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Abstract. We develop intuitionistic public announcement logic over intuitionistic K,

KT, K4, and S4 with distributed knowledge. We reveal that a recursion axiom for the

distributed knowledge is not valid for a frame class discussed in [12] but valid for the

restricted frame class introduced in [20,26]. The semantic completeness of the static logics

for this restricted frame class is established via the concept of pseudo-model.
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1. Introduction

Public announcement logic [15], by which one can express change of agents’
knowledge caused by truthful public announcement of a formula, is an ex-
pansion of epistemic logic over classical logic (cf. [5]). It is the simplest
dynamic epistemic logic [22]. Since [15], many expansions and variants have
been studied over classical logic. Distributed knowledge is one of notions of
group knowledge, which represents a kind of aggregation of pieces of knowl-
edge owned by each member of a group. Public announcement logic has
been expanded with distributed knowledge in [7,8,24] over classical logic.
Especially, [24] can be seen as one of bases of our work. It develops a
public announcement logic with distributed knowledge PAD and a pub-
lic announcement logic with distributed knowledge and common knowledge
PACD, which are based on S5 epistemic logic, establishes the completeness
of the logics, and examines the expressivity and computational complexity
of the logics.

Public announcement logic based on intuitionistic logic is also studied,
e.g. in [3,10,13]. According to [10], intuitionistic public announcement logic
can be useful when we deal with change of constructive knowledge. They
expand intuitionistic modal logic IK [18,19] and MIPC [16] with public
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announcement operators. In particular, the syntax of intuitionistic modal
logic IK [18,19] has both � and ♦, whose semantics are provided as follows:

M,w � �ϕ iff for all v ∈ W , if (w, v) ∈ (�; R) then M, v � ϕ,
M,w � ♦ϕ iff for some v ∈ W, (w, v) ∈ R and M, v � ϕ,

where R1; R2 := {(x, z) | there exists y such that xR1y and yR2z} and M :=
(W, �, R, V ) is an intuitionistic Kripke model (W, �, V ) equipped with a
binary relation R on W such that R; � ⊆ �; R and R−1; � ⊆ �; R−1 (R−1

is the converse of R). Ma et al. [10] provide an algebraic semantics with
intuitionistic public announcement logic based on IK [18,19] or MIPC [16].
Nomura et al. [13] and Balbiani and Galmiche [3] studied intuitionistic public
announcement logic based on IK in terms of relational semantics explained
as above.

There are also a few intuitionistic epistemic logics with distributed knowl-
edge [9,12,21]. While there is no attempt to study epistemic logic with dis-
tributed knowledge based on the above semantics given in [3,10,13], Jäger
and Marti [9] develop intuitionistic epistemic logic based on K and KT with
distributed knowledge, and prove its semantic completeness. It is noted that
the syntax in [9] expands the syntax of intuitionistic logic with knowledge
operators Kaϕ (where a ∈ Agt and Agt is a finite non-empty set of agents)
and distributed knowledge operator Dϕ and it does not contain the dual (i.e.,
the corresponding diamond operator) of knowledge operator or distributed
knowledge operator. It is also noted that a model in [9] is an intuitionistic
Kripke model (W, �, V ) equipped with a family (Ra)a∈Agt of binary relations
Ra such that �; Ra ⊆ Ra, where the semantics of Kaϕ and Dϕ are defined
as follows:

M,w � Kaϕ iff for all v ∈ W , if (w, v) ∈ Ra then M, v � ϕ,
M,w � Dϕ iff for all v ∈ W , if (w, v) ∈ ⋂

a∈Agt Ra then M, v � ϕ.

In the semantics, the imposed condition �; Ra ⊆ Ra assures the heredity
or monotonicity condition (once a formula holds at a state w, the formula
continues to hold at all �-successor states of w) which characterizes intu-
itionistic logic. Finally, Jäger and Marti [9] proved the semantic completeness
of their logic with distributed knowledge operator D in terms of the notion
of strict extension [9, Definition 4.4] and did not employ “tree unraveling”
technique, which is common for proving semantic completeness of classical
epistemic logic with distributed knowledge (cf. [2,5,25]).

Murai and Sano [12] generalize the logic in [9], in that distributed knowl-
edge operator is parameterized by a group G, i.e., a non-empty subset of
whole agents Agt, while [9] deals with only distributed knowledge for the
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whole agents. Based on the same notion of model as in [9], the semantics of
DGϕ is defined as follows:

M,w � DGϕ iff for all v ∈ W , if (w, v) ∈ ⋂
a∈G Ra then M, v � ϕ.

Also, not only the axioms (K) and (T) but also (4) and (D) are introduced.
Note that the axiom (D) is restricted to a single agent (i.e., ¬D{a}⊥), be-
cause seriality for each Ra is generally not preserved under taking intersec-
tion among a group (refer to [2] over a setting over classical logic), while
reflexivity and transitivity are always preserved. In [12], the outline of se-
mantic completeness is provided via the notion of pseudo-model and the
“tree unraveling” technique, and the corresponding sequent calculi are in-
vestigated.

In this paper, we modify the semantics provided in [12] of intuitionistic
epistemic logic with distributed knowledge, and then develop intuitionistic
public announcement logic with distributed knowledge, by expanding the
logics in [12] except the ones having the axiom (D) with a public announce-
ment operator. Our contribution is twofold. First, we show that condition of
“stability” is necessary for our public announcement logic to be sound. We
prove that a recursion axiom for the distributed knowledge is not sound for
the class of all frames satisfying the above condition �; Ra ⊆ Ra. Moreover,
we show that the soundness of the intuitionistic public announcement logic
holds if the following frame condition is imposed: �; Ra; �⊆ Ra (which is
equivalent to Ra; �⊆ Ra over the class of all frames). Following [17,20], we
call such a frame a stable frame. It is remarked that the same condition has
been also studied in [26], where such a frame is called a �-frame. The reader
may wonder about the meaning of the frame condition �; Ra; �⊆ Ra. It is
known that binary relations on a set W can be identified with the union-
preserving functions on P(W ). When W is equipped with a pre-order �,
the set of all upsets on W corresponds to binary relations R on W which
satisfies �; R; �⊆ R (cf. [20, p.502]), where X is an upset (with respect to
�) if x ∈ X and x � y imply y ∈ X for every x, y ∈ W .

Second, we show the strong completeness of the static logic with respect
to a class of stable frames. To show the strong completeness proof of our
public announcement logic with respect to a class of stable frames by the
standard method using recursion axioms (described in, e.g., [22]), the strong
completeness of the static logic (i.e. the logic presented in [12]) with respect
to a class of stable frames should be proved, not the strong completeness with
respect to a class of arbitrary frames, which was proved in [12]. We provide a
full-detailed proof of the strong completeness with respect to stable models.
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The proof differs from the one in [12] in that a pseudo-model obtained by
“tree unraveling” is stable in this paper, while it is generally not in [12].

The paper is organized as follows. In Section 2, we introduce syntax and
semantics for intuitionistic epistemic logic with distributed knowledge to be
made dynamic and the notion of stability of Kripke frame. Section 3 de-
fines Hilbert systems of the logics, and state soundness results. In Section 4,
strong completeness of the Hilbert systems of the logics with respect to the
suitable classes of stable frames is shown, via a notion of “pseudo-model”. In
Section 5, we expand the intuitionistic epistemic logic with recursion axioms
for a public announcement operator, and prove its completeness by reduc-
ing to the completeness of static one via translation from a formula possibly
with public announcement operators to a formula without any public an-
nouncement operators. Section 6 concludes the paper.

2. Syntax and Semantics of Intuitionistic Epistemic Logics with
Distributed Knowledge Operators

We denote a finite set of agents by Agt. We call a nonempty subset of Agt a
“group” and denote it by G,H, etc. We denote by Grp the set of all groups,
i.e., the set of all non-empty subsets of Agt. Let Prop be a countably infinite
set of propositional variables and Form be the set of all formulas defined
inductively as:

Form � ϕ ::= p | ⊥ | (ϕ → ϕ) | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | DGϕ,

where p ∈ Prop and G ∈ Grp. We will follow the standard rules for elimi-
nation of parentheses. We read DGϕ as “ϕ is distributed knowledge among
a group G”. We define ¬ϕ as ϕ → ⊥, ϕ ↔ ψ as (ϕ → ψ) ∧ (ψ → ϕ), and
the epistemic operator Kaϕ (read “agent a knows that ϕ”) as D{a}ϕ. For a
set of formulas Γ, let D−1

G Γ := {ϕ ∈ Form | DGϕ ∈ Γ}. As noted above, an
expression of the form D∅ϕ is not a well-formed formula, since ∅ is not a
group. It is noted that the syntax given in [11] coincides with the fragment of
our syntax with distributed knowledge operators {D{a} | a ∈ Agt} ∪ {DAgt}
alone. Finally, unlike [3,6,19], it is also remarked that this paper will not
consider the dual of DGϕ, i.e., the corresponding diamond operator to DG.

We introduce Kripke semantics for intuitionistic multi-agent epistemic
logic with distributed knowledge, along the lines of [9].

Definition 2.1. (Frame and Model) A tuple F = (W, �, (Ra)a∈Agt) is a
frame if: W is a non-empty set of states; � is a preorder on W ; (Ra)a∈Agt

is a family of binary relations on W , indexed by agents; and �; Ra ⊆ Ra



Intuitionistic Public Announcement Logic... 665

(for all a ∈ Agt), where R1; R2 := {(x, z) | there exists y such that xR1y
and yR2z}. A pair M = (F, V ) is a model if F is a frame, and a valuation
function V : Prop → P(W ) satisfies the heredity condition, i.e., if w ∈ V (p)
and w � v, then v ∈ V (p). We denote an underlying set of states of a frame
F or a model M by |F | or |M |. For a model M = (W, �, (Ra)a∈Agt, V ) and
a state w ∈ W , a pair (M,w) is called a pointed model.

The following notion of stability is needed in intuitionistic public an-
nouncement logic with distributed knowledge introduced later.

Definition 2.2. (Stable frame) Let ≤ be a preorder on a set X. A relation
R ⊆ X × X is stable if �; R ⊆ R and R; �⊆ R. A frame F = (W, �
, (Ra)a∈Agt) is stable if each Ra ⊆ W × W is stable. We denote by ST the
class of all stable frames. A model M = (F, V ) is stable if the underlying
frame F is stable.

When � is the identity relation of W (i.e., �:= {(w, w) |w ∈ W}), it is easy
to see that every binary relation R on W is stable.

Proposition 2.3. Let R ⊆ X ×X and ≤ be a preorder on X. 1. R is stable
iff ≤; R; ≤⊆ R. 2. If R is reflexive and transitive, then ≤; R ⊆ R implies
R; ≤⊆ R.

Proof. (item 1) Left-to-right: By the condition ≤; R ⊆ R of stability, we
have (≤; R);≤⊆ R; ≤. Then, together with the condition R; ≤⊆ R of sta-
bility, we have ≤; R; ≤⊆ R. Right-to-left: We show ≤; R ⊆ R and R; ≤⊆
R. It is evident from reflexivity of ≤ that ≤; R ⊆≤; R; ≤⊆ R and that
R; ≤⊆≤; R; ≤⊆ R. (item 2) By reflexivity and transitivity of R, we have
R; ≤⊆ R; ≤; R ⊆ R; R ⊆ R.

Satisfaction relation M,w � ϕ between pointed models and formulas is
defined recursively as follows:

M,w � p iff w ∈ V (p),
M,w � ⊥ Never,
M,w � ϕ → ψ iff for all v ∈ W, if w � v then M, v �� ϕ or M, v � ψ,
M,w � ϕ ∧ ψ iff M,w � ϕ and M,w � ψ,
M,w � ϕ ∨ ψ iff M,w � ϕ or M,w � ψ,
M,w � DGϕ iff for all v ∈ W, if (w, v) ∈ ⋂

a∈G Ra then M, v � ϕ.

It is noted from our definition of Kaϕ:= D{a}ϕ that the satisfaction of
Kaϕ at a state w of a model M is given as follows:

M,w � Kaϕ iff for all v ∈ W , if (w, v) ∈ Ra then M, v � ϕ.

We have the following heredity property for all formulas.
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Figure 1. Examples of models

Proposition 2.4. (Heredity) If M,w � ϕ and w � v, then M, v � ϕ.

Proof. By induction on ϕ. For the case where ϕ := DGψ, it is noted that
the condition �; Ra ⊆ Ra of a frame implies that �;

⋂
a∈G Ra ⊆ ⋂

a∈G

Ra.

Example 2.5. Fig. 1 a is an example of a non-stable model. The preorder
is depicted by a dotted arrow. Note that we omit reflexive arrows for the
preorder. It is not stable because w(�; Rc; �)v holds but wRcv fails (if c-
arrows were added from w to v and from v to v, then it would be stable).
The valuation V of M is defined by V (p) = {v} for Prop := {p}. It is easy
to see that the valuation V satisfies the heredity condition. In this model, it
can be seen that different groups have different distributed knowledge even
at the same state. Indeed, D{a,b}p is true at w, but D{a,c}p is false at w.
We can see that seriality for each agent’s relation is not always preserved
under taking intersection among a group. Namely, Rb and Rc are serial but
Rb ∩ Rc is not in the example. This is why we should restrict (D) axiom to
¬D{a}⊥, as defined in Table 1 below. Figure 1b is an example of a stable
model named N used later in the explanation of PAL extension. This model
is stable, because Rx; �⊆ Rx holds for all x ∈ Agt, in particular, it suffices
to take care of the non-reflexive �-arrow from w and v and then it is easy to
see that wRxw � v and wRxv hold for x ∈ {a, b}. From this model too, it
can be seen that different groups have different distributed knowledge even
at the same state. Indeed, D{b,c}¬p is true at v, but D{a,b}¬p is false at v.

Definition 2.6. (Validity) Given a frame F = (W, �, (Ra)a∈Agt), we say
that a formula ϕ is valid in F (notation: F � ϕ) if (F, V ), w � ϕ for every
valuation function V and every w ∈ W . A formula ϕ is valid in a class F of
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frames (notation: F � ϕ) if F � ϕ for every F ∈ F. A formula ϕ is a semantic
consequence of Γ in a frame class F if for all frames F ∈ F, for all valuations
V on F , for all states w ∈ |F |, if (F, V ), w � Γ, then (F, V ), w � ϕ. We
write it as “Γ �F ϕ”.

3. Hilbert Systems

Hilbert systems for intuitionistic epistemic logics with DG operators are
given in Table 1. A Hilbert system H(IntK) consists of axioms and rules for
intuitionistic logic, axioms (Incl) and (K), and a rule (Nec). Axioms (Incl)
and (K) and a rule (Nec) come from Hilbert system for epistemic logic
over classical logic with DG- operators (cf. [5]). Hilbert systems H(IntKT),
H(IntKD), H(IntK4), H(IntK4D), and H(IntS4) are defined as axiomatic
expansions of H(IntK) with (T), (D), (4), (4) and (D), and (T) and (4),
respectively. If we focus on the fragment of our syntax with the following
distributed knowledge operators {D{a} | a ∈ Agt}∪{DAgt} alone, the result-
ing restricted axiomatizations of H(IntK) and H(IntKT) coincides with
axiomatizations IDK and IDT given in [9], respectively. As we have seen
in Example 2.5, seriality for each agent’s relation is not always preserved
under taking intersection among a group and so we cannot generalize the
axiom (D) ¬D{a}⊥ to an axiom of the form ¬DG⊥. A similar phenomenon
over classical logic is already observed in [25, p.266]. Let X be any of IntK,
IntKT, IntKD, IntK4, IntK4D, and IntS4 in what follows. The notion

Table 1. Axioms and rules for Hilbert systems

Axioms and rules for intuitionistic logic

(k) ϕ → (ψ → ϕ) (∧e1) (ϕ ∧ ψ) → ϕ

(s) (ϕ → (ψ → χ)) → ((ϕ → ψ) → (ϕ → χ)) (∧e2) (ϕ ∧ ψ) → ψ

(∨i1) ϕ → (ϕ ∨ ψ) (∧i) ϕ → (ψ → (ϕ ∧ ψ))

(∨i2) ψ → (ϕ ∨ ψ) (⊥) ⊥ → ϕ

(∨e) (ϕ → χ) → ((ψ → χ) → ((ϕ ∨ ψ) → χ)) (MP) From ϕ and ϕ → ψ, infer ψ

Axioms and rules for H(IntK)

(Incl) DGϕ → DHϕ (G ⊆ H) (K) DG(ϕ → ψ) → (DGϕ → DGψ)

(Nec) From ϕ, infer DGϕ

Additional axioms for DG operators

(T) DGϕ → ϕ (D) ¬D{a}⊥ (4) DGϕ → DGDGϕ
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of provability in each system is defined as usual, and the fact that a formula
ϕ is provable in H(X) is denoted by “�H(X) ϕ”.

Definition 3.1. A formula ϕ is derivable from Γ in a logic X if �H(X)∧
Γ′ → ϕ for some finite set Γ′ which is a subset of Γ. We write it as

“Γ �H(X) ϕ”.

Definition 3.2. The class F(X) of frames corresponding to X is defined
as follows.

• F(IntK) is the class of all frames.

• F(IntKT) is the class of all frames such that Ra is reflexive (a ∈ Agt).

• F(IntKD) is the class of all frames such that Ra is serial (a ∈ Agt).

• F(IntK4) is the class of all frames such that Ra is transitive (a ∈ Agt).

• F(IntK4D) is the class of all frames such that Ra is transitive and serial
(a ∈ Agt).

• F(IntS4) is the class of all frames such that Ra is reflexive and transitive
(a ∈ Agt).

Here, reflexivity, seriality, and transitivity are defined ordinarily.

Theorem 3.3. If �H(X) ϕ, then F(X) � ϕ. Moreover, �H(X) ϕ implies
F(X) ∩ ST � ϕ.

Proof. The latter is an obvious consequence from the former. We can
prove the former by induction on ϕ. Note that axioms (T) and (4) are
valid in reflexive and transitive frames, respectively, because if Ra is re-
flexive or transitive for any a ∈ G,

⋂
a∈G Ra is also reflexive or transitive,

respectively.

4. Completeness

In the present section, we provide a proof of strong completeness theorems
of our logic with respect to stable models.

Theorem 4.1. Let X be any of IntK, IntKT, IntKD, IntK4, IntK4D,
and IntS4 and Γ∪{ϕ} be a set of formulas. If Γ �F(X)∩ST ϕ, then Γ �H(X) ϕ.

Following the spirit of [4], we show Theorem 4.1 via “pseudo-models”.
In order to show Theorem 4.1, we first construct a canonical stable pseudo-
model (at Section 4.1), and then transform it into a stable pseudo-model
with the intersection condition by a “tree unraveling” method (at Subsec-
tion 4.2).
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Figure 2. A pseudo-frame

Definition 4.2. A tuple F = (W, �, (RG)G∈Grp) is a pseudo-frame if: (1)�
; RG ⊆ RG for any G ∈ Grp; and (2) (the inclusion condition) RH ⊆ RG

if G ⊆ H. A pair M = (F, V ) is a pseudo-model if F is a pseudo-frame,
and a valuation function V : Prop → P(W ) satisfies the heredity condition,
i.e., if w ∈ V (p) and w � v, then v ∈ V (p). Let us say that a pseudo-
frame F = (W, �, (RG)G∈Grp) or -model M = (W, �, (RG)G∈Grp, V ) is stable
if �; RG; �⊆ RG holds for any G ∈ Grp. For a pseudo-model M , a state
w ∈ |M |, and a formula ϕ, a pseudo-satisfaction relation M,w �ps ϕ is
defined the same as the satisfaction relation �, except for the clause for
DGϕ: that is,

M,w �ps DGϕ iff for all v ∈ W, if (w, v) ∈ RG then M, v �ps ϕ.

Namely, in a pseudo-model, an operator DG is treated like a primitive
box operator, parameterized by a group. Considering the definition of satis-
faction relation for DGϕ, a pseudo-frame can be seen as a frame in the sense
of Definition 2.1 if the following “intersection condition” is satisfied.

Definition 4.3. A pseudo-frame F = (W, �, (RG)G∈Grp) satisfies the in-
tersection condition if RG =

⋂
a∈G R{a} for any group G.

The intersection condition is not always satisfied as in the following.

Example 4.4. Figure 2 is an example of a pseudo-frame. We name it Fex.
Note that {a} is written as “a” and R{a,b} is defined as ∅ here. Since R{a,b} =
∅, the condition of “RH ⊆ RG if G ⊆ H” is self-evidently satisfied, i.e.,
R{a,b} ⊆ R{a} and R{a,b} ⊆ R{b}. Note that the intersection condition is
false for a group {a, b}, because R{a} ∩ R{b} �⊆ R{a,b}. Any frame can be
regarded as a pseudo-frame with only relations for singleton groups, as in
Fex.

The following provides a characterization of the intersection condition.

Proposition 4.5. A pseudo-frame F = (W, �, (RG)G∈Grp) satisfies the in-
tersection condition iff RG1 ∩ RG2 ⊆ RG1∪G2 for all groups G1, G2.

Proof. Because the left-to-right direction is immediate, we only prove the
right-to-left direction. Suppose that RG1 ∩ RG2 ⊆ RG1∪G2 for all groups
G1, G2. By the inclusion condition, it suffices to prove

⋂
a∈G R{a} ⊆ RG

for any group G. But, this follows from our supposition by induction on the
cardinality of G.
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Figure 3. Pseudo-model M

The reader may wonder if we can construct a stable pseudo-frame or
-model from a possibly non-stable pseudo-frame or -model (the remaining
description of this section is of independent interest and so the reader who is
interested in the completeness proof can skip it to move to the next section).
The following operation called stablization can turn a pseudo-model into a
stable one without changing satisfaction on any state.

Definition 4.6. Let M = (W, �, (RG)G∈Grp, V ) be a pseudo-model. We
say that a stable pseudo-model Mst := (W, �, (RG; �)G∈Grp, V ) is the sta-
bilization of M .

Proposition 4.7. Let M = (W, �, (RG)G∈Grp, V ) be a pseudo-model. Then,
Mst is a stable pseudo-model. Moreover, M,w � ϕ iff Mst, w � ϕ for any
ϕ ∈ Form and w ∈ W .

Proof. First, we show that Mst is a stable pseudo-model. We show �
; (RG; �);�⊆ RG; �. Using �; RG ⊆ RG and the transitivity of �, we have
�; RG; �; �⊆ RG; �; �⊆ RG; �. Further, if G ⊆ H, we have RH ; �⊆ RG; �
by RH ⊆ RG.

Next, we show the latter by induction on ϕ. Only the case ϕ = DGψ is
treated. (left-to-right) Assume that M,w � DGψ. We show that Mst, w �
DGψ. Fix v such that w(RG; �)v. Then, there is u such that wRGu and
u � v. From the former and the assumption, we have M,u � ψ. Then, by
the latter and the heredity, M, v � ψ. (right-to-left) Obvious by RG ⊆ RG;
�.

However, in general, the intersection condition
(⋂

a∈G R{a} = RG

)
is not

preserved under the stabilization. That is, there is a pseudo-model such
that it satisfies

⋂
a∈G R{a} = RG for any G ∈ Grp but it does not satisfy

the following:
⋂

a∈G(R{a}; �) = RG; � for any G ∈ Grp. Let Agt = {a, b}.
The pseudo-model M depicted in Figure 3 is such a model. The pseudo-
model M is defined as (W, �, R{a}, R{b}, R{a,b}, V ), where W = {w, v, u, t},
�= {(v, t), (u, t)} ∪ {(x, x) |x ∈ W}, R{a} = {(w, v)}, R{b} = {(w, u)},
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and R{a,b} = ∅. The valuation V can be any. The solid line stands for the
relations for groups and the dotted arrow stands for the preorder. Reflexive
arrows for the preorder is omitted in the figure. We can easily see that⋂

a∈G R{a} = RG for any G ∈ Grp. However,
⋂

c∈G(R{c}; �) = RG; � is not
true when G = {a, b}, because (w, t) ∈ (

R{a}; �
) ∩ (

R{b}; �
)

but (w, t) �∈
R{a,b}; �= ∅.

As can be guessed from the counterexample, “(RG1 ; �) ∩ (RG2 ; �) ⊆
RG1∪G2 ; �” is a sufficient (and necessary) condition for the preservation of
the intersection condition. The following is an immediate consequence of
Proposition 4.5.

Proposition 4.8. Let M be a pseudo-model with (RG1 ; �) ∩ (RG2 ; �) ⊆
RG1∪G2 ; � for any G1, G2 ∈ Grp. Then, Mst enjoys the intersection condi-
tion.

4.1. Canonical Pseudo-model

This section defines a canonical pseudo-model of our logics. Since DG oper-
ators are interpreted as primitive box-like operators indexed by a group in
a pseudo-model, a canonical pseudo-model defined here is almost the same
as the canonical model of intuitionistic epistemic logics without distributed
knowledge, which is described in detail, e.g., in [11, Chapter 1]. Unlike [11,
Chapter 1], we assure that our canonical pseudo-model is stable, too. In
what follows, let X be any of IntK, IntKT, IntKD, IntK4, IntK4D, and
IntS4.

Definition 4.9. A set Γ of formulas is X-consistent if Γ �H(X) ⊥. We say
that the set Γ is prime if ϕ1 ∨ ϕ2 ∈ Γ implies ϕ1 ∈ Γ or ϕ2 ∈ Γ. We also say
that Γ is an X-theory if Γ �H(X) ϕ implies ϕ ∈ Γ.

The following are useful properties of a consistent and prime theory.

Lemma 4.10. Let a set Γ of formulas be an X-consistent and prime X-
theory.

1. Γ �H(X) ϕ iff ϕ ∈ Γ.

2. If {ϕ,ϕ → ψ} ⊆ Γ, then ψ ∈ Γ.

3. ⊥ �∈ Γ.

4. ϕ ∧ ψ ∈ Γ iff ϕ ∈ Γ and ψ ∈ Γ.

5. ϕ ∨ ψ ∈ Γ iff ϕ ∈ Γ or ψ ∈ Γ.

6. If ϕ → ψ �∈ Γ, then Γ ∪ {ϕ} ��H(X) ψ.

7. If DGψ �∈ Γ, then D−1
G Γ ��H(X) ψ.
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Proof.

(1) The left-to-right is evident since Γ is X-theory. We show the right-to-
left. Suppose ϕ ∈ Γ. Then Γ �H(X) ϕ is the case because �H(X) ϕ → ϕ.

(2) Suppose {ϕ,ϕ → ψ} ⊆ Γ. Then, by item 1., we have Γ �H(X) ϕ and
Γ �H(X) ϕ → ψ, that is, �H(X)

∧
Γ1 → ϕ and �H(X)

∧
Γ2 → (ϕ → ψ)

for some finite sets Γ1, Γ2 ⊆ Γ. Then we have �H(X)

∧
(Γ1 ∪ Γ2) → ϕ

and �H(X)

∧
(Γ1 ∪ Γ2) → (ϕ → ψ), which jointly entail �H(X)

∧
(Γ1 ∪

Γ2) → (ϕ ∧ (ϕ → ψ)). Since we have �H(X) (ϕ ∧ (ϕ → ψ)) → ψ as an
intuitionistic theorem, we obtain �H(X)

∧
(Γ1 ∪ Γ2) → ψ, which means

that Γ �H(X) ψ. Since Γ is X-theory, ψ ∈ Γ.

(3) Suppose ⊥ ∈ Γ for contradiction. Then, by item 1., Γ �H(X) ⊥. However,
this contradicts with X-consistency of Γ.

(4) First, we show the left-to-right. Suppose ϕ∧ψ ∈ Γ. By item 1., it suffices
to show Γ �H(X) ϕ and Γ �H(X) ψ. It is the case that Γ �H(X) ϕ, because
we have �H(X) ϕ∧ψ → ϕ as an axiom. Γ �H(X) ψ can be similarly shown.
Next, we show the right-to-left. Suppose ϕ ∈ Γ and ψ ∈ Γ. By item 1.,
it suffices to show Γ �H(X) ϕ ∧ ψ, which is the case because we have
�H(X) ϕ ∧ ψ → ϕ ∧ ψ as an intuitionistic theorem.

(5) The left-to-right is the case by primeness of Γ. We show the right-to-left.
Suppose ϕ ∈ Γ or ψ ∈ Γ. By item 1., it suffices to show Γ �H(X) ϕ ∨ ψ.
First, assume ϕ ∈ Γ. Then Γ �H(X) ϕ ∨ ψ is the case because we have
�H(X) ϕ → ϕ ∨ ψ as an axiom. Similarly, Γ �H(X) ϕ ∨ ψ is the case by
�H(X) ψ → ϕ ∨ ψ when assuming ψ ∈ Γ.

(6) We show the contraposition. Suppose Γ ∪ {ϕ} �H(X) ψ. Then, there
exists a finite subset Γ′ of Γ such that �H(X)

∧
Γ′ → ψ. First, assume

ϕ �∈ Γ′. Then, it turns out that Γ �H(X) ψ. Since we also have Γ �H(X)

ψ → (ϕ → ψ), Γ �H(X) ϕ → ψ is obtained. Then, ϕ → ψ ∈ Γ because
Γ is an X-theory. Next, assume ϕ ∈ Γ′. Put Δ := Γ′ − {ϕ}. Since
�H(X) (

∧
Γ′ → ψ) ↔ (

∧
Δ → ϕ → ψ), we have Γ �H(X) ϕ → ψ. Then,

ϕ → ψ ∈ Γ because Γ is an X-theory.

(7) We show the contraposition. D−1
G Γ �H(X) ψ. Then, there exists a finite

subset Δ of D−1
G Γ such that �H(X)

∧
Δ → ψ. By axiom (K), we have

�H(X)

∧
DGΔ → DGψ, which means that Γ �H(X) DGψ. Then, DGψ ∈

Γ because Γ is an X-theory.
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Lemma 4.11. (Lindenbaum, [11, Lemma 1.16]) Let Γ ∪ {ϕ} be a set of
formulas. If Γ ��H(X) ϕ, then there is an X-consistent and prime X-theory
Γ+ such that Γ ⊆ Γ+ and Γ+ ��H(X) ϕ.

Definition 4.12. A canonical pseudo-model MX = (WX,�X, (RX
G)G∈Grp,

V X) is defined as follows:

• WX := {Γ ∈ P(Form) | Γ is an X-consistent and prime X-theory}.

• Γ �X Δ iff Γ ⊆ Δ.

• ΓRX
GΔ iff D−1

G Γ ⊆ Δ.

• V X(p) := {Γ ∈ WX | p ∈ Γ}.

Proposition 4.13. The canonical model MX of Definition 4.12 is a stable
pseudo-model.

Proof. First, we show that �X; RX
G ; �X⊆ RX

G . Suppose that Γ(�X; RX
G ; �X

)Δ. Then, there are Θ1, Θ2 ∈ WX such that Γ ⊆ Θ1R
X
GΘ2 ⊆ Δ. By Γ ⊆ Θ1,

we get D−1
G Γ ⊆ D−1

G Θ1. It follows from D−1
G Θ1 ⊆ Θ2 that D−1

G Γ ⊆ Θ2.
Finally, it follows from Θ2 ⊆ Δ that D−1

G Γ ⊆ Δ, as required. Next, we show
that RX

H ⊆ RX
G if G ⊆ H. Assume that ΓRX

HΔ and ϕ ∈ D−1
G Γ, i.e., DGϕ ∈ Γ.

We show that ϕ ∈ Δ. Since DGϕ → DHϕ is an axiom in any H(X) and
hence DGϕ → DHϕ ∈ Γ, we have DHϕ ∈ Γ by item 2. of Lemma 4.10.
Then, by ΓRX

HΔ, ϕ ∈ Δ. Finally, it is obvious that V X satisfies the heredity
condition.

Lemma 4.14. (Truth Lemma) For all formulas ϕ and X-consistent and
prime X-theories Γ, ϕ ∈ Γ if and only if MX, Γ �ps ϕ.

Proof. By induction on ϕ. We show the case ϕ = DGψ. First, we show
the left-to-right. Assume DGψ ∈ Γ and fix any Δ ∈ WX such that ΓRX

GΔ,
i.e., D−1

G Γ ⊆ Δ. Clearly, ψ ∈ Δ, and by the induction hypothesis, we have
MX, Δ �ps ψ. Next, We show the contraposition of the right-to-left. Assume
DGψ �∈ Γ. By item 7. of Lemma 4.10 and Lemma 4.11, there is an X-
consistent and prime X-theory Δ such that D−1

G Γ ⊆ Δ and Δ ��H(X) ψ. By
item 1. of Lemma 4.10 and induction hypothesis, we have MX, Δ ��ps ψ,
which shows MX, Γ ��ps DGψ.

For the axioms (T), (D), and (4), the canonical pseudo-model satisfies
the corresponding property on relations for DG.

Proposition 4.15. 1. If X has the axiom (T), RX
G is reflexive in MX. 2.

If X has the axiom (D), RX
{a} is serial in MX. 3. If X has the axiom (4),

RX
G is transitive in MX.
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Proof. We only show item 2. Fix any X-consistent and prime X-theory
Γ. The aim is to find an X-consistent and prime X-theory Δ such that
D−1

{a}Γ ⊆ Δ. By Lemma 4.11, it suffices to show D−1
{a}Γ ��H(X) ⊥. As-

suming the contrary, we have �H(X)

∧n
i=1 ϕi → ⊥ for some ϕ1 . . . ϕn ∈

D−1
{a}Γ. By (Nec), (K), and intuitionistic propositional tautologies, �H(X)∧n
i=1 D{a}ϕi → D{a}⊥. Since D{a}ϕi ∈ Γ, it means Γ �H(X) D{a}⊥. How-

ever, we also have Γ �H(X) ¬D{a}⊥ by the assumption, which leads to
contradiction by items from 1. to 3. of Lemma 4.10.

4.2. Tree Unraveling

This section introduces a method called “tree unraveling”, which trans-
forms a stable pseudo-model into another stable pseudo-model satisfying
the intersection condition

⋂
a∈G R{a} = RG (i.e., a model in the sense of

Definition 2.1). Our definitions below are intuitionistic generalizations of
definitions proposed in [4] over classical logic.

Definition 4.16. Let M = (W, �, (RG)G∈Grp, V ) be a pseudo-model. A
pseudo-model M ′ = (W ′,� ∩(W ′ × W ′), (RG ∩ (W ′ × W ′))G∈Grp, V

′) is a
generated submodel of M if: W ′ ⊆ W ; If w ∈ W ′ and w � w′ then w′ ∈ W ′;
If w ∈ W ′ and wRGw′ then w′ ∈ W ′; and V ′(p) = V (p) ∩ W ′ for any
p ∈ Prop. For X ⊆ |M |, we define MX as the smallest generated submodel
containing X. If M = MX , we say that M is generated by X.

Proposition 4.17. Let M be a pseudo-model and M ′ be a generated sub-
model of M . Then, for any formula ϕ and w ∈ |M ′|, M ′, w �ps ϕ iff
M,w �ps ϕ.

Definition 4.18. Let M = (F, V ) be a pseudo-model generated by w ∈ W ,
where F = (W, �, (RG)G∈Grp).

• We put w0 := w and define Finpath(F,w) as

{〈w0, L1, w1, L2, · · · , Ln, wn〉 | n ≥ 0, Li ∈ {�, RG}G∈Grp, wi−1Liwi for all 1 ≤ i ≤ n} .

An element of Finpath(F,w) is a path (from w) and denote it by −→u , −→v ,
etc.

• For −→u = 〈w0, L1, w1, L2, · · · , Ln−1, wn−1, Ln, wn〉 ∈ Finpath(F,w),

body(−→u ) := 〈w0, L1, w1, L2, · · · , Ln−1, wn−1〉 and tail(−→u ) := wn.

• We say that paths −→u , −→v ∈ Finpath(F,w) satisfy a relation −→u � −→v if
and only if −→v = −→u �〈�, w′〉, where � is concatenation of two tuples.
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Figure 4. Tree unraveling

• For paths −→u , −→v ∈ Finpath(F,w), −→u RG
−→v iff −→v = −→u �〈RH , w′〉 and

G ⊆ H.

• A valuation function V : Prop → P(Finpath(F,w)) is defined by:

V(p) = {−→u ∈ Finpath(F,w) | tail(−→u ) ∈ V (p)} .

Take Fex in Figure 2 (recall Example 4.4 and note that a and b in the
figure denote {a} and {b} respectively). The set Finpath(Fex, w) of paths on
Fex and � and RG on this set are drawn in Figure 4. The point is that the
a-arrow and b-arrow on w in Fex are transformed into two arrows with differ-
ent destinations, so that the condition “R{a}∩R{b} = R{a,b}” is not satisfied
in Fex (as we saw in Example 4.4) but becomes satisfied in Finpath(Fex, w).
However, as it is, (Finpath(Fex, w),�, (RG)G∈Grp) is not a pseudo-frame,
since � itself is not a preorder and the condition “�; RG ⊆ RG” is not sat-
isfied because, for example, there is no a-arrow from 〈w〉 to 〈w,�, w, a, w〉.
Therefore, a preorder and relations for DG on Finpath(F,w) in general
should be defined as follows.

Definition 4.19. (Tree Unraveling) Let M = (F, V ) be a pseudo-model
generated by w ∈ W , where F = (W, �, (RG)G∈Grp). Tree unravelings of a
pointed pseudo-model (M,w) are defined as follows1

1 If we replace all occurrences of “(�∗;RG;�∗)” with “(� :∗;RG)” then those provides
simpler definitions for possibly non-stable models than those given in [12, Theorem 4.1].
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1. Tree(M,w) := (Finpath(F,w),�∗, (�∗; RG; �∗)G∈Grp,V),

2. Tree◦(M,w) :=
(
Finpath(F,w),�∗, ((�∗; RG; �∗) ∪ �∗)G∈Grp ,V

)
,

3. Tree+(M,w) :=
(

Finpath(F,w),�∗,
(
(�∗; RG; �∗)+

)

G∈Grp
,V

)

,

4. Tree∗(M,w) :=
(

Finpath(F,w),�∗,
(
((�∗; RG; �∗) ∪ �∗)+

)

G∈Grp
,V

)

,

where R+ is defined as the transitive closure of R and R∗ as the reflexive
transitive closure of R.

It is easy to see that (�∗; RG; �∗) ∪ �∗ is reflexive, since �∗ is reflexive.
Therefore, ((�∗; RG; �∗) ∪ �∗)+ is also reflexive. Well-definedness of these
models are verified in Proposition 4.22 below. Tree unravelings Tree(M,w),
Tree◦(M,w), Tree+(M,w) and Tree∗(M,w) will be used if all the underlying
binary relations RG on W are arbitrary, reflexive, transitive, and both reflex-
ive and transitive, respectively. We also establish that all tree unravelings
of Definition 4.19 are stable (see Proposition 4.22).

The following two propositions are useful for the purpose.

Proposition 4.20. If G1 ⊆ G2 then RG2 ⊆ RG1.

Proof. Suppose −→u RG2
−→v , i.e., −→v is of the form −→u �〈RH , w′〉 and G2 ⊆ H.

We thus have G1 ⊆ H by the assumption, and hence −→u RG1
−→v .

Proposition 4.21. Let R,R1, · · · , Rn be binary relations on a set X.

1. If R1 ⊆ R2, then R; R1 ⊆ R; R2.

2. If R1 ⊆ R2, then R1; R ⊆ R2; R.

3. If R1 ⊆ R2, then Rn
1 ⊆ Rn

2 for all n ∈ N. In particular, R+
1 ⊆ R+

2 and
R∗

1 ⊆ R∗
2.

4. R;
⋂

i∈I Ri ⊆ ⋂
i∈I(R; Ri).

5. (
⋂

i∈I Ri);R ⊆ ⋂
i∈I(Ri; R).

Proposition 4.22. All the tree unravelings of a pointed pseudo-model (M,w)
defined in Definition 4.19 are stable pseudo-models.

Proof. The condition 1 “�; RG ⊆ RG for any G” of pseudo-frame is obvi-
ous by the transitivity of �∗. The condition for stability is similarly verified
also by the transitivity of �∗. The inclusion condition holds by items 1 and 3
of Proposition 4.21 and Proposition 4.20. We show that V satisfies heredity.
Take any p ∈ Prop and suppose −→u ∈ V(p) and −→u �∗ −→v . By the former, we
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have tail(−→u ) ∈ V (p). By the latter, it is easily seen that tail(−→u ) � tail(−→v ).
Since V satisfies heredity, it turns out that tail(−→v ) ∈ V (p), which means−→v ∈ V(p).

It is noted that Treex(M,w) is: a reflexive pseudo-model if x = ◦; a
transitive pseudo-model if x = +; and a reflexive and transitive pseudo-
model if x = ∗, which is easily seen from the definition of the relation for
DG in each tree unraveling. Moreover, seriality is inherited from an original
pseudo-model:

Proposition 4.23. If R{a} is serial, then �∗; R{a} and
(
�∗; R{a}

)+ are
serial.

Proof. Assume that R{a} is serial. It suffices to show that R{a} is serial.
Take −→u ∈ Finpath(F,w). Since R{a} is serial, tail(−→u )R{a}x for some x ∈ W .
Therefore, we conclude that

(−→u , −→u �〈R{a}, x〉) ∈ R{a}.

Proposition 4.24. Let F = (W, �, (RG)G∈Grp) be a pseudo-frame and w ∈
W . Let us denote RG or � on Finpath(F,w) by R,S,R1,R2, etc. The
following hold.

1. If −→u R−→v , then −→u = body(−→v ).

2. If (−→u , −→v ) ∈ (R1; · · · ; Rm); (S1; · · · ; Sn) (m ≥ 0, n ≥ 1), then there
exists the unique

−→
t such that (−→u ,

−→
t ) ∈ (R1; · · · ; Rm) and (

−→
t ,−→v ) ∈

(S1; · · · ; Sn). In particular, such unique
−→
t is defined as bodyn(−→v ) :=

body(· · · (body
︸ ︷︷ ︸

n times

(−→v )) · · · ).

3. If (R1; · · · ; Rm) ∩ (S1; · · · ; Sn) �= ∅, then n = m.

4. R1; · · · ; Rm;
⋂

i∈I(S(i,1); · · · ; S(i,ni)) =
⋂

i∈I

(R1; · · · ; Rm; S(i,1); · · · ;
S(i,ni)

)
.

5.
⋂

i∈I

(S(i,1); · · · ; S(i,ni)

)
; R1; · · · ; Rm =

⋂
i∈I

(S(i,1); · · · ; S(i,ni)

; R1; · · · ; Rm).

Proof. Item 1 is obvious by the definition of RG and �.
Item 5. is shown similarly to item 4.. We show the remaining items below.

• (item 2.) By induction on n. If n = 1, there exists
−→
t such that −→u (R1;

· · · ; Rn)
−→
t and

−→
t S1

−→v . By item 1.,
−→
t = body(−→v ). Since (R1; · · · ; Rm);

(S1; · · · ; Sn) = (R1; · · · ; Rm; S1); (S2; · · · ; Sn), we obtain −→u (R1;
· · · ; Rm; S1)bodyn−1(−→v ) and bodyn−1(−→v )(S2; · · · ; Sn)−→v hold by induc-
tion hypothesis. Then, the former implies that −→u (R1; · · · ; Rm)bodyn(−→v ).
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• (item 3.) Fix some (−→u , −→v ) ∈ (R1; · · · ; Rm) ∩ (S1; · · · ; Sn). If m = 0,
we have −→u = −→v . Then n should clearly be 0. If n = 0, then m = 0
holds by the same argument. Assume that n,m > 0. Applying item 2.
with m = 0, we obtain −→u = bodym(−→v ) and −→u = bodyn(−→v ). Therefore,
n = m.

• (item 4.) By item 3., if there are i, j ∈ I such that ni �= nj , the equation
is equivalent to ∅ = ∅. So, we assume ni = nj for all i, j ∈ I,and denote
it by n. The left-to-right is obvious from item 4 of Proposition 4.21. We
show the converse. Assume that (−→u , −→v )∈(R1;· · · ; Rm; S(i,1);· · · ;S(i,n)

)

for all i. By item 2., (−→u , bodyn(−→v )) ∈ (R1; · · · ; Rm) and (bodyn(−→v ),−→v )
∈ (S(i,1); · · · ; S(i,n)) for all i. Then, we have (−→u , −→v ) ∈ R1; · · · ;
Rm;

⋂
i∈I(S(i,1); · · · ; S(i,n)), as desired.

Proposition 4.25.All the tree unravelings of a pointed pseudo-model(M,w)
satisfy the intersection condition. That is:

1.
⋂

a∈G(�∗; R{a}; �∗) = �∗; RG; �∗ holds in Tree(M,w).

2.
⋂

a∈G((�∗; R{a}; �∗) ∪ �∗) = (�∗; RG; �∗) ∪ �∗ holds in Tree◦(M,w).

3.
⋂

a∈G

(
�∗; R{a}; �∗)+ = (�∗; RG; �∗)+ holds in Tree+(M,w).

4.
⋂

a∈G

(
(�∗; R{a}; �∗) ∪ �∗)+ = ((�∗; RG; �∗) ∪ �∗)+ holds in Tree∗

(M,w),.

Proof. Item 2. and item 4. are easy consequences of item 1. and item 3.,
respectively. Thus, we show item 1. and item 3. below with the help of
Proposition 4.5.

• (item 1.) It suffices to show that (�∗; RG1 ; �∗) ∩ (�∗; RG2 ; �∗) ⊆�∗

; RG1∪G2 ; �∗ by Proposition 4.5. Fix any (−→u , −→v ) ∈ (�∗; RG1 ; �∗) ∩
(�∗; RG2 ; �∗). We show that −→u (�∗; RG1∪G2 ; �∗)−→v . By the definitions
of � and RG, items from 1. to 3. of Proposition 4.24 tell us that
−→v = −→u �〈�, w1, · · · , wn−1,�, wn, RH , u0,�, u1, · · · , um−1,�, um〉,
where n,m ≥ 0 and Gi ⊆ H (i = 1, 2). Since G1 ∪ G2 ⊆ H, the goal is
immediate.

• (item 3.) By Proposition 4.5, it suffices to show that

(�∗; RG1 ; �∗)+ ∩ (�∗; RG2 ; �∗)+ ⊆ (�∗; RG1∪G2 ; �∗)+ .

Let us assume (−→u , −→v ) ∈ (�∗; RG1 ; �∗)+ ∩ (�∗; RG2 ; �∗)+. Our goal is
to show that −→u (�∗; RG1∪G2 ; �∗)+ −→v . For each i ∈ {1, 2}, there exist
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natural numbers ni, k(i,1), . . ., k(i,ni), l(i,1), . . ., l(i,ni) such that
−→u (�k(i,1) ; RGi

; �l(i,1)); · · · ; (�k(i,ni) ; RGi
; �l(i,ni))−→v .

By items from 1. to 3. of Proposition 4.24, we have n1 = n2, k(1,1) =
k(2,1), . . ., k(1,n1) = k(2,n2), l(1,1) = l(2,1), . . ., l(1,n1) = l(2,n2). So, we
drop the subscript i to simply write n, k1, . . . kn, l1, . . . , ln. Therefore,
by a similar argument for Tree(M,w) (item 1.), we obtain:

−→u (�k1 ; RG1∪G2 ; �l1); · · · ; (�kn ; RG1∪G2 ; �ln)−→v ,

which implies our goal.

Definition 4.26. (bounded morphism) Let M = (W, �, (RG)G∈Grp, V ) and
M ′ = (W ′,�′, (R′

G)G∈Grp, V
′) be pseudo-models. A function f : W → W ′ is

called a bounded morphism from M to M ′ if and only if any of the following
is satisfied:

(�-forth) if w � v then f(w) �′ f(v),

(�-back) if f(w) �′ v′ then there is v ∈ W such that w � v and v′ = f(v),

(RG-forth) if wRGv then f(w)R′
Gf(v),

(RG-back) if f(w)R′
Gv′ then there is v ∈ W such that wRGv and v′ = f(v),

(Atom) w ∈ V (p) iff f(w) ∈ V ′(p).

If there is a surjective bounded morphism from M to M ′, we denote it by
M � M ′.

Proposition 4.27. Let f be a bounded morphism from a pseudo-model
M to a pseudo-model M ′. For any formula ϕ and w ∈ W , M,w �ps

ϕ iff M ′, f(w) �ps ϕ.

Theorem 4.28. Let M = (F, V ) be a stable pseudo-model generated by w.

1. Tree(M,w) � M .

2. Tree◦(M,w) � M , if all RGs are reflexive.

3. Tree+(M,w) � M , if all RGs are transitive.

4. Tree∗(M,w) � M , if all RGs are reflexive and transitive.

Proof. In any item, we define a function f from Finpath(F,w) to |M | as
one which maps −→u ∈ Finpath(F,w) to tail(−→u ). Surjectivity is evident from
the definition of Finpath(F,w) and the assumption that M is generated by
w. We show that f is a bounded morphism. The condition for a valuation
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is obviously satisfied by the definition of V. We check the condition for pre-
order. Suppose −→u �∗ −→v . Then, it is obvious by the definition of � and the
transitivity of � that f(−→u ) � f(−→v ). Suppose f(−→u ) � v. Put −→v := −→u �〈�
, v〉, which clearly gives −→u � −→v and f(−→v ) = v. We check the condition for
RG relation. The back condition is easier. Suppose f(−→u )RGv. Put −→v :=−→u �〈RG, v〉, which clearly gives −→u RG

−→v and v = f(−→v ). Since RG ⊆ (�∗

; RG; �∗), ((�∗; RG; �∗)∪ �∗), (�∗; RG; �∗)+ , ((�∗; RG; �∗)∪ �∗)+, the
back condition turns out to be satisfied in all items by −→v . We check the
forth condition for each item below.

• (1.) Suppose −→u (�∗; RG; �∗)−→v . By definition,
−→v = −→u �〈�, w1, · · · , wn−1,�, wn, RH , wn,�, wn+1, · · · ,� wm〉

where G ⊆ H. Therefore, f(−→u )(�; RH ; �)f(−→v ), which entails f(−→u )RHf
(−→v ) since M is a stable pseudo-model. By RH ⊆ RG, we have
f(−→u )RGf(−→v ).

• (2.) Suppose −→u ((�∗; RG; �)∪ �∗)−→v , i.e. −→u (�∗; RG; �)−→v or −→u �∗ −→v .
In the former case, the same argument as item 1. can be applied. In
the latter case, we have f(−→u ) � f(−→v ). Since RG is reflexive, we get
f(−→u )(�; RG; �)f(−→v ) hence f(−→u )RGf(−→v ) since M is a stable pseudo-
model.

• (3.) Suppose −→u (�∗; RG; �)+ −→v . Thus, −→u (�∗; RG; �)m −→v for some nat-
ural number m � 1. By repeating a similar argument for item 1., we
can obtain f(−→u )(�; RG; �)mf(−→v ). Since RG is transitive and stable,
(�; RG; �)m ⊆ Rm

G ⊆ RG. Thus, f(−→u )RGf(−→v ).

• (4.) This is shown similarly to item 2. with the help of item 3..

Now we are ready to prove Theorem 4.1: Given any X from IntK,
IntKT, IntKD, IntK4, IntK4D, and IntS4, if Γ �F(X)∩ST ϕ then Γ �H(X)

ϕ.

Proof. We show the contraposition. Assume Γ ��H(X) ϕ. By Lemma 4.11,
We can find an X-consistent and prime X-theory Γ+ such that Γ ⊆ Γ+ and
Γ+ ��H(X) ϕ. Since Γ ⊆ Γ+, MX, Γ+ �ps Γ by the left-to-right direction of
Lemma 4.14. On the other hand, MX, Γ+ ��ps ϕ by the right-to-left direction
of Lemma 4.14 and item 1. of Lemma 4.10. We take an appropriate tree
unraveling depending on X.

• (X = IntK, IntKD) We can take Tree
(
MX

Γ+ , Γ+
)
, because MX

Γ+ is a
pseudo-model generated by Γ+by Proposition 4.13. SinceTree

(
MX

Γ+ , Γ+
)
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can be seen as a model in the sense of Definition 2.1 by Proposition 4.25,
it suffices to show that (MX, Γ+) satisfies exactly the same formulas
as

(
Tree

(
MX

Γ+ , Γ+
)
, 〈Γ+〉) in the case of IntK. First, (MX, Γ+) satis-

fies exactly the same formulas as (MX
Γ+ , Γ+) by Proposition 4.17. Next,

(MX
Γ+ , Γ+) satisfies exactly the same formulas as

(
Tree

(
MX

Γ+ , Γ+
)
, 〈Γ+〉)

by Proposition 4.27, because f(〈Γ+〉) = Γ+ and f is a bounded mor-
phism, which is shown to exist in Theorem 4.28. It follows that
Tree

(
MX

Γ+ , Γ+
)
, 〈Γ+〉 � Γ but Tree

(
MX

Γ+ , Γ+
)
, 〈Γ+〉 �� ϕ. By Propo-

sition 4.22, Tree
(
MX

Γ+ , Γ+
) ∈ F(IntK) ∩ ST hence Γ ��F(IntK)∩ST ϕ,

as desired. In the case of IntKD, we need to additionally show that
Tree

(
MX

Γ+ , Γ+
)

is serial. This is true, because of item 2 of Proposi-
tion 4.15, the obvious fact that seriality is preserved under taking gen-
erated submodel, and Proposition 4.23.

• (X = IntKT) Take
Tree◦ (

MX
Γ+ , Γ+

)
. We can show that

(
Tree◦ (

MX
Γ+ , Γ+

)
, 〈Γ+〉), which

can be seen as a model by Proposition 4.25, satisfies exactly the same
formulas as (MX, Γ+) by the same argument as the case of IntK. Note
that Tree◦ (

MX
Γ+ , Γ+

)
is reflexive.

• (X = IntK4, IntK4D) Take Tree+
(
MX

Γ+ , Γ+
)
. We can show

(
Tree+

(
MX

Γ+ , Γ+
)
, 〈Γ+〉), which can be seen as a model by Propo-

sition 4.25, satisfies exactly the same formulas as (MX, Γ+) by the
same argument as the case of IntK. Note that Tree+

(
MX

Γ+ , Γ+
)

is
transitive. For the case of IntK4D, we can additionally show that
Tree+

(
MX

Γ+ , Γ+
)

is serial by the same argument as the case of IntKD.

• (X = IntS4) Take Tree∗ (
MX

Γ+ , Γ+
)
. We can show

(
Tree∗ (

MX
Γ+ , Γ+

)
,

〈Γ+〉), which can be seen as a model by Proposition 4.25, satisfies ex-
actly the same formulas as (MX, Γ+) by the same argument as the case
of IntK. Note that Tree∗ (

MX
Γ+ , Γ+

)
is reflexive and transitive.

5. Public Announcement Expansions

This section adds the public announcement operator [ϕ] (read: “after a
truthful announcement of ϕ”) to our static syntax of intuitionistic epis-
temic logic with distributed knowledge. Recall that our underlying syntax
and semantics are different from those of [3,6,10,13] as we have seen in
the introduction. We will not consider a dual diamond-version 〈ϕ〉 of the
public announcement operator [ϕ] in the public announcement expansion,
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either. This simplification enables us to apply the outside-in strategy, which
rewrites one of the outermost occurrences of the public announcement op-
erators in a formula, of proving the semantic completeness (in Section 5.2).
It is noted that the inside-out strategy, which rewrites one of the innermost
occurrences of the public announcement operators in a formula, of prov-
ing the semantic completeness were employed in [3,10]. A subtlety between
outside-in and inside-out strategies, the reader is referred to, e.g., [23].

To apply the outside-in strategy for the semantic completeness of our
public announcement expansion, we should have axioms (called recursion ax-
ioms) which state how the public announcement operators commutes with
propositional variables and each of the all logical connectives. Section 5.1
shows that the natural recursion axiom [ϕ]DGψ ↔ (ϕ → DG(ϕ → [ϕ]ψ))2

for the distributed knowledge operator is not valid on all models (Propo-
sition 5.8) but valid on all stable models (Proposition 5.9). We also show
that the recursion axiom [ϕ][ψ]χ ↔ [ϕ ∧ [ϕ]ψ]χ, which is a key axiom for
the outside-in strategy, is valid on all models (Proposition 5.7).

5.1. Public Announcement Expansion Over Stable Models

We expand our syntax with the public announcement operator and define
the set of all formulas of the expanded syntax as:

Form+ � ϕ::=p | ⊥ | (ϕ → ϕ) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | DGϕ | [ϕ]ϕ,

where p ∈ Prop and G ∈ Grp. We follow the standard rules for elimination
of the parentheses

Definition 5.1. Let M = (W, �, (Ra)a∈Agt, V ) and ϕ, ψ ∈ Form+. The
satisfaction relation M,w � is defined as before except:

M,w � [ϕ]ψ iff for all v ∈ W,w � v and M, v � ϕ jointly imply Mϕ, v � ψ,

where Mϕ := (�ϕ�M ,�ϕ, (Rϕ
a )a∈Agt , V

ϕ) is defined as follows:

• �ϕ�M := {w ∈ W | M,w � ϕ},

• �ϕ := � ∩(�ϕ�M × �ϕ�M ),

• Rϕ
a := Ra ∩ (�ϕ�M × �ϕ�M ),

• V ϕ(p) := V (p) ∩ �ϕ�M .

2The axiom of the same shape is included in Hilbert system of the public announce-
ment logic over classical logic with distributed knowledge in [24]. When G = {a} and so
D{a} is Ka, the axiom is included in Hilbert systems in [3,10,13] of intuitionistic public

announcement logic and it is valid in all intended models in [3,13].
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Figure 5. Models N , Np∨¬p, and (Np∨¬p)
p

Under these definitions, the heredity condition still holds.

Proposition 5.2. If M,w � ϕ and w � v, then M, v � ϕ.

It is noted that this would not hold if we were to adopt “M,w � ϕ implies
Mϕ, w � ψ” as the definition of M,w � [ϕ]ψ. Moreover, it is easy to show
the following.

Proposition 5.3. Let M = (W, �, (Ra)a∈Agt, V ) and ϕ ∈ Form+. Suppose
�ϕ� �= ∅. 1. Mϕ satisfies all the conditions of a model. 2. If Ra is reflexive
(or transitive), then so is Rϕ

a . 3. If M is stable, then so is Mϕ.

Remark 5.4. Seriality is not preserved under taking submodels. A coun-
terexample is: M := ({w, v},�, Ra, V ), where Agt = {a}, Prop = {p},
�:= {(w,w), (v, v)}, Ra := {(w, v), (v, v)}, and V (p) = {w}. The model M
is serial, but Mp is not because Rp

a = ∅. Hence, the corresponding axiom
(D) is not in consideration below.

Example 5.5. In Figure 5, we consider updates of the model N discussed
in Example 2.5 (recall Fig. 1 b). If we update the first (leftmost) model by
p ∨ ¬p, we obtain the second model, Np∨¬p. Note that this updated model
can be seen as a classical Kripke model since no proper pair is ordered by
�p∨¬p. By this update, p becomes a distributed knowledge at v of a group
{a, b}, that is, N, v � ¬D{a,b}p but Np∨¬p, v � D{a,b}p. Next, we update
Np∨¬p by p to obtain the model (Np∨¬p)p. It is easy to see that (Np∨¬p)p

and Np are the same. By this update, p becomes a knowledge at v of an
agent b, that is, Np∨¬p, v � ¬D{b}p but (Np∨¬p)p, v � D{b}p.

The axioms in Table 2 are for the PAL extension. We call the axiom
system expanded from H(X) by all the axioms in Table 2, H(X)+, where
X = IntK, IntKT, IntK4, and IntS4. The notion of semantic consequence
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Table 2. Additional axioms for public announcement operator

([]p) [ϕ]p ↔ (ϕ → p) ([]⊥) [ϕ]⊥ ↔ (ϕ → ⊥)

([] →) [ϕ](ψ → χ) ↔ ([ϕ]ψ → [ϕ]χ) ([]∧) [ϕ](ψ ∧ χ) ↔ ([ϕ]ψ ∧ [ϕ]χ)

([]∨) [ϕ](ψ ∨ χ) ↔ (ϕ → [ϕ]ψ ∨ [ϕ]χ) ([]D) [ϕ]DGψ ↔ (ϕ → DG[ϕ]ψ)

([][]) [ϕ][ψ]χ ↔ [ϕ ∧ [ϕ]ψ]χ[0.]

and derivability is defined in the same way as for H(X). In what follows, we
establish that all the axioms in Table 2 are valid with respect to the class
of all stable frames. First, we deal with composition of two announcements.
Recall from Example 5.5 that (Np∨¬p)p and Np of Fig. 5 are the same.
This can be understood as an example of the following lemma, because
(p ∨ ¬p) ∧ [p ∨ ¬p]p and p are equivalent.

Lemma 5.6. Let M be a model and suppose (Mϕ)ψ and Mϕ∧[ϕ]ψ are well-
defined models. Then, (Mϕ)ψ = Mϕ∧[ϕ]ψ.

Proof. It suffices to show that|(Mϕ)ψ|= |Mϕ∧[ϕ]ψ|. Assume w ∈ |Mϕ∧[ϕ]ψ|,
which is equivalent to M,w � ϕ ∧ [ϕ]ψ. This is equivalent to M,w � ϕ and
“M, v � ϕ implies Mϕ, v � ψ for any v such that w � v”. By instantiating v
with w, we can infer “M,w � ϕ implies Mϕ, w � ψ” from the latter. Then,
we have Mϕ, w � ψ by modus ponens, which means w ∈ |(Mϕ)ψ|. For the
left-to-right, let us assume Mϕ, w � ψ. We have to show M,w � ϕ and
“M, v � ϕ implies Mϕ, v � ψ for any v such that w � v”. The assumption
presupposes w ∈ |Mϕ|, which means M,w � ϕ, the former goal. For the
latter implication, fix a v satisfying w � v. Then, by the heredity, M, v � ϕ,
so w �ϕ v. Then, again by the heredity, Mϕ, v � ψ.

Proposition 5.7. The axioms in Table 2 except ([]D) are valid in the class
of all frames.

Proof. We show the validity of ([]∨) and ([][]) alone.
First, we show the validity of ([]∨). For any model M and w ∈ |M |, we

show M,w � [ϕ](ψ1 ∨ ψ2) → (ϕ → ([ϕ]ψ1 ∨ [ϕ]ψ2)). Fix any v such that
w � v and M, v � [ϕ](ψ1 ∨ ψ2). To show M, v � ϕ → ([ϕ]ψ1 ∨ [ϕ]ψ2), fix
u such that v � u and M,u � ϕ. We show M,u � [ϕ]ψ1 ∨ [ϕ]ψ2. From
M, v � [ϕ](ψ1 ∨ ψ2), v � u, and M,u � ϕ, we have Mϕ, u � ψ1 ∨ ψ2. Then,
it suffices to show that Mϕ, u � ψi implies M,u � [ϕ]ψi for i = 1, 2. Assume
Mϕ, u � ψi and fix any t such that u � t and M, t � ϕ. Obviously, we have
u �ϕ t. Then, by the assumption and the heredity, Mϕ, t � ψi. Next, we
show M,w � (ϕ → ([ϕ]ψ1 ∨ [ϕ]ψ2)) → [ϕ](ψ1 ∨ ψ2). Fix any v such that
w � v and M, v � ϕ → ([ϕ]ψ1 ∨ [ϕ]ψ2). To show M, v � [ϕ](ψ1 ∨ ψ2), fix
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Figure 6. Model falsifying ([]D)

u such that v � u and M,u � ϕ. We show Mϕ, u � ψ1 ∨ ψ2. Since v � u
and M,u � ϕ, we have M,u � [ϕ]ψ1 ∨ [ϕ]ψ2. Then, it suffices to show that
M,u � [ϕ]ψi implies Mϕ, u � ψi for i = 1, 2. This is obviously true because
M,u � ϕ.

Second, we show the validity of ([][]). First, for any model M and w ∈ |M |,
we show M,w � [ϕ][ψ]χ → [ϕ ∧ [ϕ]ψ]χ. Fix any v such that w � v and
M, v � [ϕ][ψ]χ. To show M, v � [ϕ ∧ [ϕ]ψ]χ, fix u such that v � u and
M,u � ϕ∧ [ϕ]ψ. Since M,u � ϕ and M, v � [ϕ][ψ]χ, we have Mϕ, u � [ψ]χ.
Also, by M,u � [ϕ]ψ, we have Mϕ, u � ψ. Then, by these two, we obtain
(Mϕ)ψ

, u � χ, which is equivalent to Mϕ∧[ϕ]ψ, u � χ by Lemma 5.6. To show
the right-to-left, Fix any v such that w � v and M, v � [ϕ∧ [ϕ]ψ]χ. Fix any
u such that v � u and M,u � ϕ. We show Mϕ, u � [ψ]χ. Fix any t such that
u �ϕ t and Mϕ, t � ψ. Instead of (Mϕ)ψ

, t � χ, we use Lemma 5.6 to show
Mϕ∧[ϕ]ψ, t � χ. To show this, we show v � t and M, t � ϕ∧[ϕ]ψ. The former
is obvious. Also, M, t � ϕ since t ∈ |Mϕ|. Further, we have M, t � [ϕ]ψ. For
this, take s such that t � s and M, s � ϕ. Then, Mϕ, s � ψ, since Mϕ, t � ψ
and t �ϕ s.

The model M depicted in Figure 6 is a counterexample of ([]D). Let Agt =
{a}. Define the model M = ({w, v, u},�, Ra, V ), where
� = {(w,w), (v, v), (v, u), (u, u)}, Ra = {(w, v)}, and V (p) := {w, u} and
V (q) := ∅. The solid line stands for the relations for agents and the dotted
arrow stands for the preorder. Reflexive arrows for the preorder is omitted
in the figure. The condition “�; Ra ⊆ Ra” is easily checked. Also, the con-
dition “Ra; �⊆ Ra” is easily seen not to be satisfied, since w(Ra; �)u holds
but wRau fails. Therefore, M is not a stable model.

To show that the axiom ([]D) is not valid with respect to the class of all
frames, we show [p]Kaq → (p → Ka[p]q) is not satisfied at the state w in M .
First, M,w � [p]Kaq, because Mp, w � Kaq is vacuously true by the model
update which eliminates v, and w is the only world accessible from w by �.
Second, however, M,w �� p → Ka[p]q. The antecedent is obviously true at
w. To reject the consequent, we focus on v, the only world accessible from
w by Ra, to show M, v �� [p]q. This is true because we can find u, which
is ahead of v, satisfies p, but does not q. To sum up, we have shown the
following.
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Proposition 5.8. The axiom ([]D) is not valid with respect to the class of
all frames.

By focusing on the class of all stable frames, the validity of ([]D) is re-
covered.

Proposition 5.9. The axiom ([]D) is valid in the class ST of all stable
frames.

Proof. For any stable model M and w ∈ |M |, we show M,w � [ϕ]DGψ →
(ϕ → DG[ϕ]ψ). Fix any v such that w � v and M, v � [ϕ]DGψ. We show
M, v � ϕ → DG[ϕ]ψ. Fix any u such that v � u and M,u � ϕ. To show
M,u � DG[ϕ]ψ, fix any t such that (u, t) ∈ ⋂

a∈G Ra. We show M, t � [ϕ]ψ.
Fix any s such that t � s and M, s � ϕ. We show Mϕ, s � ψ. By the
stability of the underlying frame, we have

⋂
a∈G Ra; �=

⋂
a∈G Ra. Hence,

(u, s) ∈ ⋂
a∈G Ra. Then, we have Mϕ, s � ψ, because Mϕ, u � DGψ holds

by M, v � [ϕ]DGψ, v � u, and M,u � ϕ and we have s ∈ |Mϕ|. Next, we
show M,w � (ϕ → DG[ϕ]ψ) → [ϕ]DGψ. Fix any v such that w � v and
M, v � ϕ → DG[ϕ]ψ. To show M, v � [ϕ]DGψ, fix any u such that v � u
and M,u � ϕ. Take any t such that (u, t) ∈ ⋂

a∈G Rϕ
a . We show Mϕ, t � ψ.

By M, v � ϕ → DG[ϕ]ψ, v � u, and M,u � ϕ, we have M,u � DG[ϕ]ψ.
Then, M, t � [ϕ]ψ. Since M, t � ϕ, we obtain Mϕ, t � ψ.

Therefore, H(X)+ is sound for the class of all corresponding stable frames.

Theorem 5.10. Let ϕ ∈ Form+. If �H(X)+ ϕ, then �F(X)∩ST ϕ.

Proof. Theorem 3.3 and Propositions 5.9 and 5.7.

5.2. Semantic Completeness of Public Announcement Expansions

Let X = IntK, IntKT, IntK4, or IntS4. With the help of a translation
from Form+ to Form as discussed in [22], we show the strong completeness
of H(X)+ with respect to the corresponding class of stable frames, i.e., if
Γ �F(X)∩ST ϕ then Γ �H(X)+ ϕ, for every Γ ∪ {ϕ} ⊆ Form+.

Definition 5.11. The translation t : Form+ → Form is defined as follows:

• t(p) = p,

• t(⊥) = ⊥,

• t(ϕ�ψ) = t(ϕ)�t(ψ),

• t(DGϕ) = DGt(ϕ),

• t([ϕ]p) = t(ϕ → p),
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• t([ϕ]⊥) = t(ϕ → ⊥),

• t([ϕ](ψ � χ)) = t([ϕ]ψ � [ϕ]χ),

• t([ϕ](ψ ∨ χ)) = t(ϕ → [ϕ]ψ ∨ [ϕ]χ),

• t([ϕ]DGψ) = t(ϕ → DG[ϕ]ψ),

• t([ϕ][ψ]χ) = t([ϕ ∧ [ϕ]ψ]χ),

where � ∈ {→,∨,∧} and � ∈ {→,∧}.

The following notion of complexity of a formula (cf. [22, Definition 7.21])
plays a key role in our strong completeness proof.

Definition 5.12. The complexity function c : Form+ → N is defined as
follows:

c(p) = 1
c(⊥) = 1

c(ϕ�ψ) = 1 + max(c(ϕ), c(ψ)) (� ∈ {→,∨,∧})
c(DGϕ) = 1 + c(ϕ)
c([ϕ]ψ) = (4 + c(ϕ)) · c(ψ).

It is easy to see that c(ϕ) ≥ 1 for any formula ϕ.

Lemma 5.13.

1. c(ψ) > c(ϕ) if ϕ is a proper subformula of ψ.

2. c([ϕ]p) > c(ϕ → p).

3. c([ϕ]⊥) > c(ϕ → ⊥).

4. c([ϕ](ψ � χ)) > c([ϕ]ψ � [ϕ]χ) where � ∈ {→,∧}.
5. c([ϕ](ψ ∨ χ)) > c(ϕ → [ϕ]ψ ∨ [ϕ]χ).

6. c([ϕ]DGψ) > c(ϕ → DG[ϕ]ψ).

7. c([ϕ][ψ]χ) > c([ϕ ∧ [ϕ]ψ]χ).

Proof. Since the items except item 5. are proved exactly in the same way
as in the proof of [22, Lemma 7.22], we focus on item 5. here. We may
assume that c(ψ) ≥ c(χ) without loss of generality. Then, c([ϕ](ψ ∨ χ)) =
(4 + c(ϕ)) · (1 + c(ψ)). On the other hand, c(ϕ → [ϕ]ψ ∨ [ϕ]χ) = 1 +

max(c(ϕ), 1 + c([ϕ]ψ))
(item 1.)

= 1 + 1 + c([ϕ]ψ) = 2 + (4 + c(ϕ)) · c(ψ). Then,
c([ϕ](ψ ∨ χ)) − c(ϕ → [ϕ]ψ ∨ [ϕ]χ) = 2 + c(ϕ) > 0.

Lemma 5.14. The translation t is Form-valued, i.e., t(ϕ) ∈ Form.
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Proof. By induction on c(ϕ). It is obvious if ϕ = p or ⊥. If ϕ = ψ1�ψ2

where � ∈ {→,∧,∨}, c(ϕ) > c(ψi) by item 1. of Lemma 5.13. Hence, by
induction hypothesis, t(ψ1�ψ2) = t(ψ1)�t(ψ2) ∈ Form. The same argument
applies to the case where ϕ = DGψ. Suppose that ϕ = [ψ]χ. Depending on
the form of χ, the corresponding item among items 2. to 7. of Lemma 5.13
assures that t(ϕ) ∈ Form.

Lemma 5.15. Let X = IntK, IntKT, IntK4, or IntS4. For all ϕ ∈
Form+, �H(X)+ ϕ ↔ t(ϕ).

Proof. By induction on c(ϕ). In what follows, we write � instead of �H(X)+ .
If ϕ = p or ⊥, it is obvious. Suppose ϕ = ψ1�ψ2 where � ∈ {→,∧,∨}. By
induction hypothesis, we get � ψi ↔ t(ψi). Then, by intuitionistic tautolo-
gies, we have � ψ1�ψ2 ↔ t(ψ1)�t(ψ2), which implies our goal. Suppose
ϕ = DGψ. By induction hypothesis and the axiom (K), � DGψ ↔ DGt(ψ)
holds. Suppose that ϕ = [ψ]χ. Depending on the form of χ, the correspond-
ing item among items 2. to 7. of Lemma 5.13 assures that � ϕ ↔ t(ϕ)
with the help of additional axioms of Table 2. For example, when χ is of
the form ψ1 ∨ ψ2, we proceed as follows. By the axiom ([]∨) of Table 2,
� [ϕ](ψ1 ∨ ψ2) ↔ (ϕ → ([ϕ]ψ1 ∨ [ϕ]ψ2)). By item 5. of Lemma 5.13 and in-
duction hypothesis, we get � (ϕ → ([ϕ]ψ1∨[ϕ]ψ2)) ↔ t(ϕ → ([ϕ]ψ1∨[ϕ]ψ2)).
By definition of t, we can conclude � [ϕ](ψ1 ∨ ψ2) ↔ t([ϕ](ψ1 ∨ ψ2)).

Theorem 5.16. (strong completeness) Let X = IntK, IntKT, IntK4, or
IntS4 and Γ ∪ {ϕ} ⊆ Form+. If Γ �F(X)∩ST ϕ, then Γ �H(X)+ ϕ.

Proof. Assume that Γ �F(X)∩ST ϕ. By Theorem 5.10 and Lemma 5.15,
we have t[Γ] �F(X)∩ST t(ϕ), where t[Δ] := {t(ψ) | ψ ∈ Δ}. By Lemma 5.14,
t[Γ∪{ϕ}] ⊆ Form. It follows from Theorem 4.1 that t[Γ] �H(X) t(ϕ). For some
finite set Γ′ ⊆ Γ, �H(X)

∧
t[Γ′] → t(ϕ), which implies �H(X)+

∧
t[Γ′] → t(ϕ)

since H(X)+ extends H(X). By Lemma 5.15, we get �H(X)+
∧

Γ′ → ϕ hence
Γ �H(X)+ ϕ.

6. Concluding Remark

We comment on possible further directions of research. The first direction is
to consider a possibility of adding the diamond version of DG and/or [ϕ] to
this study. Alternatively, we may add distributed knowledge operators and
their dual to intuitionistic public announcement logic studied in [3,10,13].
For this direction, [20, Lemma 18] might be useful, since it states when the
semantics based on stable models of this paper and the semantics based
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on intended models in [3,6,10,13] become equivalent, provided there is no
distributed knowledge operators. The second direction is to simplify our se-
mantic completeness argument of H(X) via a similar method given in [25] for
classical epistemic logic with distributed knowledge. One of the merits of the
method is that the notion of pseudo- (or pre-) model is not necessary. The
third direction is to add S5-type axioms to our intuitionistic epistemic logic
with distributed knowledge. Since Ono [14] showed that there are at least
four distinct S5-type axioms over the intuitionistic modal logic S4, it would
be interesting to study the corresponding S5-type axioms in our setting.
The fourth direction is to expand our syntax with the common knowledge
operator (cf. [22]). This amounts to investigating the intuitionistic counter-
part of [25]. The final direction is to consider another dynamic expansions of
our syntax. In order to formalize changes of agents’ constructive knowledge
caused by communication among a group, we may add resolution operators
[1].
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