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1. Introduction

1.1. Refutation-Aware Calculi and Semantics

First, we roughly explain the informal notion of refutation- or falsification-
aware calculi (proof systems) and semantics. The present study is based on
this notion and develops some refutation-aware Gentzen-style sequent cal-
culi and Kripke-style semantics for a standard temporal logic, (propositional
until-free) linear-time temporal logic (LTL) [52]. This notion is not new and
is based on previous studies focused on representing refutation-aware rea-
soning [25,43,47,59]. Based on these studies, it was informally suggested
in [35] that proof systems and/or semantics are said to be falsification- or
refutation-aware if they are capable of providing (or representing) the direct
(or explicit) falsifications or refutations of given negated formulas (except
for the negated atomic formula). Using some of refutation-aware proof sys-
tems and semantics, we can simultaneously handle or represent refutation
(or falsification) and verification (or falsification). Using a refutation-aware
proof system, we can also directly obtain a disproof of a given negated for-
mula, where a disproof represents a refutation process for the given formula.
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Thus, we can obtain both proof and disproof in the system. For more ex-
planations on refutation-aware proof systems (or inference rules), see Sect.
1.4. In this study, we also call refutation-aware logics (or reasoning) and
logical methods for the logics and methods that are constructed based on
some refutation-aware calculi and semantics.

Next, we explain traditional motivations for studying refutation-aware
logics, calculi, and semantics. The notion of refutation or falsification is crit-
ical in the fields of computer science and philosophy. Actually, falsification-
aware model checking, which is an automated method for verifying incon-
sistent concurrent systems, has been studied, for example, in [9,23,37,38].
Adequate representation of refutation-aware reasoning is considered as a
major concern in philosophy [25,43,47,59]. Thus, refutation-aware logics are
required for these analyses. The typical examples of refutation-aware logics
are Nelson’s paraconsistent four-valued logic N4 [2,40,41,49,69], Belnap and
Dunn’s four-valued logic (Belnap–Dunn logic, Dunn–Belnap logic, or first-
degree entailment logic) [4,5,14], bi-intuitionistic logics [47,54–56,71], and
dual-intuitionistic logics (or falsification logics) [11,20,59,60,67]. Some of
these logics such as Nelson’s N4 have refutation-aware semantics that pro-
vide explicit interpretations of refutations (i.e., the satisfaction relations of
the refutations and verifications in the semantics are clearly divided into |=−

and |=+, respectively). The above-mentioned refutation-aware logics are also
regarded as paraconsistent or inconsistency-tolerant logics [53], which have
no axiom of explosion (α ∧ ¬α)→β and are known to be useful for handling
inconsistency-tolerant reasoning.

1.2. The Aims of this Study

Next, we explain the aims of this study. In this study, we aim to ob-
tain philosophically plausible refutation-aware Gentzen-style sequent cal-
culi and Kripke-style semantics that can provide a clear understanding of
the refutation-aware temporal reasoning within propositional until-free LTL
and its paraconsistent subsystem. Some of these proposed sequent calculi
and semantics explicitly distinguish between refutation (or falsification) and
verification (or justification). On the one hand, the refutation-aware sequent
calculi and semantics for the above-mentioned paraconsistent logics provide
a clear understanding of the refutation-aware and inconsistency-tolerant rea-
soning within the underlying logics. On the other hand, the standard seman-
tics and sequent calculi for (non-paraconsistent) temporal logics are unsuit-
able for representing refutation-aware and inconsistency-tolerant temporal
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reasoning within the logics. Thus, we try to construct the above-mentioned
refutation-aware framework.

Furthermore, we also aim to obtain a compatible and unified framework
for generalizing and integrating paraconsistent and standard temporal log-
ics. Actually, the proposed refutation-aware framework is highly compatible
with a paraconsistent temporal logic, paraconsistent linear-time temporal
logic (PLTL) [39]. A paraconsistent subsystem of PLTL and LTL can be
easily obtained in a modular way from the proposed framework by delet-
ing only a few items. Namely, the proposed framework is regarded as a
unified generalization or integration of those for PLTL and LTL. Addition-
ally, the proposed framework is also regarded as a generalized extension
of that for Nelson’s N4. Namely, the proposed refutation-aware Gentzen-
style sequent calculi and Kripke-style semantics for propositional until-free
LTL are regarded as natural and straightforward extensions of the existing
and traditionally studied refutation-aware Gentzen-style sequent calculi and
Kripke-style semantics for N4.

1.3. Linear-Time Temporal Logic and Its Paraconsistent Variant

LTL and its applications in computer science have been studied widely [3,
6,10,12,15,18,28,33,39,44,45,52]. From a purely proof-theoretic point of
view, many of cut-free and complete Gentzen-style sequent calculi have been
introduced for propositional until-free LTL (i.e., the propositional fragment
of LTL without the until operator) and its extensions and modifications
[3,6,18,28,33,44,50,51,65,66]. The until operator in LTL entails a certain
difficult situation in constructing a simple cut-free two-sided LK-compatible
Gentzen-style sequent calculus. A few cut-free and complete sequent calculi
extended by adding the until operator were successfully developed in [6,18].
However, we cannot use these calculi in this study because these are not
compatible with the present approach dealing with refutation-aware and
inconsistency-tolerant calculi.

Since cut-elimination theorem for Gentzen-style sequent calculus plays
a critical role in obtaining some good properties including decidability and
subformula property, many of Gentzen-style sequent calculi have been con-
structed for until-free LTL. For example, in [44], a Gentzen-style sequent
calculus LTω was introduced for first-order until-free LTL, and the cut-
elimination and completeness theorems for this calculus were proven. In
[3], a 2-sequent calculus 2Sω was introduced for first-order until-free LTL,
along with proofs of the cut-elimination and completeness theorems for this
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calculus. In [28], an equivalence was shown between the propositional frag-
ments of LTω and 2Sω, and alternative proofs of the cut-elimination theo-
rems for the propositional fragments of LTω and 2Sω were given based on
this equivalence. In [33], some embedding-based proofs were presented for
the cut-elimination and completeness theorems of LTω and its propositional
fragment.

In [39], a Gentzen-style sequent calculus PLTω was introduced for PLTL
extending propositional LTω, and the cut-elimination and completeness the-
orems for PLTω were proven using an embedding-based method. PLTω was
introduced combining LTω with a refutation-aware Gentzen-style sequent
calculus for Nelson’s N4. The logic PLTL, which was formalized as PLTω,
is regarded as a paraconsistent extension of propositional until-free LTL by
adding a paraconsistent negation connective. In this study, we introduce and
investigate some alternatives to LTω and PLTω referred to as NLTω, DLTω,
NLT−

ω , and DLT−
ω . Thus, in what follows, we use the simple name LT for

propositional until-free LTL.

1.4. The Results of this Study

In this study, we introduce and evaluate refutation-aware Gentzen-style se-
quent calculi and Kripke-style semantics for LT. The proposed sequent cal-
culi and semantics are extensions or generalizations of the refutation-aware
Gentzen-style sequent calculi and normal- and dual-style semantics for clas-
sical logic introduced previously, as constructed in [35] based on the idea
of the refutation-aware setting for Nelson’s N4. To extend or generalize
this classical logic framework to LT, we need to solve some technical prob-
lems concerned with interactions between the classical negation connective
and temporal operators. For example, the interactions between the classical
negation connective and next-time operators must be treated carefully in the
proofs of the cut-elimination and completeness theorems for the proposed
calculi and semantics.

We now present the details of the results of this study. First, we introduce
a refutation-aware normal Gentzen-style sequent calculus NLTω, which can
be roughly considered as a modified subsystem of PLTω. Second, we intro-
duce a refutation-aware dual Gentzen-style sequent calculus DLTω that is
constructed on the basis of the dual sequents Γ ⇒+ Δ (verification) and
Γ ⇒− Δ (refutation). We then prove the equivalences among LTω, NLTω

and DLTω as well as obtain the cut-elimination theorems for NLTω and
DLTω. Third, we introduce refutation-aware normal Kripke-style seman-
tics for LT using the normal satisfaction relation |=�. Fourth, we introduce
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refutation-aware dual Kripke-style semantics for LT using the dual satisfac-
tion relations |=+ (verification) and |=− (refutation). Finally, we prove the
equivalences among the normal, refutation-aware normal, and refutation-
aware dual Kripke-style semantics for LT and obtain the completeness the-
orems with respect to the proposed and existing semantics for LTω, NLTω,
and DLTω.

Next, we explain the differences between LTω and DLTω. On the one
hand, the treatment of classical negation in LTω is not refutation-aware;
this is because the classical negation connective ¬ in LTω is characterized
by the following logical inference rules with the i-nested next-time operator
X:

Γ ⇒ Δ, Xiα

Xi¬α,Γ ⇒ Δ
(¬left)

Xiα,Γ ⇒ Δ
Γ ⇒ Δ, Xi¬α

(¬right)

where (¬left) and (¬right) do not represent explicit (or direct) refutation (or
falsification) of α. On the other hand, the treatment of classical negation
in DLTω is refutation-aware; DLTω has no (¬left) and (¬right) but has
some refutation-aware dual-logical inference rules based on the refutation-
aware negative sequent ⇒−. Examples of the refutation-aware dual-logical
inference rules in DLTω are of the form

Xiα,Γ ⇒− Δ Xiβ,Γ ⇒− Δ
Xi(α ∧ β), Γ ⇒− Δ

(−∧left)
Γ ⇒− Δ, Xiα,Xiβ

Γ ⇒− Δ, Xi(α ∧ β)
(−∧right)

where (−∧left) and (−∧right) represent the explicit refutation (or falsifica-
tion) of the conjunction α∧β. The proposed falsification-aware dual-system
DLTω has refutation-aware dual-logical inference rules for all connectives
and temporal operators.

The remainder of this paper is structured as follows. In Sect. 2, we intro-
duce LTω, NLTω, and DLTω; prove the equivalences between them; and show
the cut-elimination theorems for NLTω and DLTω. Additionally, we observe
that the paraconsistent subsystems NLT−

ω and DLT−
ω of NLTω and DLTω,

respectively, can be easily obtained by deleting a few initial sequents. In
Sect. 3, we introduce the normal, refutation-aware normal, and refutation-
aware dual Kripke-style semantics for LT; prove the equivalences among
these semantics; and show the completeness theorems with respect to these
semantics for LTω, NLTω, and DLTω. In Sect. 4, we conclude this study,
address some remarks, and present some related works.
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2. Refutation-Aware Gentzen-Style Sequent Calculi

2.1. Normal Gentzen-Style Sequent Calculus

Formulas of LT are constructed from countably many propositional variables
by ∧ (conjunction), ∨ (disjunction), → (implication), ¬ (negation), G (any-
time or globally in the future), F (some-time or eventually in the future),
and X (next-time). We consider in this study formulas without until oper-
ator and first-order quantifiers. We use lower-case letters p, q, . . . to denote
propositional variables, Greek lower-case letters α, β, . . . to denote formulas,
and Greek capital letters Γ, Δ, . . . to denote finite (possibly empty) sets of
formulas. For any � ∈ {¬, X, G, F}, we use an expression �Γ to denote the
set {�γ | γ ∈ Γ}. We use the symbol ≡ to denote the equality of symbols,
the symbol ω to denote the set of natural numbers, lower-case letters i, j
and k to denote any natural numbers, and the symbol ≥ or ≤ to denote
the standard one. We define an expression Xiα for any i ∈ ω inductively by
X0α ≡ α and Xn+1α ≡ XnXα. We call an expression of the form Γ ⇒ Δ a
sequent. We use an expression L 
 S to denote the fact that a sequent S is
provable in a sequent calculus L where L in this expression will occasionally
be omitted. We use an expression α ⇔ β to denote the abbreviation of the
sequents α ⇒ β and β ⇒ α. We say that “two sequent calculi L1 and L2 are
theorem-equivalent” if {S | L1 
 S} = {S | L2 
 S}. We say that “a rule R
of inference is admissible in a sequent calculus L” if the following condition
is satisfied: for any instance

S1 · · · Sn

S

of R, if L 
 Si for all i, then L 
 S. Furthermore, we say that “R is derivable
in L” if there is a derivation from S1, · · · , Sn to S in L, where a derivation
is a finite tree of sequents followed from some inference rules in L. The
notations and notions presented above are used for all sequent calculi and
semantics discussed in this paper.

We define a normal Gentzen-style sequent calculus LTω for LT.

Definition 2.1. (LTω) The initial sequents of LTω are of the form: for
any propositional variable p,

Xip ⇒ Xip.

The structural rules of LTω are of the form:

Γ ⇒ Δ, α α,Σ ⇒ Π

Γ,Σ ⇒ Δ,Π
(cut)

Γ ⇒ Δ
α, Γ ⇒ Δ

(we-left)
Γ ⇒ Δ

Γ ⇒ Δ, α
(we-right).
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The logical inference rules of LTω are of the form:

Xiα,Xiβ,Γ ⇒ Δ
Xi(α ∧ β), Γ ⇒ Δ

(∧left)
Γ ⇒ Δ, Xiα Γ ⇒ Δ, Xiβ

Γ ⇒ Δ, Xi(α ∧ β)
(∧right)

Xiα,Γ ⇒ Δ Xiβ,Γ ⇒ Δ
Xi(α∨β), Γ ⇒ Δ

(∨left)
Γ ⇒ Δ, Xiα,Xiβ

Γ ⇒ Δ, Xi(α∨β)
(∨right)

Γ ⇒ Σ , Xiα Xiβ,Δ ⇒ Π
Xi(α→β), Γ, Δ ⇒ Σ ,Π

(→left)
Xiα,Γ ⇒ Δ, Xiβ

Γ ⇒ Δ, Xi(α→β)
(→right)

Γ ⇒ Δ, Xiα

Xi¬α,Γ ⇒ Δ
(¬left)

Xiα,Γ ⇒ Δ
Γ ⇒ Δ, Xi¬α

(¬right)

Xi+kα,Γ ⇒ Δ
XiGα,Γ ⇒ Δ

(Gleft)
{ Γ ⇒ Δ, Xi+jα }j∈ω

Γ ⇒ Δ, XiGα
(Gright)

{ Xi+jα,Γ ⇒ Δ }j∈ω

XiFα,Γ ⇒ Δ
(Fleft)

Γ ⇒ Δ, Xi+kα

Γ ⇒ Δ, XiFα
(Fright).

Remark 2.2. We make the following remarks.

1. The system (first-order) LTω (with some slight modifications) was origi-
nally introduced by Kawai in [44] for first-order LT. The original system
was introduced for a first-order sequent calculus with Barcan formula.
In the original system, the next-time operator was not used as a modal
operator but used as a special symbol.

2. The cut-elimination theorem holds for LTω. Namely, the rule (cut) is
admissible in cut-free LTω. This cut-elimination theorem for LTω was
originally proved by Kawai in [44] and was indirectly re-proved by Kamide
in [28] via the cut-free equivalence between LTω and Baratella-Masini’s
cut-free 2-sequent calculus 2Sω [3].

3. Note that the inference rules (Gright) and (Fleft) in LTω have an infinite
number of premises.

4. The sequents of the form Xiα ⇒ Xiα for any formula α are provable in
cut-free LTω. This fact can be proved by induction on the complexity of
α. See, e.g., [28].

2.2. Refutation-Aware Normal Gentzen-Style Sequent Calculus

We define a refutation-aware normal Gentzen-style sequent calculus NLTω

for LT.
Definition 2.3. (NLTω) NLTω is obtained from LTω by replacing (¬left)
and (¬right) with the initial sequents of the form: for any propositional
variable p,
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Xi¬p ⇒ Xi¬p Xip, Xi¬p ⇒ ⇒ Xip, Xi¬p

and the negated logical inference rules of the form:

Xi¬α, Γ ⇒ Δ Xi¬β, Γ ⇒ Δ

Xi¬(α ∧ β), Γ ⇒ Δ
(¬ ∧ left)

Γ ⇒ Δ, Xi¬α, Xi¬β

Γ ⇒ Δ, Xi¬(α ∧ β)
(¬ ∧ right)

Xi¬α, Xi¬β, Γ ⇒ Δ

Xi¬(α∨β), Γ ⇒ Δ
(¬∨left)

Γ ⇒ Δ, Xi¬α Γ ⇒ Δ, Xi¬β

Γ ⇒ Δ, Xi¬(α∨β)
(¬∨right)

Xiα, Xi¬β, Γ ⇒ Δ

Xi¬(α→β), Γ ⇒ Δ
(¬→left)

Γ ⇒ Δ, Xiα Γ ⇒ Δ, Xi¬β

Γ ⇒ Δ, Xi¬(α→β)
(¬→right)

Xiα, Γ ⇒ Δ

Xi¬¬α, Γ ⇒ Δ
(¬¬left)

Γ ⇒ Δ, Xiα

Γ ⇒ Δ, Xi¬¬α
(¬¬right)

Xi¬α, Γ ⇒ Δ

¬Xiα, Γ ⇒ Δ
(¬Xleft)

Γ ⇒ Δ, Xi¬α

Γ ⇒ Δ, ¬Xiα
(¬Xright)

{ Xi+j¬α, Γ ⇒ Δ }j∈ω

Xi¬Gα, Γ ⇒ Δ
(¬Gleft)

Γ ⇒ Δ, Xi+k¬α

Γ ⇒ Δ, Xi¬Gα
(¬Gright)

Xi+k¬α, Γ ⇒ Δ

Xi¬Fα, Γ ⇒ Δ
(¬Fleft)

{ Γ ⇒ Δ, Xi+j¬α }j∈ω

Γ ⇒ Δ, Xi¬Fα
(¬Fright).

Remark 2.4. We make the following remarks.

1. The non-negated logical inference rules of NLTω represent “verifica-
tion (or justification)” and the negated logical inference rules of NLTω

represent “refutation (or falsification)”.

2. Let NLT−
ω be the subsystem that is obtained from NLTω by deleting

the initial sequents of the form Xip, Xi¬p ⇒ and ⇒ Xip, Xi¬p. Then,
NLT−

ω is (a slight non-essential modification of) the classical-negation-
free fragment of the Gentzen-style sequent calculus PLTω introduced
in [39] for paraconsistent linear-time temporal logic (PLTL).

3. PLTω used both the classical negation connective ¬ and the paracon-
sistent negation connective ∼ and was introduced as an extension of
LTω.

4. The cut-elimination theorem for PLTω was proved in [39]. Thus, we can
also obtain the cut-elimination theorem for NLT−

ω .

5. PLTω was shown in [39] to be embeddable into LTω. Similar to this
fact, we can show that NLT−

ω is embeddable into the classical-negation
free fragment of LTω.
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6. The sequents of the form Xiα ⇒ Xiα for any formula α are provable in
cut-free NLT−

ω . This fact can be proved by induction on the complexity
of α.

Proposition 2.5. The following sequents are provable in cut-free NLTω:
for any formula α,

1. Xiα ⇒ Xiα,

2. Xiα,Xi¬α ⇒,

3. ⇒ Xiα,Xi¬α.

Proof. By simultaneous induction on α. The cases for Xiα ⇒ Xiα can be
shown in the same way as those for LTω. Thus, in the following, we show
only the cases for Xiα,Xi¬α ⇒ and ⇒ Xiα,Xi¬α. We distinguish the cases
according to the form of α and show only the following cases.

1. Case α ≡ β→γ: We obtain the required facts:
.... Ind. hyp.

Xiβ ⇒ Xiβ

.... Ind. hyp.

Xiγ,Xi¬γ ⇒
Xi(β→γ), Xiβ,Xi¬γ ⇒ (→left)

Xi(β→γ), Xi¬(β→γ) ⇒ (¬→left)

.... Ind. hyp.

Xiβ ⇒ Xiβ

Xiβ ⇒ Xiγ,Xiβ
(we-right)

⇒ Xi(β→γ), Xiβ
(→right)

.... Ind. hyp.

⇒ Xiγ,Xi¬γ

Xiβ ⇒ Xiγ,Xi¬γ
(we-left)

⇒ Xi(β→γ), Xi¬γ
(→right)

⇒ Xi(β→γ), Xi¬(β→γ)
(¬→right).

2. Case α ≡ Gβ: We obtain the required facts:
.... Ind. hyp.

{Xi+jβ,Xi+j¬β ⇒}j∈ω

{XiGβ,Xi+j¬β ⇒}j∈ω

(Gleft)

XiGβ,Xi¬Gβ ⇒ (¬Gleft)

.... Ind. hyp.

{⇒ Xi+jβ,Xi+j¬β}j∈ω

{⇒ Xi+jβ,Xi¬Gβ}j∈ω

(¬Gright)

⇒ XiGβ,Xi¬Gβ
(Gright).

Proposition 2.6. The following rules are derivable in NLTω using (cut):

Γ ⇒ Δ, Xiα

Xi¬α,Γ ⇒ Δ
(¬left)

Xiα,Γ ⇒ Δ
Γ ⇒ Δ, Xi¬α

(¬right)
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Γ ⇒ Δ, Xi¬α

Xiα,Γ ⇒ Δ
(¬left−1)

Xi¬α,Γ ⇒ Δ
Γ ⇒ Δ, Xiα

(¬right−1).

Proof. We show only the derivability of (¬left) as follows.

Γ ⇒ Δ, Xiα

.... Prop. 2.5
Xiα,Xi¬α ⇒

Xi¬α,Γ ⇒ Δ
(cut).

Proposition 2.7. The following rules are admissible in cut-free NLTω:

¬Xiα,Γ ⇒ Δ
Xi¬α,Γ ⇒ Δ

(¬Xleft−1)
Γ ⇒ Δ,¬Xiα

Γ ⇒ Δ, Xi¬α
(¬Xright−1).

Proof. The case for (¬Xleft−1) is proved by induction on the proofs P of
¬Xiα,Γ ⇒ Δ in cut-free NLTω, and the case for (¬Xright−1) is proved by
induction on the proofs P of Γ ⇒ Δ,¬Xiα in cut-free NLTω.

Theorem 2.8. (Equivalence between NLTω and LTω) The systems NLTω

and LTω are theorem-equivalent.

Proof. Obviously, the negated initial sequents of NLTω are provable in
LTω, and the negated logical inference rules of NLTω are derivable in LTω.
Conversely, (¬left) and (¬right) in LTω are derivable in NLTω using (cut)
by Proposition 2.6. Therefore, NLTω and LTω are theorem-equivalent.

Theorem 2.9. (Cut-elimination for NLTω) The rule (cut) is admissible in
cut-free NLTω.

Proof. We give a sketch of the proof. As mentioned in Remark 2.4, we
have the the cut-elimination theorem for the subsystem NLT−

ω of NLTω

obtained by deleting the initial sequents of the form Xip, Xi¬p ⇒ and ⇒
Xip, Xi¬p. Thus, it is sufficient to consider the cases of the initial sequents
Xip, Xi¬p ⇒ and ⇒ Xip, Xi¬p. Since the cases for Xip, Xi¬p ⇒ and the
cases for ⇒ Xip, Xi¬p can be similarly considered in a symmetric manner,
we here consider only the cases for Xip, Xi¬p ⇒. We now demonstrate some
of the cases below.

1. Case when the left upper sequent of the cut is derived from a single
premise left logical inference rule R:

.... P

Γ ⇒ Δ, Xi¬p

Γ∗ ⇒ Δ, Xi¬p
(R)

Xi¬p, Xip ⇒
Xip, Γ∗ ⇒ Δ

(cut)
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where P is a cut-free proof. In this case, we can transform this proof into
the following proof that can eliminate the cut by induction hypothesis:

.... P

Γ ⇒ Δ, Xi¬p Xi¬p, Xip ⇒
Xip, Γ ⇒ Δ

(cut)

Xip, Γ∗ ⇒ Δ
(R).

2. Case when the left upper sequent of the cut is derived from (we-right)
where the principal formula of (we-right) is Xi¬p:

.... P
Γ ⇒ Δ

Γ ⇒ Δ, Xi¬p
(we-right)

Xi¬p, Xip ⇒
Xip, Γ ⇒ Δ

(cut)

where P is a cut-free proof. In this case, we can transform this proof into
the following cut-free proof:

.... P
Γ ⇒ Δ

Xip, Γ ⇒ Δ
(we-left).

Theorem 2.10. (Classical-negation-elimination for NLTω) The rules (¬left)
and (¬right) are admissible in cut-free NLTω.

Proof. By Proposition 2.6, (¬left) and (¬right) are derivable in NLTω

using (cut). Then, by Theorem 2.9, (cut) in the derivations of (¬left) and
(¬right) can be eliminated. Thus, (¬left) and (¬right) are admissible in
cut-free NLTω.

Remark 2.11. We make the following remarks.

1. The cut-elimination theorem for NLTω can be proved directly as shown
by Gentzen for his original sequent calculus LK for classical logic [19].

2. The cut-elimination theorem for NLT−
ω can be proved in a similar way as

in [39], wherein an embedding-based proof of the cut-elimination theorem
for PLTω was given.

3. However, the embedding-based method presented in [39] for PLTω cannot
work for NLTω.
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2.3. Refutation-Aware Dual Gentzen-Style Sequent Calculus

We introduce a refutation-aware dual Gentzen-style sequent calculus DLTω

for LT. We call an expression of the form Γ ⇒+ Δ or Γ ⇒− Δ positive
sequent or negative sequent, respectively. We use the symbol ∗ to denote
an arbitrary element of {+,−}. The intuitive meanings of Γ ⇒+ Δ and
Γ ⇒− Δ are verification (or justification) and refutation (or falsification),
respectively. More precisely, the meaning of Γ ⇒+ Δ is the same as that
of Γ ⇒ Δ, and the meaning of Γ ⇒− Δ is the same as that of ¬Γ ⇒ ¬Δ
(i.e., if we can refute all of the formulas in Γ, then we can refute one of the
formulas in Δ). These meanings will be justified in Theorem 2.16.

Definition 2.12. (DLTω) The initial sequents of DLTω are of the form:
for any propositional variable p,

Xip ⇒∗ Xip Xip, Xi¬p ⇒∗ ⇒∗ Xip, Xi¬p.

The structural inference rules of DLTω are of the form:
Γ ⇒∗ Δ, α α,Σ ⇒∗ Π

Γ,Σ ⇒∗ Δ,Π
(∗cut)

Γ ⇒∗ Δ
α,Γ ⇒∗ Δ

(∗we-left) Γ ⇒∗ Δ
Γ ⇒∗ Δ, α

(∗we-right).

The conversion inference rules of DLTω are of the form:

¬Γ, Δ ⇒− ¬Σ ,Π
Γ,¬Δ ⇒+ Σ ,¬Π

(−to+)
¬Γ, Δ ⇒+ ¬Σ ,Π
Γ,¬Δ ⇒− Σ ,¬Π

(+to−).

The positive logical inference rules of DLTω are of the form:

Xiα,Xiβ,Γ ⇒+ Δ
Xi(α ∧ β), Γ ⇒+ Δ

(+ ∧ left)
Γ ⇒+ Δ, Xiα Γ ⇒+ Δ, Xiβ

Γ ⇒+ Δ, Xi(α ∧ β)
(+ ∧ right)

Xiα,Γ ⇒+ Δ Xiβ,Γ ⇒+ Δ
Xi(α∨β), Γ ⇒+ Δ

(+∨left)
Γ ⇒+ Δ, Xiα,Xiβ

Γ ⇒+ Δ, Xi(α∨β)
(+∨right)

Γ ⇒+ Δ, Xiα Xiβ,Σ ⇒+ Π
Xi(α→β), Γ,Σ ⇒+ Δ,Π

(+→left)
Xiα,Γ ⇒+ Δ, Xiβ

Γ ⇒+ Δ, Xi(α→β)
(+→right)

Xi¬α,Γ ⇒+ Δ
¬Xiα,Γ ⇒+ Δ

(+¬Xleft)
Γ ⇒+ Δ, Xi¬α

Γ ⇒+ Δ,¬Xiα
(+¬Xright)

¬Xiα,Γ ⇒+ Δ
Xi¬α,Γ ⇒+ Δ

(+¬Xleft−1)
Γ ⇒+ Δ,¬Xiα

Γ ⇒+ Δ, Xi¬α
(+¬Xright−1)

Xi+kα,Γ ⇒+ Δ
XiGα,Γ ⇒+ Δ

(+Gleft)
{ Γ ⇒+ Δ, Xi+jα }j∈ω

Γ ⇒+ Δ, XiGα
(+Gright)
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{ Xi+jα,Γ ⇒+ Δ }j∈ω

XiFα,Γ ⇒+ Δ
(+Fleft)

Γ ⇒+ Δ, Xi+kα

Γ ⇒+ Δ, XiFα
(+Fright).

The negative logical inference rules of DLTω are of the form:

Xiα,Γ ⇒− Δ Xiβ,Γ ⇒− Δ
Xi(α ∧ β), Γ ⇒− Δ

(− ∧ left)
Γ ⇒− Δ, Xiα,Xiβ

Γ ⇒− Δ, Xi(α ∧ β)
(− ∧ right)

Xiα,Xiβ,Γ ⇒− Δ
Xi(α∨β), Γ ⇒− Δ

(−∨left)
Γ ⇒− Δ, Xiα Γ ⇒− Δ, Xiβ

Γ ⇒− Δ, Xi(α∨β)
(−∨right)

Xi¬α,Xiβ,Γ ⇒− Δ
Xi(α→β), Γ ⇒− Δ

(−→left)
Γ ⇒− Δ, Xi¬α Γ ⇒− Δ, Xiβ

Γ ⇒− Δ, Xi(α→β)
(−→right)

Xi¬α,Γ ⇒− Δ
¬Xiα,Γ ⇒− Δ

(−¬Xleft)
Γ ⇒− Δ, Xi¬α

Γ ⇒− Δ,¬Xiα
(−¬Xright)

¬Xiα,Γ ⇒− Δ
Xi¬α,Γ ⇒− Δ

(−¬Xleft−1)
Γ ⇒− Δ,¬Xiα

Γ ⇒− Δ, Xi¬α
(−¬Xright−1)

{ Xi+jα,Γ ⇒− Δ }j∈ω

XiGα,Γ ⇒− Δ
(−Gleft)

Γ ⇒− Δ, Xi+kα

Γ ⇒− Δ, XiGα
(−Gright)

Xi+kα,Γ ⇒− Δ
XiFα,Γ ⇒− Δ

(−Fleft)
{ Γ ⇒− Δ, Xi+jα }j∈ω

Γ ⇒− Δ, XiFα
(−Fright).

Remark 2.13. We make the following remarks.

1. There is no inital sequents of the form Xi¬p ⇒∗ Xi¬p in DLTω, be-
cause these sequents are provable in cut-free DLTω using the conversion
inference rules.

2. A refutation-aware dual Gentzen-style sequent calculus with positive
and negative sequents was introduced in [40,41] for Nelson’s paracon-
sistent logic N4. DLTω is regarded as an LT-adapted version of the
refutation-aware dual Gentzen-style sequent calculus for N4. Although
the refutation-aware normal Gentzen-style sequent calculus PLTω for
PLTL was introduced in [39], a refutation-aware dual Gentzen-style se-
quent calculus that is theorem-equivalent to PLTω was not introduced
in [39].

3. Let DLT−
ω be the paraconsistent subsystem that is obtained from DLTω

by deleting the initial sequents of the form Xip, Xi¬p ⇒∗ and ⇒∗

Xip, Xi¬p. Then, DLT−
ω and NLT−

ω are theorem-equivalent. This fact
can be straightforwardly obtained by Theorem 2.16 (with some slight
modifications).
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Proposition 2.14. The following sequents are provable in cut-free DLTω:
for any formula α,

1. Xiα ⇒∗ Xiα,

2. Xiα,Xi¬α ⇒∗,

3. ⇒∗ Xiα,Xi¬α.

Proof. By simultaneous induction on α. We distinguish the cases according
to the form of α, and show some cases for Xiα,Xi¬α ⇒+.

1. Case α ≡ β→γ: We obtain the required fact:
.... Ind. hyp.

Xiβ ⇒+ Xiβ

.... Ind. hyp.

Xi¬γ,Xiγ ⇒+

Xiβ,Xi¬γ,Xi(β→γ) ⇒+
(+→left)

Xiβ,¬Xiγ,Xi(β→γ) ⇒+
(+¬Xleft)

¬Xiβ,Xiγ,¬Xi(β→γ) ⇒− (+to−)

Xi¬β,Xiγ,¬Xi(β→γ) ⇒− (−¬Xleft−1)

Xi(β→γ),¬Xi(β→γ) ⇒− (−→left)

¬Xi(β→γ), Xi(β→γ) ⇒+
(−to+)

Xi¬(β→γ), Xi(β→γ) ⇒+ (+¬Xleft−1).

2. Case α ≡ Gβ: We obtain the required fact:
.... Ind. hyp.

{Xi+jβ,Xi+j¬β ⇒+}j∈ω

{Xi+jβ,¬Xi+jβ ⇒+}j∈ω

(+¬Xleft)

{XiGβ,¬Xi+jβ ⇒+}j∈ω

(+Gleft)

{¬XiGβ,Xi+jβ ⇒−}j∈ω

(+to−)

¬XiGβ,XiGβ ⇒− (−Gleft)

XiGβ,¬XiGβ ⇒+
(−to+)

XiGβ,Xi¬Gβ ⇒+ (+¬Xleft−1).

Proposition 2.15. The following rules are derivable in cut-free DLTω:

Xiα,Γ ⇒∗ Δ
Xi¬¬α,Γ ⇒∗ Δ

(∗¬¬left)
Γ ⇒∗ Δ, Xiα

Γ ⇒∗ Δ, Xi¬¬α
(∗¬¬right).
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Proof. We show only the case for (−¬¬left) as follows.

Xiα,Γ ⇒− Δ
¬Xiα,¬Γ ⇒+ ¬Δ

(−to+)

Xi¬α,¬Γ ⇒+ ¬Δ
(+¬Xleft−1)

¬Xi¬α,Γ ⇒− Δ
(+to−)

Xi¬¬α,Γ ⇒− Δ
(−¬Xleft−1).

Theorem 2.16. (Equivalence between DLTω and NLTω) Let Γ and Δ be
(possibly empty) sets of formulas.

1. DLTω 
 Γ ⇒+ Δ iff NLTω 
 Γ ⇒ Δ.

2. DLTω 
 Γ ⇒− Δ iff NLTω 
 ¬Γ ⇒ ¬Δ.

Proof. We show 1 and 2 simultaneously as follows.

• (=⇒): By induction on the proofs P of Γ ⇒∗ Δ in DLTω. We distinguish
the cases according to the last inference of P , and show some cases.

1. Case (+to−): The last inference of P is of the form:

¬Γ, Δ ⇒+ ¬Σ ,Π
Γ,¬Δ ⇒− Σ ,¬Π

(+to−).

By induction hypothesis for 1, we have: NLTω 
 ¬Γ, Δ ⇒ ¬Σ ,Π . Then,
we obtain the required fact:

....¬Γ, Δ ⇒ ¬Σ ,Π.... (¬¬left), (¬¬right).
¬Γ,¬¬Δ ⇒ ¬Σ ,¬¬Π

2. Case (−→left): The last inference of P is of the form:

Xi¬α,Xiβ,Γ ⇒− Δ
Xi(α→β), Γ ⇒− Δ

(−→left).
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By induction hypothesis for 2, we have NLTω 
 ¬Xi¬α,¬Xiβ,¬Γ ⇒ ¬Δ.
Then, we obtain the required fact:

.... Prop. 2.5
Xiα ⇒ Xiα

Xiα ⇒ Xi¬¬α
(¬¬right)

....
¬Xi¬α,¬Xiβ,¬Γ ⇒ ¬Δ.... (¬Xleft−1) Prop. 2.7
Xi¬¬α,Xi¬β,¬Γ ⇒ ¬Δ

Xiα,Xi¬β,¬Γ ⇒ ¬Δ
(cut)

Xi¬(α→β),¬Γ ⇒ ¬Δ
(¬→left).

3. Case (−¬Xleft): The last inference of P is of the form:

Xi¬α,Γ ⇒− Δ
¬Xiα,Γ ⇒− Δ

(−¬Xleft).

By induction hypothesis for 2, we have: NLTω 
 ¬Xi¬α,¬Γ ⇒ ¬Δ.
Then, we obtain the required fact:

.... Prop. 2.5
Xiα ⇒ Xiα

¬¬Xiα ⇒ Xiα
(¬¬left)

¬¬Xiα ⇒ Xi¬¬α
(¬¬right)

....
¬Xi¬α,¬Γ ⇒ ¬Δ
Xi¬¬α,¬Γ ⇒ ¬Δ

(¬Xleft−1) Prop. 2.7

¬¬Xiα,¬Γ ⇒ ¬Δ
(cut).

4. Case (−¬Xleft−1): The last inference of P is of the form:

¬Xiα,Γ ⇒− Δ
Xi¬α,Γ ⇒− Δ

(−¬Xleft−1).

By induction hypothesis for 2, we have: NLTω 
 ¬¬Xiα,¬Γ ⇒ ¬Δ.
Then, we obtain the required fact:

.... Prop. 2.5
Xiα ⇒ Xiα

Xi¬¬α ⇒ Xiα
(¬¬left)

¬Xi¬α ⇒ Xiα
(¬Xleft)

¬Xi¬α ⇒ ¬¬Xiα
(¬¬right)

....
¬¬Xiα,¬Γ ⇒ Δ

¬Xi¬α,¬Γ ⇒ ¬Δ
(cut).

5. Case (−Gleft): The last inference of P is of the form:

{Xi+jα,Γ ⇒− Δ}j∈ω

XiGα,Γ ⇒− Δ
(−Gleft).
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By induction hypothesis for 2, we have: NLTω 
 ¬Xi+jα,¬Γ ⇒ ¬Δ for
any j ∈ ω. Then, we obtain the required fact:

....
{¬Xi+jα,¬Γ ⇒ ¬Δ}j∈ω

{Xi+j¬α,¬Γ ⇒ ¬Δ}j∈ω
(¬Xleft−1) Prop. 2.7

Xi¬Gα,¬Γ ⇒ ¬Δ
(¬Gleft)

¬XiGα,¬Γ ⇒ ¬Δ
(¬Xleft).

• (⇐=): By induction on the proofs P of Γ ⇒ Δ or ¬Γ ⇒ ¬Δ in NLTω.
We distinguish the cases according to the last inference of P , and show some
cases.

1. Case (¬→left) for 1: The last inference of P is of the form:

Xiα,Xi¬β,Γ ⇒ Δ
Xi¬(α→β), Γ ⇒ Δ

(¬→left).

By induction hypothesis for 1, we have: DLTω 
 Xiα,Xi¬β,Γ ⇒+ Δ.
Then, we obtain the required fact:

....
Xiα,Xi¬β,Γ ⇒+ Δ
Xiα,¬Xiβ,Γ ⇒+ Δ

(+¬Xleft)

¬Xiα,Xiβ,¬Γ ⇒− ¬Δ
(+to−)

Xi¬α,Xiβ,¬Γ ⇒− ¬Δ
(−¬Xleft−1)

Xi(α→β),¬Γ ⇒− ¬Δ
(−→left)

¬Xi(α→β), Γ ⇒+ Δ
(−to+)

Xi¬(α→β), Γ ⇒+ Δ
(+¬Xleft−1).

2. Case (¬→left) for 2: The last inference of P is of the form:

α,¬β,¬Γ ⇒ ¬Δ
¬(α→β),¬Γ ⇒ ¬Δ

(¬→left).

By induction hypothesis for 1, we have: DLTω 
 α,¬β,¬Γ ⇒+ ¬Δ.
Then, we obtain the required fact:

....
α,¬β,¬Γ ⇒+ ¬Δ
¬α, β,Γ ⇒− Δ

(+to−)

α→β,Γ ⇒− Δ
(−→left).
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3. Case (¬¬left) for 1: The last inference of P is of the form:

Xiα,Γ ⇒ Δ
Xi¬¬α,Γ ⇒ Δ

(¬¬left).

By induction hypothesis for 1, we have: DLTω 
 Xiα,Γ ⇒+ Δ. Then,
we obtain the required fact:

....
Xiα,Γ ⇒+ Δ

Xi¬¬α,Γ ⇒+ Δ
(+¬¬left) Prop. 2.15.

4. Case (¬¬left) for 2: The last inference of P is of the form:

α,¬Γ ⇒ ¬Δ
¬¬α,¬Γ ⇒ ¬Δ

(¬¬left).

By induction hypothesis for 1, we have: DLTω 
 α,¬Γ ⇒+ ¬Δ. Then,
we obtain the required fact:

....
α,¬Γ ⇒+ ¬Δ
¬α,Γ ⇒− Δ

(+to−).

5. Case (¬Xleft) for 1: The last inference of P is of the form:

Xi¬α,Γ ⇒ Δ
¬Xiα,Γ ⇒ Δ

(¬Xleft).

By induction hypothesis for 1, we have: DLTω 
 Xi¬α,Γ ⇒+ Δ. Then,
we obtain the required fact:

....
Xi¬α,Γ ⇒+ Δ
¬Xiα,Γ ⇒+ Δ

(+¬Xleft).

6. Case (¬Xleft) for 2: The last inference of P is of the form:

Xi¬α,¬Γ ⇒ ¬Δ
¬Xiα,¬Γ ⇒ ¬Δ

(¬Xleft).
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By induction hypothesis for 1, we have: DLTω 
 Xi¬α,¬Γ ⇒+ ¬Δ.
Then, we obtain the required fact:

....
Xi¬α,¬Γ ⇒+ ¬Δ
¬Xiα,¬Γ ⇒+ ¬Δ

(+¬Xleft)

Xiα,Γ ⇒− Δ
(+to−).

7. Case (¬Gleft) for 1: The last inference of P is of the form:

{Xi+j¬α,Γ ⇒ Δ}j∈ω

Xi¬Gα,Γ ⇒ Δ
(¬Gleft).

By induction hypothesis for 1, we have: DLTω 
 Xi+j¬α,Γ ⇒+ Δ for
any j ∈ ω. Then, we obtain the required fact:

....
{Xi+j¬α,Γ ⇒+ Δ}j∈ω

{¬Xi+jα,Γ ⇒+ Δ}j∈ω

(+¬Xleft)

{Xi+jα,¬Γ ⇒− ¬Δ}j∈ω

(+to−)

XiGα,¬Γ ⇒− ¬Δ
(−Gleft)

¬XiGα,Γ ⇒+ Δ
(−to+)

Xi¬Gα,Γ ⇒+ Δ
(+¬Xleft−1).

8. Case (¬Gleft) for 2: The last inference of P is of the form:

{Xj¬α,¬Γ ⇒ ¬Δ}j∈ω

¬Gα,¬Γ ⇒ ¬Δ
(¬Gleft).

By induction hypothesis for 1, we have: DLTω 
 Xj¬α,¬Γ ⇒+ ¬Δ for
any j ∈ ω. Then, we obtain the required fact:

....
{Xj¬α,¬Γ ⇒+ ¬Δ}j∈ω

{¬Xjα,¬Γ ⇒+ ¬Δ}j∈ω

(¬Xleft)

{Xjα,Γ ⇒− Δ}j∈ω

(+to−)

Gα,Γ ⇒− Δ
(−Gleft).

Prior to proving the cut-elimination theorem for DLTω, we need the
following lemma, which is a slight modification of Theorem 2.16.
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Lemma 2.17. Let Γ and Δ be sets of formulas.

1. If DLTω 
 Γ ⇒∗ Δ, then NLTω 
 Γ ⇒ Δ if ∗ = +, or NLTω 

¬Γ ⇒ ¬Δ if ∗ = −.

2. If NLTω − (cut) 
 Γ ⇒ Δ, then DLTω − {(−cut), (+cut)} 
 Γ ⇒+ Δ.

Proof. Similar to the proof of Theorem 2.16. The statement 1 is proved
by induction on the proofs P of Γ ⇒∗ Δ in DLTω, and the statement 2 is
proved by induction on the cut-free proofs P of Γ ⇒ Δ in NLTω.

Theorem 2.18. (Cut-elimination for LTω) The rule (cut) is admissible in
cut-free DLTω.

Proof. Suppose DLTω 
 Γ ⇒∗ Δ. Then, by Lemma 2.17 (1), we have
NLTω 
 Γ ⇒ Δ if ∗ ≡ +, or NLTω 
 ¬Γ ⇒ ¬Δ if ∗ ≡ −. Therefore, by
Theorem 2.9, we have NLTω − (cut) 
 Γ ⇒ Δ or NLTω − (cut) 
 ¬Γ ⇒ ¬Δ.
If NLTω − (cut) 
 Γ ⇒ Δ, then DLTω − (cut) 
 Γ ⇒+ Δ by Lemma 2.17
(2). If NLTω − (cut) 
 ¬Γ ⇒ ¬Δ, then DLTω − (cut) 
 ¬Γ ⇒+ ¬Δ by
Lemma 2.17 (2). Therefore, we obtain DLTω − (cut) 
 Γ ⇒− Δ by using
(+to−).

3. Refutation-Aware Kripke-Style Semantics

3.1. Normal Kripke-Style Semantics

We now define a normal Kripke-style semantics for LT. Prior to defining this
semantics, we need to introduce some notations. Let Γ be a set {α1, . . . , αm}
(m ≥ 0) of formulas and p be a fixed propositional variable. Then, we use
the notation Γ∗ to denote α1∨ · · · ∨αm if m ≥ 1, and otherwise ¬(p→p). We
also use the notation Γ∗ to denote α1 ∧ · · · ∧ αm if m ≥ 1, and otherwise
p→p.

Definition 3.1. (Normal semantics for LT) Let S be a non-empty set of
states and Φ be a set of propositional variables. A structure M := (σ, I) is
called a model if

1. σ is an infinite sequence s0, s1, s2, . . . of states in S,

2. I is a mapping from Φ to the power set of S.

A satisfaction relation (M, i) |= α for any formula α, where M is a model
(σ, I) and i (∈ ω) is some position within σ, is defined inductively by the
following clauses:

1. for any p ∈ Φ, (M, i) |= p iff si ∈ I(p),
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2. (M, i) |= α ∧ β iff (M, i) |= α and (M, i) |= β,

3. (M, i) |= α∨β iff (M, i) |= α or (M, i) |= β,

4. (M, i) |= α→β iff (M, i) �|= α or (M, i) |= β,

5. (M, i) |= ¬α iff (M, i) �|= α,

6. (M, i) |= Xα iff (M, i + 1) |= α,

7. (M, i) |= Gα iff (M, j) |= α for any j ≥ i,

8. (M, i) |= Fα iff (M, j) |= α for some j ≥ i.

A formula α is called valid if (M, 0) |= α for any model M := (σ, I) and
the satisfaction relation |= on M . A sequent Γ ⇒ Δ is called valid if the
formula Γ∗→Δ∗ is valid.

The following completeness theorem holds [3,33,44].

Theorem 3.2. (Completeness for LTω with respect to normal semantics)
For any sequent S, we have: LTω 
 S iff S is valid.

Remark 3.3. For more information on the completeness theorem for LTL,
see e.g., [15,45].

3.2. Refutation-Aware Normal Kripke-Style Semantics

We define a refutation-aware normal Kripke-style semantics for LT.

Definition 3.4. (Refutation-aware normal semantics for LT) Let S be a
non-empty set of states, Φ be a set of propositional variables, and Φ¬ be
the set {¬p | p ∈ Φ} of negated propositional variables.

A structure M := (σ, I�) is called a refutation-aware normal model if

1. σ is an infinite sequence s0, s1, s2, . . . of states in S,

2. I� is a mapping from Φ ∪ Φ¬ to the power set of S such that for any
p ∈ Φ and any s ∈ S, s ∈ I�(p) iff s �∈ I�(¬p).

A refutation-aware normal satisfaction relation (M, i) |=� α for any for-
mula α, where M is a refutation-aware normal model (σ, I�) and i (∈ ω) is
some position within σ, is defined inductively by the following clauses:

1. for any p ∈ Φ, (M, i) |=� p iff si ∈ I�(p),

2. (M, i) |=� α ∧ β iff (M, i) |=� α and (M, i) |=� β,

3. (M, i) |=� α∨β iff (M, i) |=� α or (M, i) |=� β,

4. (M, i) |=� α→β iff (M, i) �|=� α or (M, i) |=� β,

5. (M, i) |=� Xα iff (M, i + 1) |=� α,
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6. (M, i) |=� Gα iff (M, j) |=� α for any j ≥ i,

7. (M, i) |=� Fα iff (M, j) |=� α for some j ≥ i,

8. for any p ∈ Φ, (M, i) |=� ¬p iff si ∈ I�(¬p),

9. (M, i) |=� ¬(α ∧ β) iff (M, i) |=� ¬α or (M, i) |=� ¬β,

10. (M, i) |=� ¬(α∨β) iff (M, i) |=� ¬α and (M, i) |=� ¬β,

11. (M, i) |=� ¬(α→β) iff (M, i) |=� α and (M, i) |=� ¬β,

12. (M, i) |=� ¬¬α iff (M, i) |=� α,

13. (M, i) |=� ¬Xα iff (M, i + 1) |=� ¬α,

14. (M, i) |=� ¬Gα iff (M, j) |=� ¬α for some j ≥ i,

15. (M, i) |=� ¬Fα iff (M, j) |=� ¬α for any j ≥ i.

A formula α is called n-valid if (M, 0) |=� α for any refutation-aware
normal model M := (σ, I�) and the refutation-aware normal satisfaction
relation |=� on M . A sequent Γ ⇒ Δ is called n-valid if the formula Γ∗→Δ∗

is n-valid.

Remark 3.5. By deleting the mapping condition “s ∈ I�(p) iff s �∈ I�(¬p)”
in Definition 3.4, we can obtain a refutation-aware normal Kripke-style
semantics for a paraconsistent subsystem of PLTL and LT. This type of
refutation-aware normal Kripke-style semantics was not considered in [39].

Proposition 3.6. For any refutation-aware normal model M := (σ, I�),
the refutation-aware normal satisfaction relation |=� on M , any formula α,
and any i ∈ ω, we have: (M, i) |=� α iff (M, i) �|=� ¬α.

Proof. By induction on α. We show some cases.

1. Case α ≡ p ∈ Φ: (M, i) |=� p iff si ∈ I�(p) iff si �∈ I�(¬p) iff (M, i) �|=�

¬p.

2. Case α ≡ β ∧ γ: (M, i) |=� β ∧ γ iff (M, i) |=� β and (M, i) |=� γ iff
(M, i) �|=� ¬β and (M, i) �|=� ¬γ (by induction hypothesis) iff (M, i) �|=�

¬(β ∧ γ).

3. Case α ≡ β→γ: (M, i) |=� β→γ iff (M, i) �|=� β or (M, i) |=� γ iff
(M, i) �|=� β or (M, i) �|=� ¬γ (by induction hypothesis) iff (M, i) �|=�

¬(β→γ).

4. Case α ≡ ¬β: (M, i) |=� ¬β iff (M, i) �|=� β (by induction hypothesis
with contraposition) iff (M, i) �|=� ¬¬β.

5. Case α ≡ Xβ: (M, i) |=� Xβ iff (M, i+1) |=� β iff (M, i+1) �|=� ¬β (by
induction hypothesis) iff (M, i) �|=� ¬Xβ.
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6. Case α ≡ Gβ: (M, i) |=� Gβ iff (M, j) |=� β for any j ≥ i iff (M, j) �|=�

¬β for any j ≥ i (by induction hypothesis) iff not-[(M, j) |=� ¬β for
some j ≥ i] iff not-[(M, i) |=� ¬Gβ] iff (M, i) �|=� ¬Gβ.

Remark 3.7. We make the following remarks.

1. Proposition 3.6 shows that the mapping condition “s ∈ I�(p) iff s �∈
I�(¬p)” in Definition 3.4 can be extended to the refutation-aware normal
satisfaction relation for any formula α.

2. By the contraposition of the statement of Proposition 3.6, we can obtain
the following classical-negation condition for refutation-aware normal
satisfaction relation: (M, i) |=� ¬α iff (M, i) �|=� α.

Prior to proving the equivalence between the refutation-aware normal and
normal Kripke-style semantics (i.e., the equivalence between the n-validity
and the validity), we need to show the following two lemmas.

Lemma 3.8. For any model M := (σ, I), we can construct a refutation-
aware normal model N := (σ, I�) such that for any formula α and any
i ∈ ω, (M, i) |= α iff (N, i) |=� α.

Proof. Let S be a non-empty set of states, σ be an infinite sequence of
states in S, M be a model (σ, I), and |= be the satisfaction relation on M .
Then, we define a refutation-aware normal model N := (σ, I�) such that for
any si ∈ S and any p ∈ Φ,

1. si ∈ I�(p) iff si ∈ I(p),

2. si ∈ I�(¬p) iff si �∈ I(p).

Then, we can obtain the mapping condition “s ∈ I�(p) iff s �∈ I�(¬p)” in
Definition 3.4, because we have: s ∈ I�(p) iff s ∈ I(p) iff s �∈ I�(¬p).

We now prove this lemma by induction on α. We show some cases.

1. Case α ≡ p ∈ Φ: (M, i) |= p iff si ∈ I(p) iff si ∈ I�(p) iff (N, i) |=� p.

2. Case α ≡ β ∧ γ: (M, i) |= β ∧ γ iff (M, i) |= β and (M, i) |= γ iff
(N, i) |=� β and (N, i) |=� γ (by induction hypothesis) iff (N, i) |=� β∧γ.

3. Case α ≡ β→γ: (M, i) |= β→γ iff (M, i) �|= β or (M, i) |= γ iff (N, i) �|=�

β or (N, i) |=� γ (by induction hypothesis) iff (N, i) |=� β→γ.

4. Case α ≡ ¬β: (M, i) |= ¬β iff (M, i) �|= β iff (N, i) �|=� β (by induction
hypothesis) iff (N, i) |=� ¬β (by Proposition 3.6).
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5. Case α ≡ Xβ: (M, i) |= Xβ iff (M, i + 1) |= β iff (N, i + 1) |=� β (by
induction hypothesis) iff (N, i) |=� Xβ.

6. Case α ≡ Gβ: (M, i) |= Gβ iff (M, j) |= β for any j ≥ i iff (N, j) |=� β
for any j ≥ i (by induction hypothesis) iff (N, i) |=� Gβ.

Lemma 3.9. For any refutation-aware normal model M := (σ, I�), we can
construct a model N := (σ, I) such that for any formula α and any i ∈ ω,
(M, i) |=� α iff (N, i) |= α.

Proof. Similar to the proof of Lemma 3.8.

Theorem 3.10. (Equivalence between n-validity and validity) For any se-
quent S, we have: S is n-valid iff S is valid.

Proof. By Lemmas 3.8 and 3.9.

3.3. Refutation-Aware Dual Kripke-Style Semantics

We define a refutation-aware dual Kripke-style semantics for LT by using
two kinds of satisfaction relations |=+ and |=−. The intuitive meanings of
|=+ and |=− are “verification” (or “justification”) and “refutation” (or “fal-
sification”), respectively.

Definition 3.11. (Refutation-aware dual semantics for LT) Let S be a
non-empty set of states and Φ be a set of propositional variables. A structure
M := (σ, I+, I−) is called a refutation-aware dual model if

1. σ is an infinite sequence s0, s1, s2, . . . of states in S,

2. I+ and I− are mappings from Φ to the power set of S such that for any
p ∈ Φ and any s ∈ S, s ∈ I+(p) iff s �∈ I−(p).

Refutation-aware dual satisfaction relations (M, i) |=+ α and (M, i) |=−

α for any formula α, where M is a refutation-aware dual model (σ, I+, I−)
and i (∈ ω) is some position within σ, are defined inductively by the following
clauses:

1. for any p ∈ Φ, (M, i) |=+ p iff si ∈ I+(p),

2. (M, i) |=+ α ∧ β iff (M, i) |=+ α and (M, i) |=+ β,

3. (M, i) |=+ α∨β iff (M, i) |=+ α or (M, i) |=+ β,

4. (M, i) |=+ α→β iff (M, i) �|=+ α or (M, i) |=+ β,

5. (M, i) |=+ ¬α iff (M, i) |=− α,
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6. (M, i) |=+ Xα iff (M, i + 1) |=+ α,

7. (M, i) |=+ Gα iff (M, j) |=+ α for any j ≥ i,

8. (M, i) |=+ Fα iff (M, j) |=+ α for some j ≥ i,

9. for any p ∈ Φ, (M, i) |=− p iff si ∈ I−(p),

10. (M, i) |=− α ∧ β iff (M, i) |=− α or (M, i) |=− β,

11. (M, i) |=− α∨β iff (M, i) |=− α and (M, i) |=− β,

12. (M, i) |=− α→β iff (M, i) |=+ α and (M, i) |=− β,

13. (M, i) |=− ¬α iff (M, i) |=+ α,

14. (M, i) |=− Xα iff (M, i + 1) |=− α,

15. (M, i) |=− Gα iff (M, j) |=− α for some j ≥ i,

16. (M, i) |=− Fα iff (M, j) |=− α for any j ≥ i.

A formula α is called d-valid if (M, 0) |=+ α for any refutation-aware dual
model M := (σ, I+, I−) and the refutation-aware dual satisfaction relations
|=+ and |=− on M . A sequent Γ ⇒ Δ is called d-valid if the formula Γ∗→Δ∗

is d-valid.

Remark 3.12. We make the following remarks.

1. By deleting the mapping condition “s ∈ I+(p) iff s �∈ I−(p)” in Defini-
tion 3.11, we can obtain a refutation-aware dual Kripke-style semantics
for a paraconsistent subsystem of PLTL and LT. This type of refutation-
aware dual Kripke-style semantics was originally introduced in [39] for
PLTω.

2. The completeness theorem with respect to a refutation-aware dual Kripke-
style semantics for PLTω was proved in [39] using an embedding-based
method. The dual semantics introduced in [39] for PLTω has no map-
ping condition “s ∈ I+(p) iff s �∈ I−(p)” and has the standard classical
negation condition for the satisfaction relation.

Lemma 3.13. For any model M := (σ, I), we can construct a refutation-
aware dual model N := (σ, I+, I−) such that for any formula α and any
i ∈ ω,

1. (M, i) |= α iff (N, i) |=+ α,

2. (M, i) |= ¬α iff (N, i) |=− α.

Proof. Let S be a non empty set of states, σ be an infinite sequence of
states in S, M be a model (σ, I), and |= be the satisfaction relation on M .
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Then, we define a refutation-aware dual model N := (σ, I+, I−) such that
for any si ∈ S and any p ∈ Φ,

1. si ∈ I+(p) iff si ∈ I(p),

2. si ∈ I−(p) iff si �∈ I(p).

Then, we can obtain the mapping condition “s ∈ I+(p) iff s �∈ I−(p)” in
Definition 3.11, because we have: s ∈ I+(p) iff s ∈ I(p) iff s �∈ I−(p).

We now prove this lemma by simultaneous induction on α. We show some
cases.

1. Case α ≡ p ∈ Φ: For 1, we obtain: (M, i) |= p iff si ∈ I(p) iff si ∈ I+(p)
iff (N, i) |=+ p. For 2, we obtain: (M, i) |= ¬p iff si �∈ I(p) iff si ∈ I−(p)
iff (N, i) |=− p.

2. Case α ≡ β ∧ γ: For 1, we obtain: (M, i) |= β ∧ γ iff (M, i) |= β and
(M, i) |= γ iff (N, i) |=+ β and (N, i) |=+ γ (by induction hypothesis for
1) iff (N, i) |=+ β∧γ. For 2, we obtain: (M, i) |= ¬(β∧γ) iff (M, i) �|= β∧γ
iff (M, i) �|= β or (M, i) �|= γ iff (M, i) |= ¬β or (M, i) |= ¬γ iff (N, i) |=−

β or (N, i) |=− γ (by induction hypothesis for 2) iff (N, i) |=− β ∧ γ.

3. Case α ≡ β→γ: For 1, we obtain: (M, i) |= β→γ iff (M, i) �|= β or
(M, i) |= γ iff (N, i) �|=+ β or (N, i) |=+ γ (by induction hypothesis for 1)
iff (N, i) |=+ β→γ. For 2, we obtain: (M, i) |= ¬(β→γ) iff (M, i) �|= β→γ
iff (M, i) |= β and (M, i) �|= γ iff (M, i) |= β and (M, i) |= ¬γ iff
(N, i) |=+ β and (N, i) |=− γ (by induction hypotheses for 1 and 2) iff
(N, i) |=− β→γ.

4. Case α ≡ ¬β: For 1, we obtain: (M, i) |= ¬β iff (N, i) |=− β (by induction
hypothesis for 2) iff (N, i) |=+ ¬β. For 2, we obtain: (M, i) |= ¬¬β iff
(M, i) |= β iff (N, i) |=+ β (by induction hypothesis for 1) iff (N, i) |=−

¬β.

5. Case α ≡ Xβ: For 1, we obtain: (M, i) |= Xβ iff (M, i + 1) |= β iff
(N, i + 1) |=+ β (by induction hypothesis for 1) iff (N, i) |=+ Xβ. For
2, we obtain: (M, i) |= ¬Xβ iff (M, i) �|= Xβ iff (M, i + 1) �|= β iff
(M, i + 1) |= ¬β iff (N, i + 1) |=− β (by induction hypothesis for 2) iff
(N, i) |=− Xβ.

6. Case α ≡ Gβ: For 1, we obtain: (M, i) |= Gβ iff (M, j) |= β for any j ≥ i
iff (N, j) |=+ β for any j ≥ i (by induction hypothesis) iff (N, i) |=+ Gβ.
For 2, we obtain: (M, i) |= ¬Gβ iff (M, i) �|= Gβ iff (M, j) �|= β for some
j ≥ i iff (M, j) |= ¬β for some j ≥ i iff (N, j) |=− β for some j ≥ i (by
induction hypothesis for 2) iff (N, i) |=− Gβ.
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Lemma 3.14. For any refutation-aware dual model M := (σ, I+, I−), we
can construct a model N := (σ, I) such that for any formula α and any
i ∈ ω,

1. (M, i) |=+ α iff (N, i) |= α,

2. (M, i) |=− α iff (N, i) |= ¬α.

Proof. Similar to the proof of Lemma 3.13.

Theorem 3.15. (Equivalence between d-validity and validity) For any se-
quent S, we have: S is d-valid iff S is valid.

Proof. By Lemmas 3.13 and 3.14.

We obtain the following theorem.

Theorem 3.16. (Completeness for LTω, NLTω, and DLTω) Let L be LTω,
NLTω, or DLTω. For any sequent S, we have:

1. L 
 S iff S is valid,

2. L 
 S iff S is n-valid,

3. L 
 S iff S is d-valid.

Proof. By Theorems 2.8, 2.16, 3.2, 3.10, and 3.15.

4. Conclusions, Remarks, and Related Works

4.1. Conclusions

In this study, we introduced the refutation-aware Gentzen-style sequent cal-
culi NLTω, and DLTω for LT (i.e., propositional until-free linear-time tempo-
ral logic); proved the equivalences between them and the standard Gentzen-
style sequent calculus LTω [44]; and proved the cut-elimination theorems
for NLTω and DLTω. Furthermore, we introduced the refutation-aware nor-
mal and dual Kripke-style semantics for LT; proved the equivalences among
these semantics and the standard semantics for LT; and proved the com-
pleteness theorems with respect to these Kripke-style semantics for LTω,
NLTω, and DLTω. Additionally, we observed that the paraconsistent subsys-
tems NLT−

ω and DLT−
ω of NLTω, and DLTω, respectively, can be easily ob-

tained in a modular way. These subsystems are also regarded as subsystems
and alternatives of the previously introduced Gentzen-style sequent calculus
PLTω [39] for PLTL (i.e., paraconsistent linear-time temporal logic). It was
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thus shown in this study that the proposed refutation-aware framework for
Gentzen-style sequent calculi and Kripke-style semantics was regarded as a
framework compatible with the existing refutation-aware and inconsistency-
tolerant framework of PLTL.

We now summarize the merits of the proposed calculi NLTω and DLTω

as follows.

1. Similar to the existing refutation-aware Gentzen-style sequent calculi
for Nelson’s paraconsistent logic N4 and classical logic, we can obtain a
clear understanding of the refutation-aware reasoning within NLTω and
DLTω. Namely, we can directly obtain a disproof of a given negated for-
mula using these calculi, where a disproof represents a refutation process
for the given formula. Thus, we can obtain both proof and disproof in
the calculi.

2. NLTω and DLTω are highly compatible with inconsistency-tolerant rea-
soning. Namely, these calculi are compatible with the paraconsistent
variant PLTL of LT, which is useful for appropriately handling inconsis-
tency-tolerant temporal reasoning [39]. In other words, the framework
of these calculi is regarded as a generalization of the existing PLTL-
and N4-based frameworks. Actually, we can simply define the paracon-
sistent subsystems NLT−

ω and DLT−
ω of NLTω and DLTω, respectively,

by deleting only a few initial sequents from NLTω and DLTω.

In addition to the above-mentioned merits, we have the following merits
for NLTω and DLTω.

1. Similar to LTω, we can obtain some useful results for NLTω and DLTω

by using the infinite premises rules. Using the infinite premises rules,
we can obtain a theorem for embedding LT into propositional infinitary
logic. By using this embedding theorem, we can obtain the completeness
and cut-elimination theorems for NLTω and DLTω. For the proofs of
the embedding, completeness, and cut-elimination theorems for LTω,
see [30,33,34].

2. Similar to LTω, we can obtain some useful variants of NLTω and DLTω

by modifying the infinite premises rules. Replacing the infinite premises
rules in NLTω and DLTω with the finite premises versions of the rules,
we can easily define some useful time-bounded fragments of the calculi.
Such time-bounded fragments of LTL and LT were studied, for example,
in [31–33]. These time-bounded fragments are embeddable into proposi-
tional classical logic; have some efficient decision procedures; and have
some practical applications [31–33].



Refutation-aware Gentzen-style Calculi for... 1007

As a future work, we intend to develop a sequent-calculus-based uniform-
proof theoretic logic programming (or automated theorem proving) framework
[48] using NLTω, DLTω, NLT−

ω , and DLT−
ω . Concerned with this direction, a

uniform-proof theoretic paraconsistent logic programming, which was based
on a refutation-aware Gentzen-style sequent calculus for Nelson’s N4, was de-
veloped in [29]. We also intend to develop a refutation-aware model checking
framework extending the proposed refutation-aware Kripke-style semantics
for LT and its paraconsistent subsystem. A work of this direction is in [37].
We also intend to develop a refutation-aware Gentzen-style natural deduc-
tion systems for LT. Concerned with this direction, some refutation-aware
Gentzen-style natural deduction systems for Nelson’s N4 were developed in
[27].

4.2. Remarks on Until Operator

We have not yet obtained a cut-free and complete refutation-aware nor-
mal, dual, or split-context Gentzen-style sequent calculus that is theorem-
equivalent to an extended LTω with the until operator U. A reason why we
cannot obtain such a calculus is that we have not yet obtained a cut-free
and complete extension of LTω with the addition of U. An extension called
LTU

ω with U was considered in [34], although it is unknown whether the
cut-elimination and completeness theorems for LTU

ω holds or not. In what
follows, we explain this system.

The language of LTU
ω is obtained from the language of LTω by adding

a binary temporal operator U (until). An expression {Xkα}i≤k<j for any
natural numbers i, j and k is used to represent an arbitrary formula Xkα
with i ≤ k < j if there is k with i ≤ k < j, or the formula α if there is no
such k. A sequent expression {Γ ⇒ Δ, Xkα}i≤k<j for any natural numbers
i, j and k is used to represent the set {Γ ⇒ Δ, Xkα | i ≤ k < j} if there is
k with i ≤ k < j, or the sequent Γ ⇒ Δ, α if there is no such k.

Then, LTU
ω is defined as follows.

Definition 4.1. (LTU
ω ) LTU

ω is obtained from LTω by adding the logical
inference rules of the form:

{ Xi+jβ, {Xkα}i≤k<i+j , Γ ⇒ Δ }j∈ω

Xi(αUβ), Γ ⇒ Δ
(Uleft)

Γ ⇒ Δ, Xi+jβ {Γ ⇒ Δ, Xkα}i≤k<i+j

Γ ⇒ Δ, Xi(αUβ)
(Uright).

Remark 4.2. We make the following remarks.
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1. (Uleft) and (Uright) are formulated based on the following informal
axiom scheme:

Xi(αUβ) ↔
∨

j∈ω

(Xi+jβ ∧
∧

i≤k<i+j

Xkα).

2. The above informal axiom scheme is closely related to the following
semantic clause for U:

(M, i) |= αUβ iff ∃j ≥ i [(M, j) |= β and ∀i ≤ k < j (M,k) |= α].

3. A weak theorem for one-directionally embedding LTU
ω into a cut-free

Gentzen-style sequent calculus LKω for infinitary logic was proved in
[34].

4. If we consider to develop falsification-aware variants of LTU
ω , we need to

extend it by adding the release operator R, which is the dual counterpart
of U and has the following clause:

(M, i) |= αRβ iff ∀j ≥ i [(M, j) |= β or ∃i ≤ k < j (M,k) |= α].

4.3. Related Works

In model checking [8,10], which is well-known to be a software verifica-
tion technique, refutation or falsification plays a critical role in obtain-
ing the counterexample traces for the underlying object specifications. A
counterexample-guided abstraction and refinement technique [9] for model
checking can be considered an example of a useful refutation- or falsification-
aware technique in model checking. Yet Another Software Model Checker
(YASM) [22,23] is regarded as a refutation-aware model-checker because it
explicitly divides and simultaneously performs falsification and verification.
YASM could prove and disprove properties with equal effectiveness and was
constructed based on Belnap and Dunn’s four-valued logic [4,5,14], which
is regarded as a subsystem of Nelson’s paraconsistent logic N4 [2,49].

Falsification-aware model checking has recently been proposed and stud-
ied in [37,38]. This technique is regarded as a generalization of inconsistency-
tolerant (or paraconsistent) model checking [36,42], which is a variant of
model checking. This falsification-aware model checking paradigm was roughly
defined based on refutation-aware Kripke-style semantics for some temporal
logics. In [38], falsification-aware normal and dual Kripke-style semantics for
computation tree logic (CTL) [8] were introduced to obtain the theoretical
foundation of falsification-aware CTL-model checking. In [37], falsification-
aware normal and dual Kripke-style semantics for a wide range of temporal
logics including LTL with the until and release operators were also consid-
ered for extending the framework of falsification-aware CTL-model checking.
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In falsification-aware model checking, we can simultaneously verify and
falsify formulas using two falsification-aware dual satisfaction relations |=+

and |=− in the falsification-aware dual Kripke-style semantics for the under-
lying logics. Suppose that CTL is considered the basic logic in the follow-
ing explanation. We can then formally consider a falsification-aware model-
checking problem as follows. Suppose that M is a falsification-aware dual
CTL model (S, S0, R, L+, L−), where S is a set of states, S0 is a set of ini-
tial states, R is a binary relation on S, and L+ and L− are positive and
negative labeling functions, respectively. In addition, suppose that |=+ and
|=− are falsification-aware dual CTL-satisfaction relations on M . Then, the
falsification-aware model checking problem for CTL is defined as follows. For
any formula α, find the verification set {s ∈ S | (M, s) |=+ α} and the falsi-
fication set {s ∈ S | (M, s) |=− α}. These sets can be simultaneously found.
Thus, we can simultaneously perform verification and falsification.

Other traditional refutation-aware systems so called the �Lukasiewicz-style
refutation systems have been proposed and studied, for example, in [21,46,
61–64], although a �Lukasiewicz-style refutation system for LTL or LT has not
yet been developed. For example, some �Lukasiewicz-style refutation systems
[46] for modal logics including S4 were introduced and studied in [61,62].
An �Lukasiewicz-style refutation system for Wansing’s nonmonotonic logic
W [70] was introduced in [64], wherein the decidability and finite model
property were proved for W using the refutation system. The logic W is
regarded as an extension of Nelson’s N4.

Another famous refutation-centric formal system is Robinson’s resolution
calculus or principle [57]. Resolution calculi for LTL and its variants have
been studied in developing an efficient method for mechanical theorem prov-
ing [1,7,12,13,16,17,26,32,58,68]. Resolution calculi for decidable fragments
of first-order LTL were of the utmost interest in this area of research. Most
of the monodic fragments of first-order LTL were shown to be decidable [24].
The corresponding resolution calculi, which were called monodic temporal
resolution, have been studied [12]. The method of the monodic temporal
resolution was based on the technique of clausal temporal resolution [17].
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[7] Cavalli, A. R., and L. Fariñas del Cerro, A Decision Method for Linear Temporal

Logic, vol. 170 of Lecture Notes in Computer Science, 1984, pp. 113–127.

[8] Clarke, E. M., and E. A. Emerson, Design and Synthesis of Synchronization Skele-

tons Using Branching Time Temporal Logic, vol. 131 of Lecture Notes in Computer

Science, 1981, pp. 52–71.

[9] Clarke, E. M., O. Grumberg, S. Jha, Y. Lu, and H. Veith, Counterexample-

guided abstraction refinement for symbolic model checking, Journal of the ACM 50

(5): 752–794, 2003.

[10] Clarke, E. M., T. A. Henzinger, H. Veith, and R. Bloem, (eds.), Handbook of

Model Checking, Springer, 2018.

[11] Czermak, J., A remark on Gentzen’s calculus of sequents, Notre Dame Journal of

Formal Logic 18: 471–474, 1977.



Refutation-aware Gentzen-style Calculi for... 1011

[12] Degtyarev, A., M. Fisher, and B. Konev, Monodic temporal resolution, ACM

Transaction on Computational Logic 7 (1): 108–150, 2006.

[13] Dixon, C., Temporal resolution using a breadth-first search algorithm, Annals of

Mathematics and Artificial Intelligence 22: 87–115, 1998.

[14] Dunn, J. M., Intuitive semantics for first-degree entailment and ‘coupled trees’, Philo-

sophical Studies 29 (3): 149–168, 1976.

[15] Emerson, E. A., Temporal and modal logic, in: J. van Leeuwen, (ed.), Handbook of

Theoretical Computer Science, Formal Models and Semantics (B), Elsevier and MIT

Press, 1990, pp. 995–1072.

[16] Fisher, M., A resolution method for temporal logic, in Proceedings of the 12th Inter-

national Joint Conference on Artificial Intelligence (IJCAI), 1991, pp. 99–104.

[17] Fisher, M., C. Dixon, and M. Peim, Clausal temporal resolution, ACM Transactions

on Computational Logic 2 (1): 12–56, 2001.

[18] Gaintzarain, J., M. Hermo, P. Lucio, M. Navarro, and F. Orejas, A cut-free

and invariant-free sequent calculus for PLTL, in Proceedings of the 21st International

Workshop on Computer Science Logic, Lecture Notes in Computer Science 4646, 2008,

pp. 481–495.

[19] Gentzen, G., The Collected Papers of Gerhard Gentzen, (english translation), M.E.

Szabo, (ed.), vol. 55 of Studies in Logic and the Foundations of Mathematics, North-

Holland, 1969.

[20] Goodman, N. D., The logic of contradiction, Zeitschrift für Mathematische Logik und

Grundlagen der Mathematik 27: 119–126, 1981.

[21] Goranko, V., Refutation systems in modal logic, Studia Logica 53: 299–324, 1994.

[22] Gurfinkel, A., and M. Chechik, Why waste a perfectly good abstraction? in Pro-

ceedings of the 12th International Conference on Tools and Algorithms for Construc-

tion and Analysis of Systems (TACAS 2006), vol. 3920 of Lecture Notes in Computer

Science, 2006, pp. 212–226.

[23] Gurfinkel, A., O. Wei, and M. Chechik, Yasm: A software model-checker for veri-

fication and refutation, in Proceedings of the 18th International Conference on Com-

puter Aided Verification (CAV 2006), 2006, pp. 170–174.

[24] Hodkinson, I., F. Wolter, and M. Zakharyaschev, Decidable fragments of first-

order temporal logics, Annals of Pure and Applied Logic 106: 85–134, 2000.

[25] Horn, L. R., and H. Wansing, Negation, in Edward N. Zalta (ed.), The Stanford

Encyclopedia of Philosophy (Spring 2017 Edition), Last modified on January 2017,

https://plato.stanford.edu/archives/spr2017/entries/negation/.

[26] Hustadt, U., and B. Konev, TRP++2.0: A Temporal Resolution Prover, vol. 2741

of Lecture Notes in Artificial Intelligence, 2003, pp. 274–278.

[27] Kamide, N., Natural deduction systems for Nelson’s paraconsistent logic and its neigh-

bors, Journal of Applied Non-Classical Logics 15 (4): 405–435, 2005.

[28] Kamide, N., An equivalence between sequent calculi for linear-time temporal logic,

Bulletin of the Section of the Logic 35 (4): 187–194, 2006.

[29] Kamide, N., A uniform proof-theoretic foundation for abstract paraconsistent logic

programming, Journal of Functional and Logic Programming, 1–36, 2007.

https://plato.stanford.edu/archives/spr2017/entries/negation/


1012 N. Kamide

[30] Kamide, N., Embedding linear-time temporal logic into infinitary logic: application

to cut-elimination for multi-agent infinitary epistemic linear-time temporal logic, in

Proceedings of the 9th International Workshop on Computational Logic in Multi-Agent

Systems (CLIMA9), vol. 5405 of Lecture Notes in Artificial Intelligence, 2009, pp. 57–

76.

[31] Kamide, N., Reasoning about bounded time domain: An alternative to NP-complete

fragments of LTL, in Proceedings of the 2nd International Conference on Agents and

Artificial Intelligence (ICAART 2010), 2010, pp. 536–539.

[32] Kamide, N., Bounded linear-time temporal logic: A proof-theoretic investigation, An-

nals of Pure and Applied Logic 163 (4): 439–466, 2012.

[33] Kamide, N., Embedding theorems for LTL and its variants, Mathematical Structures

in Computer Science 25 (1): 83–134, 2015.

[34] Kamide, N., Relating first-order monadic omega-logic, propositional linear-time tem-

poral logic, propositional generalized definitional reflection logic and propositional

infinitary logic, Journal of Logic and Computation 27 (7): 2271–2301, 2017.

[35] Kamide, N., Falsification-aware semantics and sequent calculi for classical logic, Jour-

nal of Philosophical Logic 51 (1): 99–126, 2022.

[36] Kamide, N., Inconsistency-tolerant hierarchical probabilistic CTL model checking:

logical foundations and illustrative examples, International Journal of Software En-

gineering and Knowledge Engineering 32 (1): 131–162, 2022.

[37] Kamide, N., Falsification-aware semantics for temporal logics and their inconsistency-

tolerant subsystems: Theoretical foundations of falsification-aware model checking,

International Journal of Software Engineering and Knowledge Engineering 32 (7):

971–1017, 2022.

[38] Kamide, N., and S. Kanbe, Falsification-aware semantics for CTL and its

inconsistency-tolerant subsystem: Towards falsification-aware model checking, in Pro-

ceedings of the 14th International Conference on Agents and Artificial Intelligence

(ICAART 2022), vol. 3, 2022, pp. 242–252.

[39] Kamide, N., and H. Wansing, A paraconsistent linear-time temporal logic, Funda-

menta Informaticae 106 (1): 1–23, 2011.

[40] Kamide, N., and H. Wansing, Proof theory of Nelson’s paraconsistent logic: A uni-

form perspective, Theoretical Computer Science 415: 1–38, 2012

[41] Kamide, N., and H. Wansing, Proof theory of N4-Related Paraconsistent Logics, vol.

54 of Studies in Logic, College Publications, 2015, pp. 1–401.

[42] Kaneiwa, K., and N. Kamide, Paraconsistent computation tree logic, New Generation

Computing 29 (4): 391–408, 2011.

[43] Kapsner, A., Logics and Falsifications: A New Perspective on Constructivist Seman-

tics, vol. 40 of Trends in Logic Book, Springer, 2014.

[44] Kawai, H., Sequential calculus for a first order infinitary temporal logic, Zeitschrift

für Mathematische Logik und Grundlagen der Mathematik 33: 423–432, 1987.

[45] Lichtenstein, O., and A. Pnueli, Propositional temporal logics: decidability and

completeness, Logic Journal of the IGPL 8 (1): 55–85, 2000.



Refutation-aware Gentzen-style Calculi for... 1013

[46] �Lukasiewicz, J., Aristotle’s Syllogistic from the Standpoint of Modern Formal Logic,

Oxford, 1951 (Aristotle’s Syllogistic from the Standpoint of Modern Formal Logic -

Greek & Roman philosophy, Taylor & Francis, 1987).

[47] �Lukowski, P., A deductive-reductive form of logic: General theory and intuitionistic

case, Logic and Logical Philosophy 10: 59–78, 2002.

[48] Miller, D., G. Nadathur, F. Pfenning, and A. Scedrov, Uniform proofs as a

foundation for logic programming, Annals of Pure and Applied Logic 51: 125–157,

1991.

[49] Nelson, D., Constructible falsity, Journal of Symbolic Logic 14: 16–26, 1949.

[50] Paech, B., Gentzen-Systems for Propositional Temporal Logics, vol. 385 of Lecture

Notes in Computer Science, 1988, pp. 240–253.
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