) For every x ∈ X1 and Z ∈ CUp(X1), if (x, Z) ∈ M1, then
(f(x), [f [Z])) ∈ M2.

(MF2) For every x ∈ X1 and Z ∈ CUp(X2), if (f(x), Z) ∈ M2, then there
exists W ∈ CUp(X1) such that W ∈ M1(x) and Z = [f [W ]).

Recall that if h : A → B is a homomorphism of bounded distributive
lattices, then the map h∗ : X(B) → X(A) is defined by h∗(P ) = h−1(P ).

The following elementary lemma will be used throughout this subsection.

Lemma 24. Let A and B bounded distributive lattices. Let h : A → B be a
homomorphism of bounded lattices. Let G ∈ Fi(B). Then ĥ−1(G) = [h∗[ ̂G]).
Moreover, F

̂h−1(G)
= h−1(G).

Proof. Let G ∈ Fi(B). A direct computation shows that

h∗[ ̂G] =
{

h−1(P ) : P ∈ X(B) and G ⊆ P
} ⊆ ĥ−1(G).

Since ĥ−1(G) is an upset, then [h∗[ ̂G]) ⊆ ĥ−1(G). In order to prove the
other inclusion, let P ∈ X(A) such that h−1(G) ⊆ P . Consider the set
h(P c) = {h(a) : a /∈ P}. It is clear that (h(P c)] is an ideal. We will prove
that G ∩ (h(P c)] = ∅. Suppose that there exist f ∈ G and a /∈ P such that
f ≤ h(a). Then h(a) ∈ G, so a ∈ h−1(G) ⊆ P , which is a contradiction.
Thus, it follows from the prime filter theorem that there exists Q ∈ X(B)
such that G ⊆ Q and h−1(Q) ⊆ P , so P ∈ [h∗[ ̂G]).

Proposition 25. Let A,B ∈ WL and h : A → B a homomorphism of
bounded lattices. Then:

(1) h∗ satisfies (MF1) if and only if h(a ⇒ b) ≤ h(a) ⇒ h(b) for every
a, b ∈ A.

(2) h∗ satisfies (MF2) if and only if h(a) ⇒ h(b) ≤ h(a ⇒ b) for every
a, b ∈ A.

Proof. In order to prove (1), first assume that h∗ satisfies the condition
(MF1). Suppose that there exist a, b ∈ A such that h(a ⇒ b) � h(a) ⇒ h(b).
Then there is P ∈ X(B) such that h(a ⇒ b) ∈ P and h(a) ⇒ h(b) /∈ P . It
follows from Lemma 13 that there exists G ∈ Fi(B) such that (P, ̂G) ∈ MB,
h(a) ∈ G and h(b) /∈ G, so it follows from hypothesis that (h∗(P ), [h∗[ ̂G])) ∈
MA. Moreover, it follows from Lemma 24 that a ∈ F[h∗[ ̂G]) and b /∈ F[h∗[ ̂G]).

Since (h∗(P ), [h∗[ ̂G])) ∈ MA, a ⇒ b ∈ h∗(P ) and a ∈ F[h∗[ ̂G]) we get b ∈
F[h∗[ ̂G]), which is a contradiction.

Conversely, suppose that h(a ⇒ b) ≤ h(a) ⇒ h(b) for every a, b ∈ A. Let
P ∈ X(B) and G ∈ Fi(B) such that (P, ̂G) ∈ MB. We need to show that
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(h∗(P ), [h∗[ ̂G])) ∈ MA. In order to see it, let a, b ∈ A such that a ⇒ b ∈
h∗(P ) and a ∈ F[h∗[ ̂G]). It follows from Lemma 24 that h(a) ∈ G. Besides,
taking into account that h(a ⇒ b) ≤ h(a) ⇒ h(b) and h(a ⇒ b) ∈ P we get
h(a) ⇒ h(b) ∈ P . But (P, ̂G) ∈ MB and h(a) ∈ G, so h(b) ∈ G. Thus, it
follows from Lemma 24 that b ∈ F[h∗[ ̂G]). Hence, (h∗(P ), [h∗[ ̂G])) ∈ MA.

Now we will show condition (2). Suppose that h∗ satisfies (MF2) and
that there exist a, b ∈ A such that h(a) ⇒ h(b) � h(a ⇒ b), so there exists
P ∈ X(B) such that h(a) ⇒ h(b) ∈ P and a ⇒ b /∈ h∗(P ). Then it follows
from Lemma 13 that there exists G ∈ Fi(A) such that (h∗(P ), ̂G) ∈ MA,
a ∈ G and b /∈ G. In particular, it follows from hypothesis that there exists
H ∈ Fi(B) such that ̂H ∈ MB(P ) and ̂G = [h∗( ̂H)). Since F

[h∗[̂H])
= G

and a ∈ G, it follows from Lemma 24 that h(a) ∈ H. But h(a) ⇒ h(b) ∈ P

and (P, ̂H) ∈ MB, so h(b) ∈ H, i.e., b ∈ G, which is a contradiction. Hence,
h(a) ⇒ h(b) ≤ h(a ⇒ b) for every a, b ∈ A.

Conversely, suppose that h(a) ⇒ h(b) ≤ h(a ⇒ b) for every a, b ∈ A. In
order to prove that h∗ satisfies (MF2), let P ∈ X(B) and G ∈ Fi(A) such
that (h∗(P ), ̂G) ∈ MA. We define the set H = DP (h[G]). It follows from
Proposition 12 that H ∈ Fi(B) and (P, ̂H) ∈ MB. In what follows we will
see that h−1(H) = G. Let c ∈ h−1(H), so there exists d ∈ G such that
h(d) ⇒ h(c) ∈ P . But h(d) ⇒ h(c) ≤ h(d ⇒ c), so d ⇒ c ∈ h∗(P ). Taking
into account that d ∈ G and (h∗(P ), ̂G) ∈ MA we get c ∈ G, so h−1(H) ⊆ G.
The converse inclusion is immediate. Hence, h−1(H) = G. Moreover, it
follows from Lemma 24 that F

[h∗[̂H])
= h−1(H) = G, so ̂G = [h∗[ ̂H]).

Therefore, we have proved condition (MF2).

Corollary 26. Let A,B ∈ WL and h : A → B a homomorphism of bounded
lattices. Then h∗ is a WL-morphism if and only if h(a ⇒ b) = h(a) ⇒ h(b)
for every a, b ∈ A.

We abuse notation and also wite WL for the algebraic category whose
members are WL-lattices. We write SWL for the category whose objects are
WL-spaces and whose morphisms are WL-morphisms.

Theorem 27. The assignment A �→ 〈X(A), MA〉 and h �→ h∗ defines a
functor X: WL → SWL, and the assignment 〈X,M〉 �→ 〈D(X),∪,∩,⇒M

, ∅, X〉 and f �→ f∗ defines a functor D: SWL → WL. Moreover, the functors
X and D establish a dual equivalence between the categories WL and SWL.

Proof. It follows from Priestley duality, Theorem 14, Propositions 19, 21
and 22, and Corollary 26.
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5. Connections Between WL-Spaces and WH-Spaces

The goal of this section is to compare the dual categorical equivalence given
in Section 4 with that developed in [6] for the algebraic category of weak
Heyting algebras. More precisely, we study the link between WL-spaces and
WH-spaces, which are the dual objects of WH-algebras [6]. We start the
section by giving necessary and sufficient conditions for a WL-lattice to be
a WH-algebra. Then we recall the Priestley style duality for WH-algebras
developed in [6] and we compare this with the dual categorical equivalence
given in Theorem 27.

Proposition 28. Let A ∈ WL. Then the following conditions are equiva-
lent:

(1) (a ⇒ c) ∧ (b ⇒ c) ≤ (a ∨ b) ⇒ c for every a, b, c ∈ A, i.e., A is a
WH-algebra.

(2) For every a, b ∈ A and P ∈ X(A), a ⇒ b /∈ P if and only if there exists
Q ∈ X(A) such that (P, ̂Q) ∈ MA, a ∈ Q and b /∈ Q.

(3) For every P ∈ X(A), F ∈ Fi(A) and c ∈ A such that (P, ̂F ) ∈ MA and
c /∈ F , there exists Q ∈ X(A) such that F ⊆ Q, c /∈ Q and (P, ̂Q) ∈ MA.

Proof. First we will show the equivalence between (1) and (2). Suppose
that (1) is satisfied. Since A is a WH-algebra, it follows from the proof of [6,
Lemma 3.13] that condition (2) is satisfied. In order to prove that (2) implies
(1), suppose that (2) is satisfied. Assume that (1) is not satisfied, so there
exist a, b, c ∈ A such that (a ⇒ c) ∧ (b ⇒ c) � (a ∨ b) ⇒ c. Thus, there is
P ∈ X(A) such that a ⇒ c ∈ P , b ⇒ c ∈ P and (a∨b) ⇒ c /∈ P . So, it follows
from the hypothesis that there exists Q ∈ X(A) such that (P, ̂Q) ∈ MA,
a ∨ b ∈ Q and c /∈ Q. Since Q is prime, a ∈ Q or b ∈ Q. If a ∈ Q, since
a ⇒ c ∈ P and (P, ̂Q) ∈ MA we get c ∈ Q, which is a contradiction. If b ∈ Q
we obtain a contradiction too. Therefore, (a ⇒ c) ∧ (b ⇒ c) ≤ (a ∨ b) ⇒ c
for every a, b, c ∈ A.

Now we will prove that (1) implies (3). Assume that (1) is satisfied. Let
P ∈ X(A), F ∈ Fi(A) and c ∈ A such that (P, ̂F ) ∈ MA and c /∈ F . By
Proposition 12, F = DP (F ). Consider the family

F = {H ∈ Fi(A) : F ⊆ H, (P, ̂H) ∈ MA and c /∈ H}.

Since F ∈ F , F is non-empty. It is immediate that the hypothesis of Zorn’s
Lemma is satisfied, so there exists a maximal element Q ∈ F . In particular,
Q is proper because c /∈ Q. We will see that Q is prime. Let a, b ∈ A such that
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a∨ b ∈ Q. Suppose a /∈ Q and b /∈ Q. Consider the filters Qa = Fig(Q∪{a})
and Qb = Fig(Q ∪ {b}). Since F ⊆ Q ⊆ DP (Qa), F ⊆ Q ⊆ DP (Qb)
and (P, D̂P (Qa)), (P, D̂P (Qb)) ∈ MA, the maximality of Q in F implies
that c ∈ DP (Qa) and c ∈ DP (Qb). So, there exist d1 ∈ Qa and d2 ∈ Qb

such that d1 ⇒ c, d2 ⇒ c ∈ P . Since d1 ∈ Qa and d2 ∈ Qb we get that
there exist d3, d4 ∈ Q such that d3 ∧ a ≤ d1 and d4 ∧ b ≤ d2. Hence,
d1 ⇒ c ≤ (d3 ∧ a) ⇒ c and d2 ⇒ c ≤ (d4 ∧ b) ⇒ c. Take d = d3 ∧ d4 ∈ Q.
Then, (d3 ∧ a) ⇒ c ≤ (d ∧ a) ⇒ c and (d4 ∧ a) ⇒ c ≤ (d ∧ b) ⇒ c. This
implies that (d ∧ a) ⇒ c, (d ∧ b) ⇒ c ∈ P . Hence,

((d ∧ a) ⇒ c) ∧ ((d ∧ b) ⇒ c) ∈ P.

It follows from the hypothesis that

((d ∧ a) ⇒ c) ∧ ((d ∧ b) ⇒ c) = ((d ∧ a) ∨ (d ∧ b)) ⇒ c = (d ∧ (a ∨ b)) ⇒ c,

so (d ∧ (a ∨ b)) ⇒ c ∈ P . Since d ∈ Q and a ∨ b ∈ Q we get d ∧ (a ∨ b) ∈
Q. Moreover, the fact that (P, ̂Q) ∈ MA implies that c ∈ Q, which is a
contradiction. Thus, Q is a prime filter such that (P, ̂Q) ∈ MA, a ∈ Q and
b /∈ Q.

Finally we will see that (3) implies (1). Suppose that (3) is satisfied and
that there exist a, b, c ∈ A such that (a ⇒ c) ∧ (b ⇒ c) � (a ∨ b) ⇒ c. Then
there is P ∈ X(A) such that a ⇒ c, b ⇒ c ∈ P and (a∨ b) ⇒ c /∈ P . Thus, it
follows from Lemma 13 that there exists F ∈ Fi(A) such that (P, ̂F ) ∈ MA,
a ∨ b ∈ F and c /∈ F . By hypothesis, there is Q ∈ X(A) such that F ⊆ Q,
c /∈ Q and (P, ̂Q) ∈ MA. Then a ∨ b ∈ Q and since Q is prime, a ∈ Q
or b ∈ Q. Without loss of generality we can assume that a ∈ Q. Taking
into account that a ⇒ c ∈ P and (P, ̂Q) ∈ MA we get c ∈ Q, which is a
contradiction. Thus, (3) implies (1), which was our aim.

The following definition will be used in order to give the duality for WH-
algebras developed in [6].

Definition 29. A structure 〈X,R〉 is a WH-space if X is a Priestley space
and R ⊆ X × X satisfies the following conditions:

(WSH1) U ⇒R V = {x ∈ X : R(x) ∩ U ⊆ V } ∈ D(X), for every U, V ∈
D(X).

(WHS2) R(x) is a closed subset of X, for every x ∈ X.

Let 〈X1, R1〉 and 〈X2, R2〉 be two WH-spaces. A continuous and mono-
tone map f : X1 → X2 is said to be a WH-morphism if the following condi-
tions are satisfied:
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(1) For every x, y ∈ X, if (x, y) ∈ R1, then (f(x), f(y)) ∈ R2.

(2) For every x ∈ X and z ∈ Y such that (f(x), z) ∈ R2 there exists
y ∈ X1 such that (x, y) ∈ R1 and f(y) = z.

Note that a WH-morphism is a Priestley morphism that is also a p-morphism
between the relational structures 〈X1, R1〉 and 〈X2, R2〉.

If 〈X,R〉 is a WH-space, then the structure 〈D(X),∪,∩,⇒R, ∅, X〉 is
a WH-algebra, where ⇒R is the binary operation given in (WHS1). Con-
versely, if A is a WH-algebra, then 〈X(A), RA〉 is a WH-space, where RA is
defined by

(P,Q) ∈ RA iff ∀a, b ∈ A(a ⇒ b ∈ P and a ∈ Q then b ∈ Q).

Let A and B be two WH-algebras. A WH-homomorphism between A and
B is a homomorphism h : A → B between bounded distributive lattices such
that h(a ⇒ b) = h(a) ⇒ h(b), for all a, b ∈ A. Let h : A → B be a WH-
homomorphism. Then h∗ : X(B) → X(A) is a WH-morphism. On the other
hand, if f : X1 → X2 is a WH-morphism, then the map f∗ : D(X2) → D(X1)
is a WH-homomorphism. Moreover, there exists a dual equivalence between
the algebraic category whose objects are WH-algebras and the category
whose objects are WH-spaces and whose morphisms are WH-morphisms
(see [6] for more details).

In what follows we study the connection between WH-spaces and certain
WL-spaces. In order to make it possible we give the following definition,
which is inspired in Proposition 28.

Definition 30. A structure 〈X,M〉 is a MWL-space if 〈X,M〉 is a WL-
space such that satisfies the following condition: for every x ∈ X,Y ∈ M(x)
and U ∈ D(X), if Y � U then there exists y ∈ Y such that y /∈ U and
(x, [y)) ∈ M .

Let 〈X,M〉 be a MWL-space. We define the binary relation RM ⊆ X ×X
by

(x, y) ∈ RM iff (x, [y)) ∈ M.

Lemma 31. Let 〈X,M〉 be a MWL-space. Then 〈X,RM 〉 is a WH-space.

Proof. Let 〈X,M〉 be a MWL-space. Without loss of generality we can
assume that 〈X,M〉 is of the form 〈X(A), MA〉 for some WL-lattice A.
In order to show that 〈X,RM 〉 is a WH-space it is enough to see that
〈X(A), RMA

〉 is a WH-space. First note that it follows from Proposition 28
that A is a WH-algebra. Besides, it is immediate that RA = RMA

. Therefore,
〈X(A), RMA

〉 is a WH-space.
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Let 〈X,R〉 be a WH-space. We define MR ⊆ X × CUp(X) by

(x, Y ) ∈ MR iff ∀U ∈ D(X)(Y /∈ LU then Y ∩ U c ∩ R(x) �= ∅).

Note that if (x, y) ∈ R then (x, [y)) ∈ MR, because if [y) /∈ LU , i.e., y /∈ U ,
then y ∈ [y) ∩ U c ∩ R(x).

Lemma 32. Let 〈X,R〉 be a WH-space. Then 〈X,MR〉 is a MWL-space.

Proof. Let U, V ∈ D(X). First we will see that U ⇒MR
V = U ⇒R V .

Let x ∈ U ⇒MR
V . In order to show that R(x) ∩ U ⊆ V , let y ∈ R(x) ∩ U .

As (x, [y)) ∈ MR, [y) ⊆ U and x ∈ U ⇒MR
V , we have [y) ⊆ V and y ∈ V .

Thus, x ∈ U ⇒R V .
Conversely, let x ∈ U ⇒R V , i.e., R(x) ∩ U ⊆ V . Let Y ∈ MR(x) such

that Y ⊆ U . Suppose that Y � V , i.e., Y /∈ LV . Then there exists y ∈ X
such that y ∈ Y ∩ V c ∩ R(x). Since Y ⊆ U we get y ∈ R(x) ∩ U ⊆ V , so
y ∈ V which is a contradiction. Thus, x ∈ U ⇒MR

V . We have proved that
U ⇒MR

V = U ⇒R V .
Now we will see that MR(x) =

⋂{Lc
U ∪ LV : x ∈ U ⇒MR

V and U, V ∈
D(X)}, for every x ∈ X. Let x ∈ X. Let

Y ∈
⋂

{Lc
U ∪ LV : x ∈ U ⇒MR

V and U, V ∈ D(X)} (5.1)

and suppose Y /∈ MR(x). Then there exists V ∈ D(X) such that

Y /∈ LV (5.2)

and Y ∩ V c ∩ R(x) = ∅, i.e., R(x) ⊆ Y c ∪ V . As Y ∈ CUp(X), Y =
⋂{U ∈

D(X) : Y ∈ LU}. Hence,

R(x) ⊆
⋃

{U c : U ∈ D(X) and Y ∈ LU} ∪ V.

Since R(x) is a closed subset of X, R(x) is compact. Then there exist
U1, . . . , Un ∈ D(X) such that Y ∈ LU1 , . . . , Y ∈ LUn

and

R(x) ⊆ U c
1 ∪ · · · ∪ U c

n ∪ V = (U1 ∩ · · · ∩ Un)c ∪ V = U c ∪ V,

where U = U1 ∩ · · · ∩ Un. Then x ∈ U ⇒R V = U ⇒MR
V . As Y ⊆ U ,

we get Y /∈ Lc
U . It follows from (5.1) that Y ∈ LV , i.e., Y ⊆ V , which is

a contradiction with (5.2). Thus,
⋂{Lc

U ∪ LV : x ∈ U ⇒MR
V and U, V ∈

D(X)} ⊆ MR(x).
In order to show the converse inclusion, let Y ∈ MR(x). Suppose that

Y /∈ ⋂{Lc
U ∪ LV : x ∈ U ⇒MR

V and U, V ∈ D(X)}. Then there exist
U, V ∈ D(X) such that Y /∈ Lc

U ∪ LV and x ∈ U ⇒MR
V = U ⇒R V .

So, Y ⊆ U , Y � V and x ∈ U ⇒MR
V . Since Y ∈ MR(x), Y ⊆ U and
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x ∈ U ⇒MR
V we get Y ⊆ V , which is a contradiction. Thus,

MR(x) =
⋂

{Lc
U ∪ LV : x ∈ U ⇒MR

V and U, V ∈ D(X)} .

Hence, 〈X,MR〉 is a WL-space. In order to show that it is a MWL-space, let
Y ∈ MR(x) and Y � U . By definition of MR there exists y ∈ Y ∩U c ∩R(x).
As (x, y) ∈ R, we have (x, [y)) ∈ MR. Therefore, 〈X,MR〉 is a MWL-space.

Lemma 33. Let 〈X,R〉 be a WH-space and 〈X,M〉 a MWL-space. Then
MRM

= M and RMR
= R.

Proof. Let 〈X,R〉 be a WH-space. A direct computation shows that R ⊆
RMR

. In order to see the converse inclusion, let x, y ∈ X such that (x, y) ∈
RMR

, i.e., (x, [y)) ∈ MR. By definition of MR, for each W ∈ D(X) such that
y /∈ W there exists z ∈ [y) ∩ W c ∩ R(x). Suppose that y /∈ R(x). As R(x) is
closed, there exists U, V ∈ D(X) such that x ∈ U ⇒R V , y ∈ U and y /∈ V .
By definition of MR there exists z ∈ V c ∩ [y) ∩ R(x). Then z ∈ U , and since
z ∈ R(x) and x ∈ U ⇒R V we get z ∈ V , which is a contradiction. Thus,
RMR

(x) ⊆ R(x) for every x ∈ X. Hence, R = RMR
.

Let 〈X,M〉 be a MWL-space. Let Y ∈ CUp(X) and x ∈ X such that
Y ∈ MRM

(x). Suppose that Y /∈ M(x). Then there exist U, V ∈ D(X)
such that Y /∈ Lc

U ∪ LV and x ∈ U ⇒M V . So, Y ⊆ U and Y � V . Since
Y ∈ MRM

(x), there exists z ∈ Y ∩ V c ∩ RM (x). Thus, z ∈ Y , z /∈ V and
(x, [z)) ∈ M . But as x ∈ U ⇒M V and [z) ⊆ U , we have [z) ⊆ V , i.e., z ∈ V
which is a contradiction. Thus, Y ∈ M(x) and MRM

⊆ M .
Finally, let Y ∈ CUp(X) and x ∈ X such that Y /∈ MRM

(x) =
⋂{Lc

U ∪
LV : x ∈ U ⇒MRM

V and U, V ∈ D(X)}. So, there exist U, V ∈ D(X) such
that Y ⊆ U , Y � V and x ∈ U ⇒MRM

V = U ⇒RM
V = U ⇒M V . This

implies that Y /∈ M(x). Therefore, MRM
= M .

The following result follows from Lemmas 31, 32 and 33.

Theorem 34. There exists a categorical isomorphism between the full sub-
category of WL whose objects are MWL-spaces and the category whose objects
are WH-spaces and whose morphisms are WH-morphisms.

6. Some Subvarieties of the Variety of WL-Lattices

Inspired by some of the varieties studied in [6], in this section we study some
subvarieties of the variety of WL-lattices. First, we identify the classes of
WL-frames that correspond to these subvarieties. So, we use Theorem 27 in



On Weak Lewis Distributive Lattices

order to give dually equivalences for the algebraic categories corresponding
to these subvarieties. In the following section we study the connection be-
tween a particular class of WL-frames and the intuitionistic neighbourhood
frames introduced in [26, Definition 2.1].

We introduce the following identities in the framework of WL-lattices:

(R) a ∧ (a ⇒ b) ≤ b,

(T) a ⇒ b ≤ c ⇒ (a ⇒ b),

(B) a ≤ 1 ⇒ a.

A direct computation shows that the inequality (T) is equivalent to the
inequality a ⇒ b ≤ 1 ⇒ (a ⇒ b). We opt to introduce the inequality
(T) in place of the equivalent inequality a ⇒ b ≤ 1 ⇒ (a ⇒ b) because
our motivation cames from the subvarierty of WH-algebras whose members
satisfy (T), which was introduced and studied in [6]. We note also that some
of these axioms also appeared in [23] in the context of intuitionistic logic
with a Lewis implication.

In what follows we introduce certain relational conditions defined in WL-
frames that allow us to characterize some extensions of the variety of WL-
lattices.

Let F = 〈X, ≤,M〉 be a WL-frame. Let us consider the following rela-
tional conditions:

(WLR) For every x ∈ X, (x, [x)) ∈ M .

(WLT) For every x, y ∈ X and Y,Z ∈ Up(X), if (x, Y ) ∈ M , y ∈ Y and
(y, Z) ∈ M then (x, Z) ∈ M .

(WLB) For every x ∈ X and Y ∈ Up(X), if (x, Y ) ∈ M then Y ⊆ [x).

Lemma 35. Let F = 〈X, ≤,M〉 be a WL-frame. Consider the WL-lattice
A(F) = 〈Up(X),∪,∩,⇒M , ∅, X〉. Then:
(1) If F satisfies (WLR) then A(F) satisfies (R).

(2) If F satisfies (WLT) then A(F) satisfies (T).

(3) If F satisfies (WLB) then A(F) satisfies (B).

(4) If F satisfies (WLB) then F satisfies (WLT).

Proof. We only prove (4). Let x ∈ X and Y, Z ∈ Up(X) such that (x, Y ) ∈
M , y ∈ Y and (y, Z) ∈ M . Then Y ⊆ [x) and Z ⊆ [y). As y ∈ Y ⊆ [x), we
get x ≤ y. So, by condition (∗) of Definition 6 we have (x, Z) ∈ M .

Proposition 36. Let A ∈ WL. Then the following conditions are equiva-
lent:
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(1) A satisfies (R).

(2) For every a, b, c ∈ A, if a ≤ b ⇒ c, then a ∧ b ≤ c.

(3) For every P ∈ X(A), (P, [P )) ∈ MA.

(4) For every P,Q ∈ X(A), if P ⊆ Q then (P, [Q)) ∈ MA.

Proof. The equivalence between (1) and (2) follows from a direct com-
putation, and the fact that (2) implies (3) is immediate. In order to see
that (3) implies (4), assume that (3) is satisfied and let P, Q ∈ X(A) such
that P ⊆ Q. Let a, b ∈ A such that a ⇒ b ∈ P and a ∈ Q. In particular,
a ⇒ b ∈ Q. Since (Q, [Q)) ∈ MA we get b ∈ Q. Thus, (P, [Q)) ∈ MA.
Finally we will show that (4) implies (1). Suppose that (4) is satisfied and
that (1) is not verified, so there exist a, b ∈ A such that a ∧ (a ⇒ b) � b.
Hence, there exists P ∈ X(A) such that a, a ⇒ b ∈ P and b /∈ P . It follows
from the hypothesis that (P, [P )) ∈ MA, so b ∈ P , which is a contradiction.
Therefore, condition (4) implies condition (1), which was our aim.

Proposition 37. Let A ∈ WL. Then the following conditions are equiva-
lent:

(1) A satisfies (T).

(2) For every P,Q ∈ X(A) and F,G ∈ Fi(A), if (P, ̂F ) ∈ MA, Q ∈ ̂F and
(Q, ̂G) ∈ MA then (P, ̂G) ∈ MA.

Proof. First we will see that (1) implies (2). Suppose that (1) is satisfied.
Let P,Q ∈ X(A) and F,G ∈ Fi(A) such that (P, ̂F ) ∈ MA, Q ∈ ̂F and
(Q, ̂G) ∈ MA. In particular, F ⊆ Q. We will see that (P, ̂G) ∈ MA. Let
a, b ∈ A such that a ⇒ b ∈ P and a ∈ G. Since a ⇒ b ≤ 1 ⇒ (a ⇒ b) we get
1 ⇒ (a ⇒ b) ∈ P . But (P, ̂F ) ∈ MA, so a ⇒ b ∈ F . Since a ⇒ b ∈ Q, a ∈ G

and (Q, ̂G) ∈ MA we get b ∈ G. Hence, (P, ̂G) ∈ MA.
Finally we will prove that (2) implies (1). Assume that (2) is verified and

suppose that there exist a, b, c ∈ A such that a ⇒ b � c ⇒ (a ⇒ b). Then
there exists P ∈ X(A) such that a ⇒ b ∈ P and c ⇒ (a ⇒ b) /∈ P . It
follows from Lemma 13 that there exists F ∈ Fi(A) such that (P, ̂F ) ∈ MA,
c ∈ F and a ⇒ b /∈ F . Thus, there is Q ∈ X(A) such that a ⇒ b /∈ Q and
F ⊆ Q. It follows from Lemma 13 that there exists G ∈ Fi(A) such that
(Q, ̂G) ∈ MA, a ∈ G and b /∈ G. We have proved that (P, ̂F ) ∈ MA, Q ∈ ̂F

and (Q, ̂G) ∈ MA. Then it follows from hypothesis that (P, ̂G) ∈ MA. Since
a ⇒ b ∈ P and a ∈ G we get b ∈ G which is a contradiction.

Proposition 38. Let A ∈ WL. Then the following conditions are equiva-
lent:
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(1) A satisfies (B).

(2) For every a, b, c ∈ A, if a ∧ b ≤ c, then a ≤ b ⇒ c.

(3) For every P ∈ X(A) and F ∈ Fi(A), if (P, ̂F ) ∈ MA and Q ∈ ̂F then
P ⊆ Q.

Proof. The fact that (1) implies (2) can be proved as in [6, Proposi-
tion 4.20].

In order to show that (2) implies (3), suppose that (2) is satisfied. Let
P ∈ X(A) and F ∈ Fi(A) such that (P, ̂F ) ∈ MA. Let Q ∈ ̂F . We will
prove that P ⊆ Q. Let a ∈ P . Then a ∧ 1 ≤ a, so it follows from hypothesis
that a ≤ 1 ⇒ a. Thus, 1 ⇒ a ∈ P . Since (P, ̂F ) ∈ MA, a ∈ F . Taking into
account that F ⊆ Q we obtain that a ∈ Q. Hence, P ⊆ Q.

Finally we will see that (3) implies (1). Suppose that (1) is not satisfied.
Assume that there is a ∈ A such that a � 1 ⇒ a, so there exists P ∈ X(A)
such that a ∈ P and 1 ⇒ a /∈ P . It follows from Lemma 13 that there
exists F ∈ Fi(A) such that (P, ̂F ) ∈ MA and a /∈ F . Since a /∈ F , there is
Q ∈ X(A) such that a /∈ Q and F ⊆ Q. Hence, Q ∈ ̂F , so it follows from
hypothesis that P ⊆ Q. Thus, a ∈ Q, which is a contradiction.

By Propositions 36 and 38 we have that the variety of WL-lattices satis-
fying conditions (B) and (T) is the variety of Heyting algebras. For future
reference we formulate this in a corollary.

Corollary 39. Let A ∈ WL. Then A is a Heyting algebra if and only if A
satisfies (B) and (T).

Motivated by Propositions 36, 37 and 38 we consider the following con-
ditions in the framework of a WL-space 〈X,M〉:

(SR) For every x, y ∈ X, if x ≤ y then (x, [y)) ∈ M .

(ST) For every x, y ∈ X and Z,W ∈ CUp(X), if (x, Z) ∈ M , y ∈ Z and
(y,W ) ∈ M then (x,W ) ∈ M .

(SB) For every x, y ∈ X and Z ∈ CUp(X), if (x, Z) ∈ M and y ∈ Z then
x ≤ y.

The following result follows from Theorem 27 and Propositions 36, 37
and 38.

Theorem 40.

(1) The full subcategory of WL whose objects satisfy the identity (R) and
the full subcategory of SWL whose objects satisfy the condition (SR) are
dually equivalent.
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(2) The full subcategory of WL whose objects satisfy the identity (T) and
the full subcategory of SWL whose objects satisfy the condition (ST) are
dually equivalent.

(3) The full subcategory of WL whose objects satisfy the identity (B) and
the full subcategory of SWL whose objects satisfy the condition (SB) are
dually equivalent.

7. Connection with Intuitionistic Neighbourhood Frames

In this section we study the relation that exists between a certain class of
WL-frames and the class of intuitionistic neighbourhood frames defined in
[26, Definition 2.1].

Let 〈X,M〉 be a neighbourhood frame [27]. Define a binary relation �
on X by

x � y iff M(y) ⊆ M(x).

It is clear that � is a reflexive and transitive binary relation. This relation
is introduced in [26, Theorem 2.11] for intuitionistic neighbourhood frames.
For each x ∈ X let [x)	 = {y ∈ X : x � y}. We consider the family of
subsets

Up(X, �) =
{

Y ⊆ X : [x)	 ⊆ Y, for each x ∈ Y
}

.

Definition 41. An intuitionistic neighbourhood frame is a pair I = 〈X,M〉
where X is a non-empty set and M is a (neighbourhood) relation between
X and P(X), i.e., M ⊆ X × P(X), such that for each x ∈ X the following
two conditions are satisfied:

(IN1) There exists Y ∈ M(x) such that x ∈ Y .

(IN2) If Y ∈ M(x) then Y ⊆ [x)	.

Note that this definition is the same that Definition 2.1 of [26] but written
in terms of the relation �.
Lemma 42. Let I = 〈X,M〉 be an intuitionistic neighbourhood frame. Then
U ∈ Up(X, �) if and only if for every x ∈ U and Z ∈ M(x) we have that
Z ⊆ U .
Proof. Let U ∈ Up(X, �), x ∈ U and Z ∈ M(x). Then, [x)	 ⊆ U . By
(IN2) we have Z ⊆ [x)M . Hence, Z ⊆ U .

Conversely, let x, y ∈ X such that x � y and x ∈ U . So, M(y) ⊆ M(x).
By (IN1) there exists Z ∈ M(y) such that y ∈ Z. Thus, Z ⊆ U . Therefore,
y ∈ U .
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Lemma 43. Let I = 〈X,M〉 be an intuitionistic neighbourhood frame. Then
A (I) = 〈Up(X, �),∪,∩,⇒M , ∅, X〉 is a Heyting algebra.

Proof. Let U, V,W ∈ Up(X, �). We only need to prove that U ∩ V ⊆ W
if and only if U ⊆ V ⇒M W . In order to show it, suppose that U ∩ V ⊆ W .
Let x ∈ U and (x, Y ) ∈ M such that Y ⊆ V . Then Y ⊆ [x)	. Let y ∈ Y , so
x � y. Taking into account that U ∈ Up(X, �) we get y ∈ U ∩V , so y ∈ W .
Thus, Y ⊆ W .

Conversely, assume that U ⊆ V ⇒M W . Let x ∈ U ∩ V . It follows
from (IN1) that there exists Y ∈ M(x) such that x ∈ Y . As x ∈ V and
V ∈ Up(X, �), it follows from Lemma 42 that Y ⊆ V . Since x ∈ V ⇒M W
we get Y ⊆ W . Therefore, x ∈ W .

The next two results study the connection between the class of WL-frames
and a particular class of intuitionistic neighbourhood frames.

Lemma 44. Let F = 〈X, ≤,M〉 be a WL-frame satisfying conditions (WLR)
and (WLB). Then IF = 〈X,M〉 is an intuitionistic neighbourhood frame
such that ≤=� and U ⇒≤ V = U ⇒M V , for all U, V ∈ Up(X), i.e.,
A(F) = A (IF). Thus, for every formula φ ∈ Form, φ is valid in F if and
only if φ is valid in IF .

Proof. Condition (IN1) follows from condition (WLR). In order to prove
(IN2), let x ∈ X and Y ∈ Up(X) such that (x, Y ) ∈ M . Let y ∈ Y . We need
to show that x � y, i.e., M(y) ⊆ M(x). In order to see it, let Z ∈ M(y).
By item (4) of Lemma 35 we have that (x, Z) ∈ M . Thus, M(y) ⊆ M(x).
Hence, (IN2) is satisfied.

Let x, y ∈ X. We need to prove that x ≤ y if and only if M(y) ⊆ M(x).
Suppose that x ≤ y. By condition (*) of Definition 6 we have M(y) ⊆ M(x).
Conversely, suppose that M(y) ⊆ M(x). It follows from condition (WLR)
that [y) ∈ M(y). Moreover, by condition (WLB) we get [y) ⊆ [x), i.e., x ≤ y.

Let U, V ∈ Up(X). Finally we will prove that

U ⇒≤ V = U ⇒M V.

Let x ∈ U ⇒≤ V , i.e., [x) ∩ U ⊆ V . Let (x, Y ) ∈ M such that Y ⊆ U .
Then Y ⊆ [x) and Y ⊆ U implies that Y = Y ∩ U ⊆ [x) ∩ U ⊆ V . Thus,
x ∈ U ⇒M V . Conversely, let x ∈ U ⇒M V . Let y ∈ X such that x ≤ y and
y ∈ U . So, M(y) ⊆ M(x). As [y) ∈ M(y), [y) ⊆ U , and x ∈ U ⇒M V , we
get [y) ⊆ V , i.e., y ∈ V . Thus, x ∈ U ⇒≤ V .

Lemma 45. Let I = 〈X,M〉 be a neighbourhood frame satisfying the follow-
ing condition:

∀x ∈ X∀Y ⊆ X
(

Y ∈ M(x) if and only if Y ⊆ [x)	
)

. (7.1)
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Then I = 〈X,M〉 is an intuitionistic neighbourhood frame and FI = 〈X, �
,M〉 is a WL-frame satisfying conditions (WLR) and (WLB). Moreover,
U ⇒	 V = U ⇒M V, for all U, V ∈ Up (X, �), i.e, A (I) = A (FI). Thus,
for every formula φ ∈ Form, φ is valid in I if and only if φ is valid in FI .

Proof. It is immediate to see that I = 〈X,M〉 is an intuitionistic neigh-
bourhood frame and that FI = 〈X, �,M〉 is a WL-frame satisfying con-
ditions (WLR) and (WLB). Let U, V ∈ Up (X, �). We will prove that
U ⇒	 V = U ⇒M V . Let x ∈ U ⇒	 V , i.e., [x)	 ∩ U ⊆ V . Let
(x, Y ) ∈ M such that Y ⊆ U . Then Y ⊆ [x)	 and Y ⊆ U implies that
Y = Y ∩ U ⊆ [x)	 ∩ U ⊆ V . Thus, x ∈ U ⇒M V . Conversely, let
x ∈ U ⇒M V . Let y ∈ [x)	 ∩ U . Then [y)	 ⊆ [x)	 and [y)	 ⊆ U . Hence, it
follows from (7.1) that [y)	 ∈ M(x). Taking into account that x ∈ U ⇒M V ,
we get [y)	 ⊆ V , i.e., y ∈ V . Therefore, x ∈ U ⇒	 V .

Let I be a class of intuitionistic neighbourhood frames, and let F be a
class of WL-frames. We shall say that I and F are equivalent if for each
intuitionistic neighbourhood frame I ∈ I there exists a WL-frame F ∈ F
such that A(I) and A(F) are isomorphic, and for each F ∈ F there exists
I ∈ I such that A(I) and A(F) are isomorphic.

Corollary 46. The class of neighbourhood frames satisfying condition (7.1)
is equivalent to the class of WL-frames satisfying conditions (WLR) and
(WLB).

Proof. It follows from Lemmas 44 and 45.

8. Congruences of WL-Lattices Which Satisfy (R)

A WL-lattice is called a RWL-lattice if the identity (R) is satisfied. We write
RWL to indicate the subvariety of WL whose members are RWL-lattices.
Our interest in RWL-lattices cames from the fact that these algebras are
characterized as those WL-lattices such that for every a, b, c, if a ≤ b → c
then a ∧ b ≤ c, which is a kind of modus pones rule. The aim of this section
is to study the lattice of congruences of the members of the variety RWL.
Since RWL is a variety, a good description of the congruences of RWL-
lattices may be used as tool for the study of properties of these algebras, as
for instance for the study of principal congruences, simple and subdirectly
irreducible algebras respectively. First we use Proposition 36 in order to
prove that for every A ∈ RWL there is a dual isomorphism between the
congruences of A and a family of certain closed upsets of X(A). Later we
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also prove that for every A ∈ RWL there is an order isomorphism between
the lattice of congruences of A and the lattice open filters of A, where an
open filter is defined as a filter F such that 1 ⇒ a ∈ F whenever a ∈ F . This
last property is a generalization of [6, Theorem 6.12], where it was studied
the case of RWH-algebras (i.e., RWL-lattices which are also WH-algebras).
We finish this section by giving a description of the simple and subdirectly
irreducible algebras of RWL respectively, and also a characterization of the
principal congruences of RWL-lattices.

Let us begin by giving an example of a RWL-lattice which is not a RWH-
algebra.

Example 47. Consider the Boolean algebra of four elements A, where a
and b are the atoms. Let ⇒ be the binary operation on A defined by

⇒ 0 a b 1
0 1 1 1 1
a b 1 b 1
b a a 1 1
1 0 0 b 1

A direct computation shows that A is a RWL-lattice. However, this is not a
RWH-algebra. Indeed,

(a ∨ b) ⇒ a �= (a ⇒ a) ∧ (b ⇒ a).

The previous example shows that the variety of RWH-algebras is a proper
subvariety of RWL.

8.1. Congruences of RWL-Lattices Through the Topological Duality

Let A be an algebra. We write Con(A) in order to indicate the lattice of
congruences of A. Let θ ∈ Con(A). For every a ∈ A we write a/θ for the
equivalence class of a associated to θ. We also write A/θ in order to indicate
the quotient algebra of A associated to θ.

It is part of the folklore of Priestley duality [14] that if A is a bounded
distributive lattice A then for every Y ∈ CUp(X(A)) the set

θ(Y ) = {(a, b) ∈ A × A : Y ∩ ϕ(a) = Y ∩ ϕ(b)}
is a congruence of A. Moreover, the assignment Y �→ θ(Y ) establishes a dual
lattice isomorphism from the lattice of closed upsets of X(A) to the lattice
Con(A).

The following definition will be used later.
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Definition 48. Let 〈X,M〉 be a WL-space and Y ⊆ X. We say that Y is
M-closed if for every x ∈ Y it holds that M(x) ⊆ {Z ∈ CUp(X) : Z ⊆ Y }.

Lemma 49. Let A ∈ RWL. Let Y be a closed subset of X(A). Then the
following conditions are equivalent:

(1) θ(Y ) is a congruence of A.

(2) Y is a MA-closed subset of X(A).

Proof. Suppose that (1) is satisfied. First we will prove that Y ∈ CUp
(X(A)). Let P,Q ∈ X(A) such that P ⊆ Q, P ∈ Y and assume that
Q /∈ Y . As Y is a closed set we have that Y c =

⋃

i∈I ϕ(ai)c ∩ ϕ(bi) for some
{ai}i∈I ⊆ A and {bi}i∈I ⊆ A. Then there exist a ∈ {ai}i∈I and b ∈ {bi}i∈I

such that a /∈ Q and b ∈ Q. Moreover, a direct computation shows that
Y ∩ ϕ(b) ⊆ Y ∩ ϕ(a), i.e., Y ∩ ϕ(b) = Y ∩ ϕ(a ∧ b). Since (b, a ∧ b) ∈ θ(Y ), it
follows from the hypothesis that (b ⇒ a, (a ∧ b) ⇒ a) = (b ⇒ a, 1) ∈ θ(Y ),
i.e, Y ⊆ ϕ(b ⇒ a). But P ∈ Y , so b ⇒ a ∈ P . Since A is a RWL-lattice and
P ⊆ Q, it follows from Proposition 36 that (P, [Q)) ∈ MA. But b ⇒ a ∈ P
and b ∈ Q, so a ∈ Q, which is a contradiction. Hence, Y ∈ CUp(X(A)).

Now we will show that Y is a MA-closed subset of X(A). Suppose that
this condition is not satisfied, so there exists P ∈ X(A) such that P ∈ Y
and MA(P ) � {Z ∈ CUp(X(A)) : Z ⊆ Y }. Thus, there exists F ∈ Fi(A)
such that (P, ̂F ) ∈ MA(P ) and ̂F � Y . Hence, there exists Q ∈ X(A) such
that Q ∈ ̂F and Q /∈ Y . Since Y ∈ CUp(X(A)), there exists a ∈ A such that
Y ⊆ ϕ(a) and Q /∈ ϕ(a). But P ∈ Y , so a ∈ P . Besides, since (a, 1) ∈ θ(Y )
it follows from the hypothesis that (1 ⇒ a, 1) ∈ θ(Y ), i.e., Y ⊆ ϕ(1 ⇒ a).
Taking into account that P ∈ Y we obtain that 1 ⇒ a ∈ P . Moreover, the
fact that (P, ̂F ) ∈ MA, 1 ⇒ a ∈ P and 1 ∈ F implies that a ∈ F . However,
Q ∈ ̂F , i.e., F ⊆ Q, so a /∈ F because a /∈ Q, which is a contradiction.
Hence, Y is a MA-closed subset of X(A).

Conversely, suppose that Y is a MA-closed subset of X(A). In order to
see that θ(Y ) is a congruence, let a, b, c ∈ A such that (a, b) ∈ θ(Y ), i.e.,
Y ∩ ϕ(a) = Y ∩ ϕ(b). We will show that (a ⇒ c, b ⇒ c) ∈ θ(Y ). Let
P ∈ Y ∩ ϕ(a ⇒ c) and suppose that b ⇒ c /∈ P . Hence, it follows from
Lemma 13 that there exists G ∈ Fi(A) such that (P, ̂G) ∈ MA, b ∈ G and
c /∈ G. Since Y is MA-closed, P ∈ Y and ̂G ∈ MA(P ) we get ̂G ⊆ Y .
Besides, since b ∈ G we get ̂G ⊆ ϕ(b), so ̂G ⊆ Y ∩ ϕ(b) = Y ∩ ϕ(a) ⊆ ϕ(a).
Then ̂G ⊆ ϕ(a). A direct computation shows that a ∈ G. Then a ⇒ c ∈ P ,
a ∈ G and (P, ̂G) ∈ MA implies that c ∈ G, which is a contradiction. Then
Y ∩ ϕ(a ⇒ c) ⊆ Y ∩ ϕ(b ⇒ c). The other inclusion can be similarly showed,
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so Y ∩ϕ(a ⇒ c) = Y ∩ϕ(b ⇒ c). An analogous argument proves the equality
Y ∩ ϕ(c ⇒ a) = Y ∩ ϕ(c ⇒ b). Therefore, θ(Y ) ∈ Con(A).

The following result follows from Lemma 49.

Theorem 50. Let A ∈ RWL. The assignment Y �→ θ(Y ) establishes a dual
lattice isomorphism from the lattice of closed and MA-closed subsets of X(A)
to the lattice Con(A).

8.2. Congruences of RWL-Lattices in Terms of Open Filters and Some
Applications

Let A ∈ RWL. For every a ∈ A we define �a = 1 ⇒ a. A filter F of A will
be called open if �a ∈ F whenever a ∈ F . The family of open filters of A
will be denoted by Fi�(A).

Let A ∈ RWL. The first goal of this subsection is to show that there exists
an order isomorphism between Con(A) and Fi�(A).

Let A ∈ RWL. For each a, b ∈ A, we define a ⇔ b = (a ⇒ b) ∧ (b ⇒ a).
We also define �0(a) = a, �1(a) = �a and �n+1(a) = �(�n(a)) for every
n ∈ N, where N denotes the set of natural numbers.

Lemma 51. Let A ∈ RWL and a, b, c ∈ A. Then

�2(c) ≤ (a ⇒ b) ⇔ ((a ∧ c) ⇒ (b ∧ c)).

Proof. Let a, b, c ∈ A. Since a ⇒ b ≤ (a ∧ c) ⇒ b and (a ∧ c) ⇒ b =
(a ∧ c) ⇒ (b ∧ c) we deduce that a ⇒ b ≤ (a ∧ c) ⇒ (b ∧ c), i.e.,

(a ⇒ b) ⇒ ((a ∧ c) ⇒ (b ∧ c)) = 1. (8.1)

On the other hand, since

(a ⇒ (a ∧ c)) ∧ ((a ∧ c) ⇒ b) ≤ a ⇒ b

we get

((a ∧ c) ⇒ b) ⇒ ((a ⇒ (a ∧ c)) ∧ ((a ∧ c) ⇒ b)) ≤ ((a ∧ c) ⇒ b) ⇒ (a ⇒ b),

which is equivalent to

((a ∧ c) ⇒ b)) ⇒ (a ⇒ c) ≤ ((a ∧ c) ⇒ b) ⇒ (a ⇒ b). (8.2)

Since (a ∧ c) ⇒ b ≤ 1 we get

�(a ⇒ c) ≤ ((a ∧ c) ⇒ b) ⇒ (a ⇒ c). (8.3)

Besides, a ≤ 1 implies that �c ≤ a ⇒ c. Then

�2(c) ≤ �(a ⇒ c). (8.4)
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Hence, it follows from (8.2), (8.3) and (8.4) that �2(c) ≤ ((a ∧ c) ⇒ b) ⇒
(a ⇒ b). Moreover, since (a ∧ c) ⇒ b = (a ∧ c) ⇒ (b ∧ c) we get

�2(c) ≤ ((a ∧ c) ⇒ (b ∧ c)) ⇒ (a ⇒ b). (8.5)

Therefore, it follows from (8.1) and (8.5) that �2(c) ≤ (a ⇒ b) ⇔ ((a∧c) ⇒
(b ∧ c)), which was our aim.

Let A ∈ RWL and F ∈ Fi�(A). We define the binary relation

θ(F ) = {(a, b) ∈ A × A : a ∧ f = b ∧ f for some f ∈ F}.

The following definition will be used later.

Definition 52. [30, Definition 6] Let A ∈ RWL and F ∈ Fi(A). We say
that F is congruent if (a ⇒ b) ⇔ ((a ∧ f) ⇒ (b ∧ f)) ∈ F for every a, b ∈ A
and f ∈ F .

Let A ∈ RWL. It follows from Lemma 51 and [30, Lemma 9] that Fi�(A)
coincides with the set of congruent filters of A. Thus, the following result
follows from [30, Corollary 11].

Theorem 53. Let A ∈ RWL. Then there exists an order isomorphism be-
tween Con(A) and Fi�(A), which is established via the assignments θ �→ 1/θ
and F �→ θ(F ).

Remark 54. Let A ∈ RWL and F ∈ Fi�(A). Then

θ(F ) = {(a, b) ∈ A × A : a ⇔ b ∈ F}.

Indeed, let (a, b) ∈ θ(F ). Then there exists f ∈ F such that a ∧ f = b ∧ f .
Thus, a ⇒ (a∧f) = a ⇒ (b∧f), i.e., a ⇒ f = a ⇒ (b∧f). Since �f ≤ a ⇒ f
we get �f ≤ a ⇒ (b ∧ f). But (a ∧ f) ⇒ b = (b ∧ f) ⇒ b = 1. So,

�f ≤ (a ⇒ (b ∧ f)) ∧ ((b ∧ f) ⇒ b) ≤ a ⇒ b.

Analogously, we get �f ≤ b ⇒ a. Hence, �f ≤ a ⇔ b. Since �f ∈ F , a ⇔
b ∈ F . Conversely, suppose that a ⇔ b ∈ F . It is immediate that a ∧ (a ⇔
b) = b ∧ (a ⇔ b). Then (a, b) ∈ θ(F ). Hence, θ(F ) = {(a, b) ∈ A × A : a ⇔
b ∈ F}. Therefore, Theorem 53 is a generalization of [6, Theorem 6.12].

We finish this section by giving a characterization of simple algebras,
subdirectly irreducible algebras and principal congruences in the framework
of RWL-lattices. In order to make it possible, we need to give a description
of the open filter generated by an arbitrary subset of a given RWL-lattice.

Let A ∈ RWL. Given X ⊆ A we write Fo(X) for the open filter generated
by X. In particular, if a ∈ A we write Fo(a) in place of Fo({a}).
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Lemma 55. Let A ∈ RWL and X a non-empty subset of A. Then

Fo(X) = {a ∈ A : a ≥ �n(x1 ∧ · · · ∧ xm) for some x1, . . . , xm

∈ X and n,m ∈ N}.

In particular, Fo(a) = {b ∈ A : b ≥ �n(a) for some n ∈ N} for every a ∈ A.
Proof. It follows from a direct computation.

In the proof of the following proposition, which is a generalization of [6,
Theorem 6.17], we will use Theorem 53 and Lemma 55.
Proposition 56. Let A ∈ RWL.

(1) A is simple if and only if for every a ∈ A such that a �= 1 there exists
n ∈ N such that �n(a) = 0.

(2) If A is a non-trivial algebra, A is subdirectly irreducible if and only if
there is a �= 1 such that for every b �= 1 there exists n ∈ N such that
�n(b) ≤ a.

Proof. In order to prove (1), assume that A is simple, so Fi�(A) = {{1}, A}.
Let a ∈ A such that a �= 1, so Fo(1) �= {1}, i.e., Fo(a) = A. Since
0 ∈ A = Fo(a), there exists n ∈ N such that �n(a) = 0. Conversely, sup-
pose that for every a ∈ A such that a �= 1 there exists n ∈ N such that
�n(a) = 0. We need to show that A is simple, which is equivalent to show
that Fi�(A) = {{1}, A}. Let F ∈ Fi�(A) such that F �= {1}. Then there
exists a ∈ A such that a �= 1, so it follows from the hypothesis that there
exists n ∈ N such that �n(a) = 0. Since a ∈ F and F is an open filter we
get 0 ∈ F . Hence, F = A. Therefore, A is simple.

Finally we will show (2). Let A be a non-trivial algebra. Suppose that
A is subdirectly irreducible, so there exists F ∈ Fi�(A) such that F �= {1}
and F ⊆ H for every H ∈ Fi�(A) such that H �= {1}. Since F �= {1}, there
exists a ∈ F such that a �= 1. Let b ∈ A with b �= 1. Then Fo(b) �= {1}, so
F ⊆ Fo(b). Hence, a ∈ Fo(b). Then there exists n ∈ N such that �n(b) ≤ a.
Conversely, suppose that there is a �= 1 such that for every b �= 1 there
exists n ∈ N such that �n(b) ≤ a. In particular we have that Fo(a) �= {1}.
Let F ∈ Fi�(A) such that F �= {1}. We will see that Fo(a) ⊆ F , which is
equivalent to see that a ∈ F . Since F �= {1}, there exists b �= 1 such that
b ∈ F . Thus, it follows from the hypothesis that there exists n ∈ N such
that �n(b) ≤ a. Taking into account that F is an open filter we get a ∈ F ,
which was our aim. Therefore, A is subdirectly irreducible.

Let A ∈ RWL and a, b ∈ A. We write θ(a, b) for the congruence gener-
ated by the pair (a, b). The following result, which give us a description of
principal congruences, follows from Lemma 51 and [30, Corollary 12].
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Proposition 57. Let A ∈ RWL. Then (c, d) ∈ θ(a, b) if and only if there
exists n ∈ N such that �n(a ⇔ b) ≤ c ⇔ d.

9. Weak Heyting–Lewis Algebras

In this section we will explain how the topological duality developed for WL-
lattices can be applied to the case of Heyting algebras with a weak strict
implication, also called weak Heyting–Lewis algebras or iA−-algebras in [24,
Definition 3.1]. The variety of weak Heyting–Lewis algebras is the algebraic
semantic of the logic iP− [17,18]. Let us note that the results given in this
section respond to a question raised in [9] referring to the development of a
semantics for the logic iP−, or iA− in the notation of [9].

Definition 58. An algebra 〈A,∨,∧,→,⇒, 0, 1〉 of type (2, 2, 2, 2, 0, 0) is a
weak Heyting–Lewis algebra, or WHL-algebra for short, if 〈A,∨,∧,→, 0, 1〉
is a Heyting algebra and the following conditions are satisfied for every
a, b, c ∈ A:

(1) a ⇒ (b ∧ c) = (a ⇒ b) ∧ (a ⇒ c),

(2) (a ⇒ b) ∧ (b ⇒ c) ≤ a ⇒ c,

(3) a ⇒ a = 1.

The variety of WHL-algebra will be denoted by WHL. When no confusion
is likely we will write A instead of 〈A,∨,∧,→,⇒, 0, 1〉.
Proposition 59. Let A ∈ WHL. Then 〈A,∨,∧,⇒, 0, 1〉 is a WL-lattice.

Proof. Let a, b, c ∈ A and suppose a ≤ b. Then by Eqs (1) and (3) a ⇒
a = 1 ≤ a ⇒ b. As condition (a ⇒ b) ∧ (b ⇒ c) ≤ a ⇒ c is equivalent to
b ⇒ c ≤ (a ⇒ b) → (a ⇒ c), we get that b ⇒ c ≤ 1 → (a ⇒ c) = a ⇒ c.
Then, by Remark 8, we have (a ∨ b) ⇒ c ≤ (a ⇒ c) ∧ (b ⇒ c). Thus,
〈A,∨,∧,⇒, 0, 1〉 is a WL-lattice.

It is clear that if F = 〈X, ≤,M〉 is a WL-frame, then A(F) = 〈Up(X),∪,
∩,⇒≤,⇒M , ∅, X〉 is a WHL-algebra where the intuitionistic implication ⇒≤
is defined as U ⇒≤ V = {x ∈ X : [x) ∩ U ⊆ V }, for all U, V ∈ Up(X).

In a similar way to the proof of Theorem 14 and taking into account the
representation theory for Heyting algebras [2] we can prove the following
representation theorem for WHL-algebras.

Theorem 60. Let A ∈ WHL. Then the map ϕ : A → Up(X(A)) defined by
ϕ(a) = {P ∈ X(A) : a ∈ P} is an embedding of algebras.
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The topological representation for WHL-algebras is a mixer of the topo-
logical representation for Heyting algebras by means of Esakia spaces [13]
and the topological representation for WL-lattices by means of WL-spaces
(16).

We recall that an Esakia space is a Priestley space X such that for each
clopen subset C of X the set (C] is also clopen [13].

Definition 61. A WL-space 〈X,M〉 is a WEL-space if X is an Esakia
space.

It is clear that if 〈X,M〉 be a WEL-space, then 〈D(X),∪,∩,⇒≤,⇒M

, ∅, X〉 is a WHL-algebra. Conversely, if A is a WHL-algebra, then 〈X(A),
MA〉 is a WHL-space, where X(A) is the Esakia space associated to the
Heyting algebra A.

Let X and Y be Esakia spaces. An Esakia morphism is a continuous
and monotone map f : X → Y satisfying the additional condition: for every
x ∈ X and every y ∈ Y , if f(x) ≤ y then there exists z ∈ X such that
x ≤ z and f(z) = y. If f : X → Y is an Esakia morphism then the map
f∗ : D(Y ) → D(X) defined by f∗(U) = f−1(U) is a homomorphism of
Heyting algebras. If h : A → B is a homomorphism of Heyting algebras,
then the map h∗ : X(B) → X(A) defined by h∗(P ) = h−1(P ) is an Esakia
morphism. Moreover, there exists a dual equivalence between the algebraic
category of Heyting algebras and the category whose objects are Esakia
spaces and whose morphisms are Esakia morphisms.

Remark 62. If f : X → Y is a morphism between Esakia spaces, then the
image of every closed upset is a closed upset. Indeed, let Z ∈ CUp(X). We
known that f [Z] is a closed of Y . We prove that is an upset. Let x ≤ y and
x ∈ f [Z]. Then there exists z ∈ Z such that x = f(z). So, f(z) ≤ y. As f
is a morphism between Esakia spaces, there exists w ∈ X such that z ≤ w
and f(w) = y. So, y ∈ f [Z]. Therefore, f [Z] is an upset.

Let 〈X1,M1〉 and 〈X2,M2〉 be two WHL-spaces. A map f : X1 → X2 is
a WHL-morphism if is an Esakia morphism and a WL-morphism. We write
SWHL for the category whose objects are WHL-spaces and whose morphisms
are WHL-morphisms.

We abuse notation and also write WHL for the algebraic category whose
members are WHL-algebras.

Theorem 63. The assignment A �→ 〈X(A),MA〉 and h �→ h∗ defines a
functor X: WHL → SWHL, and the assignment 〈X,M〉 �→ 〈D(X),∪,∩,⇒≤
,⇒M , ∅, X〉 and f �→ f∗ defines a functor D: SWHL → WHL. Moreover, the
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functors X and D establish a dual equivalence between the categories WHL
and SWHL.

Proof. It follows from Esakia duality, Theorem 14, Propositions 19, 21
and 22, and Corollary 26.

We finish this section by describing the congruences in the variety of the
WHL-algebras. We recall that the congruences of a Heyting A algebra are
characterized by filters, or using Esakia duality, the congruences of A are
characterized by closed upsets of the Esakia space of A. Taking this into
account we can give the following characterization of congruences in WHL-
algebras. The proof is exactly the same as the one given in Lemma 49.

Theorem 64. Let A ∈ WHL. Let Y be a closed subset of X(A). Then the
following conditions are equivalent:

(1) θ(Y ) is a congruence of A.

(2) Y is a MA-closed upset of X(A).

10. Conclusions

In this paper we have presented a topological duality for the variety WL of
weak Lewis distributive lattices, which are the {∨,∧,⇒,⊥,�}-subreducts
of the class of algebras {〈P(X),⇒M 〉 : 〈X,M〉 is a neighbourhood frame},
where the implication ⇒M is defined by U ⇒M V = {x ∈ X : ∀Y ∈ M(x)
(Y ⊆ U implies Y ⊆ V )}, for all U, V ∈ P(X). This duality generalizes the
duality given in [6] for the variety of weak Heyting algebras. We have also
give a topological representation for some extensions of WL, as well as a
topological characterization of the the congruences in the special case of the
variety of weak Lewis distributive lattices satisfying the additional condition
a ∧ (a ⇒ b) ≤ b. Moreover, we have studied the connection between a
particular class of WL-frames and the class of intuitionistic neighbourhood
frames defined in [26, Definition 2.1].

The weak Heyting–Lewis algebras were first defined in [24] as the alge-
braic semantics of the arithmetical base preservativity logic iP−. The topo-
logical duality for WL-lattices is extended to a duality for weak Heyting–
Lewis algebras. The results presented in this paper are the first steps con-
cerning to the study of the algebraic and relational semantics of the arith-
metical base preservativity logic iP−.
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