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Abstract. We introduce a multimodal framework of deontic action logic which encodes
the interaction between two fundamental procedures in normative reasoning: conceptual
classification and deontic classification. The expressive power of the framework is note-
worthy, since it combines insights from agency logic and dynamic logic, allowing for a
representation of many kinds of normative conflicts. We provide a semantic characteriza-
tion for three axiomatic systems of increasing strength, showing how our approach can
be modularly extended in order to get different levels of analysis of normative reasoning.
Finally, we discuss ways in which the framework can be used to capture other formalisms
proposed in the literature, as well as to model searching problems in Artificial Intelligence.
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1. Introduction

In the present article we provide a general multimodal framework for nor-
mative reasoning that combines insights from deontic logic, action logic,
hyperintensional semantics and the study of non-deterministic systems.
The basic idea underlying the construction of the system is that we can
decompose the analysis of the normative conduct of an agent into three
levels. At the first level we have action tokens (like Alice’s pushing a button
in particular circumstances) which witness that the agent is interacting with
the rest of the environment in a certain way. An action token is typically
associated with an agent’s conduct at a specific state of a system. At the
second level we have action types (like pushing a button), which are used
to classify the action tokens performed by the agent. Action tokens may be
classified under more than one type, depending on the point of view from
which the action is considered. At the third level we have deontic values,
which allow us to determine whether an action is obligatory, permitted, etc.
The deontic value of an action type depends on the normative source we
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Figure 1. Normative assessment triangle

consider: different sources may assign different values to the same action
type. Here, by a normative source we simply mean a set of norms —which
may be, for instance, a portion of a legal code. However, we work under
the assumption, specified also later in the formal part, that two different
normative sources do not share any norm.

The interactions between these three levels can be described in terms of
two procedures that are rooted in everyday normative reasoning: conceptual
classification and deontic classification. The former leads from action tokens
to action types, answering the question ‘what did the agent do?’; the latter
from action types to deontic values, answering the question ‘how is the
agent’s conduct to be assessed?’. In the case where only one point of view and
one normative source are at work, action tokens, action types, and deontic
values are connected as per the normative assessment triangle (Figure 1).

In the triangle 7 and c are classification functions; 7 provides a concep-
tual classification of action tokens under a set of action types; ¢ provides a
deontic classification of action types under a set of deontic values. Concep-
tual classification is to be viewed as relative to a certain interpretation of a
scenario. For instance, the same movements can be viewed as disconnected
gestures in some scenario and as a dance in another one. Deontic classifi-
cation is to be viewed as relative to a set of norms. For instance, the same
kind of dance can be permitted in a certain society and prohibited in a more
conservative one. The triangle suggests that the hard problem of assessing
the deontic value of a particular action can be better addressed once it is
decomposed into two less difficult tasks, which are typically solved when a
normative source —e.g., a legal code— is designed (deontic classification)
and when a trial is held (conceptual classification):

1. determine the action type under which the action falls (this is accom-
plished by a jury);

2. determine the deontic value of that action type (this is accomplished by
a legislator).

When 7 and ¢ are available, we can conclude that
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an agent is acting in a wrong way if and only if she is performing

an action instantiating a type which is classified as wrong.

Though very intuitive, this idea is not fully implemented in current de-
ontic systems. In fact, in the tradition of ‘action deontic logic’ (or ‘deon-
tic action logic’) stemming from von Wright’s foundational work (see, e.g.,
[3,13,22-25,27]), the algebra of actions and the way in which the deontic
value of composite actions depends on the values of their component is the
main topic, but action tokens are not explicitly considered and no explicit
reference to the structure of the set of deontic values is made. Similarly,
in the tradition of dynamic deontic logic (see, e.g., [1,16,17]), neither the
relation between action tokens and action types nor the structure of the
set of deontic values is represented. Finally, in the STIT tradition (see,
e.g., [4,8]) action tokens are primarily studied, while their relation to action
types and the structure of the set of deontic values is not represented (but
for interesting development in this direction see [9,14]).

The primary aim of this paper is to provide systems of modal logic which
capture the basic framework just sketched. We will start with a basic system
where only one agent, one interpretation of a scenario and one normative
source are available. Then, we introduce further complications by enrich-
ing the formal framework so as to account for multiple normative sources.
Finally, we provide two applications related to the study of conflicts in a set-
ting where different normative sources are at work and the implementation
of searching problems.

2. Initial System

2.1. Formal Language

Our first system is a version of deontic action logic whose language Ly is
built over a set Var of elementary propositions, denoted by p, q, r, a set Agt
of agents, denoted by 17, j, k, etc., and a set Act of elementary action types,
denoted by a, b, ¢, etc. Elementary action types are descriptions of actions
without reference to any temporal parameters or specific circumstances, such
as ‘paying taxes’, ‘playing chess’, ‘opening this window’ etc. These action
types can be combined via algebraic operations, so as to get the set Act* of
all action types, denoted by «, 3, v, etc., in accordance with the following
grammar, where a € Act:

az=al|l|a|lala|lalNa
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We stipulate the following definition: 0 =4¢f 1. The term @ denotes the
complement of action type «, that is, the type of any action not instantiating
a; oM G denotes the conjunction of action types a and [, that is, the type
of any action instantiating both « and 3; a U 8 the disjunction of action
types a and [, that is, the type of any action instantiating either a or 5; 1
denotes the type of every possible action token and 0 the type of no possible
action token.

The set WEf of well-formed formulas of the language L, denoted by ¢,
¥, X, etc., is defined by the grammar below, where i € Agt, o € Act* and
p € Var:

pu=pl=¢[oNd|A¢|[il¢|Dig | donei(a) | Oa

The boolean operators = and A represent negation and conjunction, re-
spectively. The modal operators A, [i], O;, done; and O can be divided into
two groups. The first three are functions of the type (Wff,Wff): they take
a well-formed formula as an input and produce a well-formed formula as
an output. The last two are functions of the type (Act*,Wff): they take an
action type as an input and produce a well-formed formula as an output.
The dual operators E, (i), ¢; and P are defined as follows: E¢ =qef A,
(1) =det T[P] 7, Oidp =def ;¢ and P =q¢f O

Language Ly will be interpreted in terms of relational models equipped
with a deontic algebra in Section 2.4. For the time being, we only anticipate
the basic intuitions behind the interpretation of formulas whose main oper-
ator is a modal one, on the standard assumption that the truth-value of a
formula depends on the state in which it is evaluated.

1. A formula like A¢ says that ¢ is true at every state, so that A is the
universal modality, whereas E¢ says that ¢ is true at some state.

2. A formula like [i]¢ says that ¢ is a consequence of the conduct of agent
1 at the state of evaluation, i.e., that the action 7 is performing can only
result in states where ¢ is the case, while (i)¢ says that ¢ is compatible
with the current conduct of i. These operators convey the idea of a tem-
poral transition from the state of evaluation to states in its immediate
future. Accordingly, since the action of an agent is typically unable to
determine a unique successive state, we assume that the same conduct
can result in different states. As a consequence, the truth of [i]¢ at a
state depends on the truth of ¢ at all states possibly resulting from the
agent’s conduct (Figure 2).

Similarly, (i)¢ is true at a state precisely when ¢ is true at some states
possibly resulting from the agent’s conduct.
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¢
¢
Evaluation state: [i]¢
(actual conduct) )
¢

Figure 2. States that are possible given the agent’s conduct

3. A formula like [J;¢ says that ¢ is, at the state of evaluation, an un-
avoidable state of affairs for agent i, i.e., that all the actions i is able to
perform are performed in states where ¢ is the case, while ¢;¢ says that
it is currently possible for ¢ to act in a state where ¢ holds true. The
intuition behind this is that, at a given state, an agent is able to give rise
to various conducts resulting in different sets of states —e.g. in front of
a crossroad, she can go in different directions. Thus, the truth of ;¢ at
a state depends on the truth of ¢ at all states where the agent gives rise
to a possibly alternative conduct. This allows us to capture the notion
of an unavoidable consequence of the agent’s conduct. Indeed, we can
see that ¢ is an unavoidable consequence of the conduct of ¢ if and only
if ¢ is true at all states resulting from all possible agent’s conducts, that
is, if and only if [J;[i]¢ is true —e.g. if ¢ is true no matter what the
agent can do at the crossroad (Figure 3).

Similarly, ¢;¢ is true at a state precisely when ¢ is true at some states
where the agent adopts a possibly different conduct and §;[i]¢ is true
at a state precisely when ¢ is a consequence of a possible conduct of 3.

4. A formula like done; () says that an action of type « has just been per-
formed by the agent. It is worth noting that in the present system action

¢
Evaluation state: 0;[i]¢
(actual conduct) ! 0]

| ¢
Alternative state: [i]¢
(alternative conduct) 0]

Figure 3. States that are possible given the possible conducts
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done;(a)
a done;(a)
B done;(B)
8

done; ()

Figure 4. Transitions

types are represented by sets of states, whereas in systems based on dy-
namic logic, like the one proposed in [17], action types are represented by
labeled transitions, according to the idea that a set of a-transitions rep-
resents all the ways in which action type « can be performed at a given
state. The difference between the two approaches lies in the fact that in
labeled transition systems states are assumed to be memoryless, while
in the present system states store the information about the most re-
cent actions from which they result. A consequence of this is that states
resulting from different actions are always different, precisely because
they have memory of their origin. The present approach is slightly more
general, since a-transitions can be defined without difficulty in terms of
transitions landing to a-states.

Figure 4 depicts a- and [-transitions both as represented in labeled
transition systems and as represented in terms of generic transitions
ending in states where actions of type a and [ have just been accom-
plished.

What is particularly interesting is that in the present system the ability
of an agent can be represented in terms of the actions that the agent per-
forms in alternative states. The idea is that an agent is able to perform
a certain action precisely when there is an alternative state, consistent
with the ability of the agent, where the agent is actually performing
that action [5]. First, note that the fact that ¢ is doing « is described
by a formula like [i]done;(«), stating that the actual conduct of i has
done; () as a consequence, that is, will result in states where done; ()
holds (Figure 5).

Then, note that the fact that ¢ is able to do § in a state in which she
is actually doing « can be described by a formula like §;[i|done;(53).



Generalizing Deontic Action Logic 995

done;(a)

Evaluation state: [i]done;(«)
(actual conduct) | done; ()
1 done; ()

Alternative state: [i|done;(B)
(alternative conduct) done; ()

Figure 5. States that are consequences of possible conducts

done;(a), ¢, Oa
Option 1: s
! done;(ar), ~¢, Oa
1 done; (@), ~¢, O
Option 2: 59
done; (@), ~¢, Oa
Figure 6. States that are possible given the possible conducts

5. Lastly, O« says that « is obligatory given the set of norms that are
in force at the current state, while Pa says that none of such norms
precludes the agent from doing «.

IMustration. Let us consider the crucial point in Antigone’s story. Antigone
has two options: burying her brother Polynices or not. She has no other
possibility and, whatever she does, her conduct will be an instance of bury-
ing her brother (action type «) or an instance of not burying her brother
(action type @). Furthermore, some soldiers are watching over the body of
Antigone’s brother. If she decides to bury him, it is possible that they catch
her (¢). Finally, in burying her brother she is also violating the civil law
(O@). She opts for the first option.
As shown in Figure 6, at s; the following propositions are true:

1. [i]done;(«): Antigone is burying her brother.

2. Qi[i]done;(a): Antigone could have acted differently.

3. (i)¢: it is possible, given what she is doing, that she gets caught.
4.

(1)m¢: it is possible, given what she is doing, that she does not get
caught.
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Oi[i]¢: she could have acted so as to avoid getting caught.

. [i]done;(a) A Oa: she is breaking the law.

Oili]done;(@) A Oa: she could have avoided breaking the law.
0O;[i](done; (@) — —¢): not burying excludes getting caught.

© ® N oo

0i(i)(done;(a) A ¢): burying does not exclude getting caught.

As a final remark note that, while, for the sake of a simpler exposition, we
will be mostly working with one agent only, whence assuming that Agt = {i},
the language we are using allows for representing problems of normative
reasoning in a multi-agent context.

2.2. Expressive Power

Language L is powerful enough to express the fact that an agent is acting
in a wrong way. As we saw, an agent is acting in a wrong way precisely when
she is performing an action instantiating a type which is classified as wrong,
i.e., precisely when the following formula holds:

[i]done;(a) A Oa

Indeed, a formula like [i|done;(«) states that having performed « is a result
of i’s current conduct, i.e., that one of the actions 7 is performing is of type «,
while O« states that it is obligatory to avoid doing «, and so that « is wrong
according to a certain deontic standard (in Ly a single normative source
is taken into account). In more detail, we are in a position to distinguish
different kinds of wrong action, by enriching and modifying this preliminary
definition. For instance, let us consider the differences between schema 1,
our preliminary definition, and schemata 2 and 3 below:

1. [i]done;(a) A Oc
2. O;[i]done;(a)) A O
3. O;[ildone;(aq U ag) A [i]done; (1) A O(ar) A O(az)

All three schemata concern cases in which a wrong action is performed.
Schema 1 leaves open the possibility of whether agent ¢ is able, in the cir-
cumstances she is acting, to avoid performing an action of type «, even if
she ends up performing such an action. In the case of schema 2, the agent is
unable to avoid doing «, and so she performs a wrong action in a condition
where she is forced to do that. In the case of schema 3, the agent performs oy
and it is left open whether she could avoid performing ai, but she could not
avoid performing a wrong action, being forced to perform an action either
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of type a7 or of type as, and so being in a condition where she is unable to
avoid doing something wrong. To the best of our knowledge, no other extant
system of action deontic logic is rich enough to provide such an account of
wrong doing.

An important expressive gain with respect to other formal frameworks for
deontic reasoning is the fact that, due to the possible interactions between
the various operators available, £y can also keep track of the distinction
between wrong actions whose performance will lead from the state of evalu-
ation to a new state (hence, whose result will obtain in the new state) and
wrong actions whose performance led from a previous state to the moment
of evaluation. In the first case the normative classification of an action has
prospective value (i.e., it is future-oriented), whereas in the second case it has
retrospective value (i.e., it is past-oriented). Schemata 1-3 described above
concern the first case, whereas schema 4 below concerns the second case:

4. done;(a) A O(a@).

Furthermore, we can mutually exchange o and @ in schemata 1-4 in order to
represent an agent’s negligence with respect to types of actions considered
obligatory. This offers a complementary perspective on what can count as a
normatively wrong conduct.’

Finally, it is worth noting that the multimodal nature of Lq allows one to
express more complex deontic notions via combinations of two or more op-
erators. As a simple example, consider the following definitions of operators
of type ((Act*,Wff),WEf) to express conditional obligations:

L. O(a | ¢) =det E¢ A A(¢ — Oq).

2. Oz(a | ¢) —def <>z¢ A D,(gf) — OOJ)
Here ¢ is the antecedent of the conditional and « its consequent. While
O(a | ¢) prescribes that action type « be realized in general under the con-

dition that ¢ holds true, O;(« | ¢) prescribes that « be realized in the cir-
cumstances specified by the state of evaluation, under the same condition.?

1 When the language includes many agents, it is also possible to express s conflicts that
result from their interaction, such as: U[i, j](done; () Vdone; (3)) ANO (@) AO(3). In the case
at hand, it is unavoidable that either agent 7 or agent j ends up performing a prohibited

action.

2The logic related to such conditionals is very rich. In system Lg the previous notions
have specific properties due to the interaction with the axioms and rules available. For
instance, axioms 01-05 determine corresponding deductive properties of the consequent
of a conditional obligation: ~O(0 | ¢), O(a | $) AO(B | ) — O(aM B | ¢). A thorough
investigation of these conditional notions is left for future work.
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Summing up, the combination of alethic, agentive and deontic modal op-
erators provides us with a quite flexible framework, whose expressive power
goes beyond that of languages of deontic logic based on an algebra of ac-
tions, since the latter usually include only operators of the type (Act*, WEf)
([22-24]). In addition, Ly is also more expressive than those including only
operators of the type (Wff,Wff), such as the language of standard deontic
logic (SDL). This approach can then be located within the tradition of pro-
posals which tend to unify insights from agency logic, such as the explicit
reference to agents, and from action logic, such as the explicit reference to
action types (ADL).

2.3. System ADeLg

We here introduce a minimal logical system over the formal framework
adopted. It is called ADeL (the acronym standing for ‘Action Deontic
Logic’) and axiomatized via the following list of deductive principles:

0. Axioms and rules of the Classical Propositional Calculus;
1. Modal axioms and rules of system KT'5 for the operator A;
2. Modal axioms of system KT'5 for the operator [;;
3. Modal axioms of system KD for the operator [i];
4. The following axioms for the operator done;:
D1 done;(1)
D2 done;(a) <« —done;(a)
D3 done;(a U ) < done;(a) V done; ()
D4 done;(aM B) < done;(a) A done; ()
5. The following axioms for the operator O:
01 O(aMa) « O«
02 O(aMnp) < O(BNa)
03 O(an(BMN7)) < O((anp)n-)
04 -00
05 (OaANOpB) — O(anp)
6. The following bridge axioms:
Bl A¢p — ;0
B2 A¢ — [i|¢
B3 [i]¢p — [i]0;¢
Axioms 01-05 play the same role as algebraic equations employed in related
approaches, such as [13]. Here we opt for a logical —rather than algebraic—
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representation of the properties of M, and for this reason we do not make use
of the notion of identity between algebraic terms.® The deductive properties
of the operator O in this minimal system are very weak and allow one to
avoid issues with many traditional paradoxes of deontic reasoning. Indeed,
in view of the semantics introduced below, it is not difficult to see that it is
not possible to infer O(alIg) from Oc, (thus avoiding Ross’s paradox) and it
is not possible to infer O« from O(aMf3) (thus avoiding the Good Samaritan
Paradox). Axioms B1 and B2, together with the rule of necessitation for A
(if ¢ is provable, then A¢ is provable as well) allow us to obtain the rule of
necessitation for 0; and for [i].1

The choice of a K'T'5 logic for [J; and A is due to their intended meaning,
as explained in Section 2.1. In fact, both behave as universal quantifiers over
states that constitute an equivalence class (the class of all states representing
alternative conducts of an agent and the class of all states in a model,
respectively). By contrast, the logic of the operator [i] is KD, since such
operator behaves as a universal quantifier over the states that are in the
immediate future of the state of evaluation; the relation of being ‘in the
immediate future of’ is here simply characterized as serial.

2.4. Semantics

Language Ly will be interpreted on relational models equipped with a de-
ontic algebra. Models for the logic ADelLg constitute a proper subclass of
all models for the language Ly. For the sake of brevity, we will refer to
the latter as ADeLg-models and their peculiar properties will be specified
at various points within the general definition of models for language Lg
provided below.?

3While the two approaches ultimately yield similar results, the present approach is
consistent with the idea that action types are conceptual constructions, and so that they
are to be identified in terms of their components and the way of their composition. In this
sense, for instance, a M 3 and M « turn out to be different types, even if this difference
has no significant impact on the resulting logic.

“In a multi-agent language we can take the axiomatic basis of ADeLj as a minimal
system that does not impose any restriction on the possible interactions among agents.
However, a more sophisticated approach can be obtained by extending the axiomatic basis
of ADeL( with an axiom-schema aggregating the possibility of action-types performed
by groups of agents. In such way, we can also incorporate the basic principles of STIT-
logic: for instance, the principle known as independence of agents becomes ((A)done;(a) A
(A)done;(B)) — (A)(done;(a) Adone;(B)), where A C Agt is the relevant group of agents.

5For the sake of a concise exposition, the following definitions will make reference to a
single agent ¢. However, all these definitions can be straightforwardly generalized in order
to deal with many agents.



1000 A. Giordani, M. Pascucci

DEFINITION 1. Model for L.

A model for Ly is a tuple M = (W, R;, A;, D;,D, V), whose elements are
to be thought of as follows:

e IV is a non-empty set of possible states denoted by wq, we, ws, etc. (or
w, v, u, etc.).

o R, : W — p(W) is the function returning the set of states that are
accessible given the agent’s conduct, so that R;(w) is the set of states
that can result from her conduct at w. In the case of ADeLg-models, R;
is such that R;(w) # @, for every w € W.

Comments. When an agent acts a certain way in a state w different states
can be produced depending on the way other agents are acting and the
occurrence of non-deterministic events.

o A, : W — p(W) is the function returning the set of states that are
accessible given the ability of the agent, so that A;(w) is the set of states
where her conduct is one of the possible conducts she is able to select at
w. In the case of ADeLj-models A; is such that

Al.v € A;j(w) & A;(v) = Aj(w) for every w,v € W.
A2.v € Rj(w) = A;(v) C R;(w) for every w,v € W.

Comments. We want to be able to say that an agent which is acting in a
certain way could have acted differently. Thus, the state w in which the
agent is acting in a certain way is associated to states in a set A;(w) where
the agent is acting in a possibly alternative way. The idea is that, if many
courses of action are open to the agent at w, then A;(w) contains the course
that the agent is actually following plus all the alternative courses. Condition
A1 formalizes the idea that, if v is one of the states where the agent is acting
in a possibly alternative way, then the alternatives of v coincide with the
the alternatives of w. E.g., if the agent is able to push a button, then the
A;-accessible states are the one where she pushes the button and the one
where she does not push it, no matter what she does. Hence, if w is the state
where she pushes the button and v is the state where she avoids pushing it,
A;(w) = A;(v). Condition A2 formalizes the idea that the agent is not able
to change the result of an action: past actions are settled. Therefore, if v is
one of the states that can result from ¢’s conduct at w, then all the states
where ¢ is acting in a possibly alternative way relative to v are states that
can result from #’s conduct at w. E.g., if the agent has pushed a button,
then the states where ¢ is acting in a possibly alternative way after having
pushed the button are all states where the button has been pushed.
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o D; : Act™ — p(W) is the function that determines which action types
are performed at a state according to the following conditions:

D2. Di(@) = W - Dy(a)
D3. Di(al1 ) =

Dz(a) D;(9)
Di(a) U Di(0)

Comments. Action types are associated to possible states in such a way that
the action algebra is completely mirrored in the algebra of states. Hence,
since D;(«) is the set of states where a has just been realized and D;(f3) is
the set of states where (3 has just been realized, D;(«) N D;(3) is the set of
states where o3 has just been realized, given that the realization of oM 3
coincides with the realization of both v and 3, and D;(«) U D;(3) is the set
of states where « U 8 has just been realized, given that the realization of
alU B coincides with the realization of one of o and (. Similarly, @ is realized
at all the states where « is not realized. Finally, 1 is realized at all the states
altogether, and so 0, as defined above, is realized at no possible state.

D4. Di(a L g) =

e D, called a deontic system, is a tuple (DV, SV, Ap, ¢), which is based on
a deontic algebra (DV, Ap).

D1. DV # () is a set of deontic values;

D2. Ap is a binary operation on D called meet;

D3. (DV, Ap) is a meet semilattice;

D4. SV C DV is a set of selected deontic values;

D5. ¢: W x Act* — DV is a deontic assignment function.

In the light of D3, Ap is an idempotent, commutative, associative opera-
tion on the set DV of deontic values. In respect of ADeLg-models, SV and
¢ are required to satisfy the additional properties below.

Conditions on SV:

sl: SV £ o
s2: ifde SV and d' € SV, then d Apd' € SV

Conditions on function c:
cl: c(w,aNa) = clw,a)
c2: c(w,amf) =c(w,MNa)

(
c3: c(w,aN(BNy)) = c(w, (aMB)M7y)
c4: c(w,0) ¢ SV;
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cb: if e(w, a), c(w, B) € SV, then c(w,a N f) € SV

Comments. The deontic system D = (DV,SV,Ap,c) is one of the novel
elements of the present framework. DV is a set of deontic values and SV C
DYV is a set of selected values. Here we are opting for a positive use of SV:
the selected values are the ones that allow us to define which action types
are obligatory; we could also opt for a negative use of SV and select the
values that allow us to define which action types are prohibited. Since it is
often the case that obligations, or prohibitions, have a different strength,
SV will include, in general, more than one value. Indeed, an important
advantage of having many values in the set DV and in its subset SV is
the possibility of representing alternative solutions to normative conflicts,
as will be extensively discussed below in Section 4. In addition, even if we
will not pursue this line here, using different selected values is convenient
for distinguishing between actions that are both obligatory and optimal and
actions that are obligatory but sub-optimal, a distinction that occurs very
often in normative reasoning and that can be used to address some paradoxes
of deontic reasoning, as explained in [12,15].

In the light of s1-s2 values in SV are such that d € SV and d' € SV
imply d Ap d’ € SV, since we want to be able to say that, if a combination
dApd' of two values is not in SV, this is because one of the combined values
is not in SV. In contrast, we do not require that SV is a filter on DV
specifically, we do not require that, if d € SV and d’ is more valuable than
d, then d’ € SV, so that, when selecting a value, we select all the more
valuable values as well. This choice is justified by the fact that we want to
allow for the existence of elements of DV that are highly valuable but do
not induce obligations. This may be the case, for instance, when the system
is used to represent supererogatory statements.

Finally, ¢ is the function that classifies action types in terms of their
values. Since, in general, it is possible for the same action type to be classified
in different ways at different states, given the conditions in which the actions
are performed, c is assumed to be parameterized relative to the states in W.
The first three conditions on ¢ ensure that this classification is independent

6 As a typical case, consider the following scenario: students ought to return all borrowed
books to the University Library by the end of the current academic year (this can be
thought of as an obligation expressing what is normatively optimal, and so it receives a
maximal value d in SV'); however, if any student fails to do so, she ought to return the
borrowed books during the first week of the next academic year (this can be thought of as
an obligation expressing what is normatively sub-optimal and, as such, it should receive a
value d’ in SV which is ranked as lower than d).
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from the way the types are presented, which reflects the natural assumption
that, at the algebraic level, the following would hold:

e « coincides with oM a;

e o1 coincides with 8 M «;

e a1 (B M~) coincides with (oM B) M.
The motivation of the last two conditions on ¢ (i.e., ¢4 and ¢5) is the follow-
ing. First, c(w,0) ¢ SV excludes that impossible actions possess a positive
deontic value. In fact, there is no sense in admitting that: why should we
spend our time to assign a positive value to an action that is impossible to
perform? Next, ¢5 wants to capture the idea that the realization of oM 3
is at least as demanding as the realization of a and 3 separately, and so it
is at least as valuable from a deontic perspective. In doing that we prevent

situations where the joint performance of two actions with a positive deontic
value does not receive, as a whole, a positive value.

e V : Var — p(W) is the function that determines which elementary
propositions are true at a state. Accordingly, V(p) is the set of states
where p is true.

Comments. This is the usual modal valuation function.
Dropping the function V' from the ordered tuple describing a model M,
we get an ordered tuple describing the frame on which M is based.

DEFINITION 2. A frame for Ly is a tuple F' = (W, R;, A;, D;,D) whose ele-
ments can be described as in Definition 1. An ADeLy-frame is a frame for
Ly whose elements satisfy the additional specific conditions mentioned in
Definition 1.

The truth-conditions of formulas in £y are now defined as follows.
DEFINITION 3. Truth in a model for L.

A formula ¢ is true at a state w in the domain of a model M (in symbols,
M, w [ ¢) precisely under the following conditions:

M,w Ep;, & weV(p), for every p; € Var
MwkE-¢ & M,wlE ¢

MwE(ANY & M,wlE ¢and M,w E ¢
M,wkE A¢p < Yo(M,v E ¢)

M,w E [i]¢p & Yo(v € Rij(w) = M,v | ¢)
M,wkE ;¢ & Yo(ve Aij(w) = M,v E ¢)
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M,w = done;(a) & w € D;(a)
M,w k= Oa < c(w,a) € SV

In system ADeLg we do not exploit the full power furnished by D, since
we do not make any assumption on the set of non-selected deontic values,
that is, DV —SV: given the positive use of SV, this choice corresponds to
focusing on the simple opposition between obligatory action types and non-
obligatory action types. Furthermore, given that the descriptive power of
the language of ADeL relative to deontic conditions is limited to formulas
like O, we are allowed, as we will see below, to define a canonical model for
ADeLy where DV contains only two values, one of which in SV. However,
in a more general setting, the semantic framework just proposed can be used
to interpret more powerful languages and capture more deontic distinctions,
as shown in Sections 4 and 5. For instance, a standard instantiation of ID is
DV ={o,f,i}, where o = obligatory, f = forbidden and i = indifferent, and
SV = {o}. Having in mind this instantiation, one can formulate extensions
of ADeL that include deductive principles able to capture formal relations
between permitted and prohibited actions.

DEFINITION 4. Satisfiability and validity.

A formula ¢ is satisfiable in a model M iff there is some state w in the
domain of M s.t. M,w |= ¢. A formula ¢ is valid in a model M iff for all
states w in the domain of M we have M,w = ¢. A formula ¢ is satisfiable
(resp. valid) in a class of frames C iff it is satisfiable (resp. valid) in some
(resp. every) model base on some (resp. every) frame in C.

Comparisons with Similar Approaches. Before closing this section, let us
briefly consider the connection between our way of interpreting the accom-
plishment of an action and some related ways in the literature, focusing on
approaches that are based on relational semantics and that employ the ideas
developed in the tradition of dynamic logic [17] and STIT-logic [7].” Then,
in Section 5.2, when studying the representation of search problems, we will
prove a general theorem showing how transition systems can be represented
in the present framework.

In [17] the effect of the accomplishment of an action « at a given state w
is captured by a relation R, (w), whose instances are thought of as labeled
transitions. Intuitively, we have v € R,(w) when v is accessible from w

"These are the approaches that are more similar to the one presented here. For further
comparison, see [18].
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via action «, i.e., when v is one of the states that may obtain after action
« is performed. Notice that in the framework of dynamic logic there is no
explicit reference to agents; thus, while it is possible to say that something is
the consequence of an action, it is not possible to say that something is the
consequence of an agent’s behaviour. A refinement of this approach, making
explicit reference to agents, is exploited in [7]. In that context, following the
intuitions underlying the construction of ST IT-logic, and rephrasing these
in a semantics for multimodal logic, different constraints are introduced
to model the relations between the actions of different agents, which are
represented as R;., R;.3, etc. Relations of the latter kind can be defined in
our setting as follows.

DEFINITION 5. (Relation R;.,) Given a model M = (W, R;, A;, D;,D, V),
the relation R;.,, for o € Act™ and i € Agt, is such that:
v € Ri.q(w) iff v € R;(xz) N D;(«) for some x such that x € A;(w)

Hence, v is accessible from w via action o when it is possible for agent ¢ to
act in such a way that her action token is both of type « and leading to
v. This definition shows that our approach is general enough to recover the
ideas at the basis of previous systems and open a line of research aimed at
studying the connections between these systems and the present one. Here
we just notice that every relation R;., can be syntactically associated with
an operator saying that agent ¢ can perform an action of type a. Such an
operator can be defined in two steps as follows:

Step 1: do;(«) := [i]done;(a). A formula like do;(«) says that the agent
is successfully doing an action of type «, since her conduct necessarily
leads to a state where such an action is performed.

Step 2: can;(a) := O;do; (). A formula like can;(«) says that the agent
has the ability of doing an action of type «, since she is able to enter-

tain a conduct that necessarily leads to a state where such an action is
performed.

We can finally see that the following truth-conditions hold:
M, w = can;(«) iff there is some v € R;.(w)
highlighting the idea underlying the introduction of R;.4.

2.5. Soundness

THEOREM 1. (Soundness) Every theorem of ADeLyg is valid in the class of
ADeLg-models.
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PRrOOF. The proof is a standard induction on the length of derivations. We
focus on axioms on done; and O.

Axioms D1-D4 are valid due to conditions D1-D4 on D;. We just illus-
trate the case of D4. Assume that there is a state w of an ADeLgp-model
M st. M,w = done;(a N B), while M, w B~ done;(a) A done;(3). Then, ei-
ther M, w [~ done;(a) or M, w [~ done;(3). From this it follows that either
w ¢ D;(a) or w ¢ D;(B), both of which entails w ¢ D;(a M 3), whence
M,w W~ done;(a M (3): contradiction. Conversely, assume that there is a
state w of an ADeLg-model M s.t. M,w [= done;(a) A done;(3) whereas
M, w = done;(a™ 3). Then, M, w = done;(«) and M, w = done; (). From
this it follows that w € D;(«) and w € D;((); whence, w € D;(a N ) and
M, w = done;(a M [3): contradiction.

Axioms 01-05 are valid due to the conditions on c¢. We just illustrate
the case of 04 and 05. Since ¢(w,0) ¢ SV, M,w = OO0 for no w € W,
and so M,w E —0O0. Suppose now M,w = O« and M,w = Of. Then
c(w,a) € SV and ¢(w, B) € SV. Thus c(w,aM B) € SV, by 5. [

COROLLARY 1. FEwvery theorem of ADeLyg is valid in the class of ADeLg-
frames.

PROOF. The result follows directly from the fact that in the proof of The-
orem 1 no reference to a particular valuation function V' was made. [

Having proved soundness, we are able to show that ADeLg is a safe
system with respect to the traditional puzzles of deontic reasoning mentioned
above. Indeed, in order to see that principles like O1, O(aMg) — O(«), and
Oa — O(a U ) are not derivable in it, it is sufficient to set DV = {1, 0},
SV = {1}, Ap such that d A\pd’ = 1iff d = 1 and d’ = 1, and define ¢
so that, for every w € W, ¢(w,1) = 0, ¢(w,a) = 1, ¢(w,1 U a) = 0, and
c(w,1Ma) =1, where a € Act. It is plain that, in a model endowed which
this deontic system, we have M,w = Ol, M,w = Oa, M,w = O(1U a),
and M, w = O(1 M a), which invalidates all the principles we pointed out.

2.6. Completeness

Completeness is proved through the construction of a canonical model
equipped with an algebra of deontic values. So far, we have presented the
semantics for language £y and for system ADeLg in its full generality. In
particular, we allowed the set DV of deontic values in ADeLp-models to be
an arbitrary set with at least two elements. In fact, due to condition D1
in Definition 1, there is at least one element in DV'; moreover, due to con-
ditions D4 and c4, there are at least two distinct elements in DV, and at
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least one of these is also an element of SV'. This choice reflects the intuitions
discussed in Section 2.4: having more than one selected deontic value allows
one to represent alternative approaches to normative conflicts (as illustrated
below in Section 4), as well as obligations with varying strength (e.g., those
associated with optimal or sub-optimal normative scenarios). We know, by
Theorem 1, that ADeLg is sound with respect to this semantics. Yet, we
will now show that the completeness of ADeLy can be proven by build-
ing a canonical model in which DV includes exactly two values, namely,
1 (selected) and 0 (non-selected); let us say that models of this kind are
binary ADeLg-models. Since the class of binary ADeLy-models is a subclass
of the class of all ADeLy-models, we will be able to infer: (i) that ADeLg
is sound with respect to the class of binary ADeLy-models, and (ii) that
ADelg is complete with respect to the class of all ADeLg-models. Addition-
ally, in Section 2.7, we will show that any ADeLg-model M can be converted
into a binary ADeLg-model M’ s.t. M and M’ are invariant with respect
to the truth of £y formulas at a state (Theorem 3). This implies that the
cardinalities of DV and SV are not describable in L.

We now proceed with the construction of the canonical model for ADeLg.
The notion of a maximal ADeLg-consistent set of formulas is defined in the
usual way and satisfies the usual properties.

DEFINITION 6. Canonical model for ADelLy.

Let X be an ADeLg-consistent set of formulas and = be a maximal
ADeLy-consistent set of formulas extending X. Let /A be the set {¢ :
A¢ € z}, that is, the set of formulas that are within the scope of A in z.

We take an analogous definition for the sets z/[i] and x/0J;. The canonical
model for ADeLg based on x is the tuple M = (W, R;, A;, D;,D, V'), where:

1. W is the set of all maximal ADeLg-consistent sets of formulas w such
that /A C w;

2. R; is such that v € R;(w) iff w/[i] C v;

3. A; is such that v € 4;(w) iff w/0; C v;

4. D; is such that v € D;(a) iff done;(a) € v;

5. D = (DV, SV, Ap, ¢) is such that:

(a) DV = {1,0}
(b) SV ={1}
(¢) Ap is specified via the matrix
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Ap |1 O
1 1 0
00 O

(d) ¢ is such that ¢(w,a) =1 iff Oa € w
6. V is such that v € V(p) iff p € v.

We remark that, by definition, (DV, Ap) is a commutative, associative and
idempotent algebraic structure in this model.

LEMMA 1. (Truth Lemma) If M is the canonical model for ADeLg, then
for every Lo-formula ¢ and every mazximal ADeLg-consistent set w, we
have M,w = ¢ iff ¢ € w.

PROOF. The procedure is standard. We consider only the cases of formulas
of the type done;(«) and of the type O«.

1. M,w = done;(a) iff w € D;(«), by the definition of truth, iff done;(«) €
w, by the canonical definition of D;;

2. M,w = O« iff ¢(w,a) € SV, by the definition of truth, iff c¢(w,a) = 1,
by the canonical definition of SV, iff O« € w, by the definition of c.

This concludes the proof. [

THEOREM 2. (Completeness) Every formula that is valid in the class of
ADeLg-models is a theorem of ADeLy.

PROOF. We prove this by showing that the canonical model for ADeLg
belongs to the class of ADeLg-models. Properties of accessibility relations
associated to modal operators can be checked following standard procedures
for systems of multimodal logic. Properties of the function D; easily follow
from the fact that every maximal ADeLg-consistent set of formulas includes
all instances of axioms D1-D4. So, let us check the remaining properties,
that is, the conditions on SV and c.

Conditions on SV: immediate, from the definition of SV and Ap.

Conditions on c¢:

cl. for every w € W, ¢(w,aMa) = 1 iff ¢(w, ) = 1. This follows from the
fact that w is closed under axiom O1.

c2. for every w € W, c¢(w,an ) =1 iff ¢(w, M a) = 1. This follows from
the fact that w is closed under axiom 02.

3. for every w € W, c(w,aM (M 7)) =1 iff c(w, (M F) MN+) = 1. Again,
this follows from the fact that w is closed under axiom O3.

c4. c¢(w,0) # 1, since, by axiom 04, O0 ¢ w.
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ch. If c(w, @), c(w, B) € SV, then Oa € w and OfF € w, by the definition of
¢, and so O(aM ) € w, by axiom 05. Therefore ¢(w, aM 3) = 1, which
is sufficient for concluding that c¢(w,a ™ 3) € SV.

Thus, the canonical model for ADeLg based on x satisfies all properties
of ADeLjy-models. Together with Lemma 1, this entails the desired result
by contraposition: if a formula ¢ is not a theorem of ADeLg, then {—¢}
is an ADeLg-consistent set, and ¢ is falsifiable in the canonical model for
ADeL based on any maximal ADeLg-consistent extension of {—¢}. |

COROLLARY 2. Fvery formula that is valid in the class of ADeLg-frames
is a theorem of ADelyg.

PROOF. The result follows from the fact that the frame of the canonical
model used in the proof of Theorem 2 satisfies all properties of an ADeLg-
frame. |

2.7. Finite Model Property

In this section we show that system ADelg has the finite model property.
We will prove this by adapting a method illustrated in [10]. From the finite
model property and the fact that ADeL is finitely axiomatized, it follows
that ADelLy is decidable. For the sake of convenience, in the description of
an ADeLg-model we will here explicitly mention a universal accessibility
relation R associated with the operator A; hence, a model will have the
form:

M= (W,R,R;,A;, D;,D,V)
In accordance with this, for all w € W, we will have:
e Ri(w) C R(w)
o A;(w) C R(w)
where R(w) = {v: R(w,v)}.
First of all, we observe the following:

THEOREM 3. (Binary version of a model) Every ADeLg-model M can be
transformed into an ADeLqg-model M’ s.t.:

o M’ is exactly as M, possibly except for ', where DV’ = {1, 0}, SV’ =
{1}, A is specified as in the canonical model for ADeLg and ¢’ is such
that, for every w € W, ¢ (w,a) = 1 iff c(w, o) € SV;

o for every Lo-formula ¢ and every w € W it holds that M,w = ¢ iff
M w E ¢.
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We will call M’ the binary version of M.

PRrOOF. The result follows from the fact that, due to its definition, I’ sat-
isfies all properties of deontic systems in ADeLg-models (as shown in The-
orem 2). In particular, this ensures that for every formula of the form Oc,

we have M, w |= O« iff M, w = Oc. ]

Let us assume standard definitions of (proper) sub-term of an algebraic
term in Act® and of (proper) sub-formula of a formula in £y. Given a set
Ag of Lo-formulas, we will denote by A the smallest set obtained via the
following three steps:

1. we add —done;(0) to Ay, obtaining a set Aq;
2. we close A; under sub-formulas, obtaining a set As;

3. we close Ay under atomic formulas including proper sub-terms and their
complements, obtaining the final set A, namely:

e if done;(a) € Ay and 3 is a proper sub-term of «, then
done;(3), done;(B) € A;

e if Oa € Ay and [ is a proper sub-term of «, then
0(8),0(p) € A.

According to this procedure, Ag C A; C Ay C A,

For any world w in a model M, let Th(w) = {¢ € Lo : M,w |= ¢}. We
say that two worlds w and v are equivalent modulo a set of Lyo-formulas A,
in symbols Fa(w,v), iff, for every ¢ € A, M, w |= ¢ iff M, v = ¢. This is the
same as saying that Th(w) N A = Th(v) N A. The relation Fa gives rise to
a partition of W into equivalence classes that we can denote as |w|a, |v|a,
|u|a, etc. We will say that such a partition is induced by A.

DEFINITION 7. Filtration of an Lp-model.

A filtration of a model M = (W, R, R;, A;, D;,D, V) through a set of
Lo-formulas A is any model M* = (W*, R*, R}, AY, D;,D*, V*) such that:

1. W* consists of one world from each equivalence class of the partition
induced by A.

2. R*, A7 and R; satisfy the following conditions:

(a) for every w,v € W*, if [v]a N R(w) # &, then v € R*(w);
for every w,v € W*, if [v]a N A;(w) # @, then v € Af(w);
for every w,v € W*, if [v]a N R;(w) # @, then v € R} (w);

(b) for every w,v € W*, if v € R*(w), then Th(w)/ANA C Th(v);
for every w,v € W*, if v € A¥(w), then Th(w)/0; N A C Th(v);
for every w,v € W*, if v € Rf(w), then Th(w)/[i]] N A C Th(v).
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3. for every w € W* and every « € Act* s.t. done;(a) € A, w € D} («) iff
w € D;(a).
4. D* = (DV*,SV* Ap~,c*) satisfies the usual conditions of Ly-models;

furthermore, DV* is a finite set and, for every w € W* and every o €
Act* s.t. Oa € A, ¢*(w, ) € SV* iff ¢(w, ) € SV.

5. V* consists of the original V restricted to the elements of W*.

We prove the following

THEOREM 4. (Intended filtration) Given an ADeLg-model M, there is a
filtration of M which is an ADeLg-model.

PRrROOF. Take an ADeLg-model M = (W, R, R;, A;, D;,D, V') and let model
M* = (W*,R*,Rf, A7, D;,D*,V*) be defined in such a way that (for every
w,v € W*):

e W* consists of one world from each equivalence class of the partition
induced by A.

e v € R*(w) iff, for every formula A¢p € A, M,w = Ap < M,v = Ad.

o v € Af(w) iff, for every formula O;¢p € A, M,w |=0,;¢ < M, v = ;9.

e v € Ri(w) iff, for every formula [i]p € A, M, w = [i]¢p = M,v =00 A ¢.
e D is such that for every a € Act, w € D} (a) iff M, w = done;(a) and
1)=w*

@) = W* - Dj()

afp) = Di(a) N D7 (B)

o'

o D* =D
e V* consists of the original V restricted to the elements of W*.

We have to prove that M* is a filtration of M and an ADeLj-model. To
prove the first point, we have to show that properties 1-5 of Definition 7 are
satisfied by M™, so that M* is a filtration of M. Since most of the arguments
are standard, we focus on the novel ones and show that properties 2(a-b)
are satisfied by R}, leaving the other cases to the reader.

e R satisfies property 2(a). In fact, suppose [v]a N R;(w) # 0. This entails
that for every formula [i]¢, if M, w [= [i]¢, then for every u € [v]aNR;(w),
we have M, u = ¢.

Furthermore, due to the fact that B3 is valid in M, we have that M, w =
[i]0;¢ and that, for every u € [v]a N R;(w), M,u = O;¢. Thus, for every
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such u we have M, u |= 0;¢ A ¢. Thus, we can infer that M,v = 0;¢ A ¢,
whence, by the definition of M*, v € R} (w).

e R satisfies property 2(b). Suppose that v € R}(w). Then, by the defini-
tion of M*, for every formula [i]¢ € A, M, w [= [i]¢ entails M, v = T;pAP.
Thus, it cannot be the case that there is some formula [i]¢ € A s.t.
M,w = [i]¢ and M, v - ¢.

Now, we prove that M* is an ADeLjy-model. We show that A} and R are
related in the right way, leaving again the other cases to the reader.

e Af and R} are such that v € R (w) = Af(v) C R} (w) for every w,v €
W. In fact, suppose that v € R} (w). Then, for every formula [i|¢ € A,
M,w = [i]p = M,v = 0;¢ A ¢. Let € Af(v): then, by the definition
of M*, for every formula [0;¢ € A, M,v = 0;¢ iff M,z = O;¢. Thus, by
transitivity and the fact that ;¢ — ¢ is valid in M, for every formula
[i]¢p in A, M,w = [i]¢ = M,z = 0;¢ A ¢, so that u € R (w).

This concludes the proof. [

We will refer to model M* as the intended filtration of model M. We can
now prove the following

THEOREM 5. (Invariance under filtrations) Let M be an ADeLg-model and
A a set of Lo-formulas. If M* is a filtration of M through A, then, for every
Y eA andw e M*, M*,w = iff Myw = .

PROOF. By induction on the construction of ¢. The proof with respect to the
modal formulas is standard —see Theorem 1— and the proof for formulas of
the form Oq is straightforward. Thus, we only focus on the proof in relation
to formulas of the form done; ().

In the case of ¢ being done;(a), we proceed by induction on the construction
of a.

Suppose M,w = done;(«) and « is atomic. Then w € D}(«), and so
M*,w | done;(), by the definition of M*.

Suppose M, w = done; () and o = a1 Mag. Then M, w = done; (a1 Mas),
and so M,w [ done;(a;) and M,w = done;(as). Thus, by the induc-
tion hypothesis, M*, w | done;(ay) and M* w = done;(as), since both
done;(aq) € A and done;(az) € A, and so M*, w = done; (a1 M as).

The other cases are similar. ]

Combining the results obtained so far, we get the finite model property
for system ADeLg, which can be formulated as below:
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COROLLARY 3. (Finite model property) Since, for every ADeLy-model M,
we can first define a model M' which is the binary version of M and then
a model M" which is the intended filtration of M’, the following claims are
pairwise equivalent (for every Lo-formula ¢ and world w in the domain of

M):
i M’w |: gb;

o« M'wE 6
o M" w k= ¢.

PROOF. A direct consequence of Theorems 3-7. [

3. Extended Framework

3.1. Formal Language

Let us now see how to exploit the ideas proposed before in order to deal
with conflicts. To do that, we have to enrich our language.

Conflicts are situations where an agent is required to perform actions
that are mutually exclusive: thus, in a certain situation, an agent could be
required to perform an action of type oo and an action of type (3, even if it is
impossible for o and § to be performed at once. Conflicts are typically gen-
erated by the fact that different norms prescribe different things. Therefore,
in order to track the origin of a conflict, we have to use a language where
the fact that an obligation stems from a certain norm is expressible.

While we keep the set of action types Act* as in Section 2.1, we define
the new language £, as follows:

¢pz=p|-¢|dANG| A |i]¢|Li¢ | donei(a) | Oa| Osa

where s € NS and NS # & is a set of normative sources.

3.2. Conflicts

We are now in a position to distinguish different kinds of conflict. A first
distinction we can introduce is between abstract conflicts (characterized in
terms of action types) and concrete conflicts (characterized in terms of action
tokens).

Abstract conflicts. In some cases abstract conflicts stem from different
sources (s; and sg), because what the sources require is not realizable in
general.
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o O,,a ANOg, BN A-done;(al ().
In other cases abstract conflicts stem from a unique source (say, s1):
e O, aNO; BN A-done;(anf).
Note the following.

1. In the first case, what the agent does is not necessarily wrong according
to s1, since she may perform «, nor it is wrong according to s, since she
may perform (3, but she could be wrong according to {s1, s2}, and indeed
she is, provided we have no way to prioritize one of the sources over the
other. Still, we are not entitled to conclude that i’s action is wrong
according to {s1,s2} without further justification, precisely because it
is possible for one of the sources to be more important than the other.

2. In the second case, what the agent can do is necessarily wrong according
to s1, since Og, a0 A Oy, B implies Oy, (o M F) and A—-done;(a M () is
equivalent to Adone;(a 1 3). Thus, we get O, (a1 3) A Adone;(aT1 ),
which implies wrong doing: Oy, (a1 3) A [i]done; (a1 3).

3. In the second case, the fact that what the agent does is wrong according
to s; does not entail that what the agent does is absolutely wrong,
since s; could include norms that do not apply to the circumstances
of evaluation or that are superseded by others in the circumstances of
evaluation.

Concrete conflicts. In some cases concrete conflicts stem from a different
classification of the same conduct in different sources:

e O;,aANOg, [ A0 ~done; (a1 B).

In other cases concrete conflicts stem from a different classification of the
same conduct within one source:

o O;,aANOg, B A0 ~done; (a1 B).

As before, in the second case, what the agent does is wrong according
to s1, while, in the first case, it is not wrong according to si, nor it is
wrong according to ss, even if it could be wrong according to the more
complex source {s1, s2}, but this depends on the way in which s; and s, are
aggregated.

Solvable conflicts. In some cases abstract deontic conflicts can be solved by
ordering the sources. Similarly, concrete deontic conflicts can be solved by
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accepting one source only. Finally, some cases are such that deontic conflicts
cannot be solved.

We further analyze conflicts in Section 4, where we aim at (i) refining the
characterization of the structure of a conflict; (ii) identifying the source of
the conflict given its characterization; (iii) understanding whether a conflict
is avoidable or unavoidable, solvable or unsolvable, given its source, from
the point of view of an agent.

3.3. Systems ADeL; ; and ADeL; o

We here introduce two logical systems over the new language L1, that will
be called ADeL; ; and ADeL; 5. The axiomatic basis for the first system,
ADelL; 1, is obtained from the axiomatic basis for ADeLg by removing O1
and adding the following schemata, for s € NS:

01s O (aMNa) < Oz«

02s O;(anpP) < Os(fMNa)

035 O,(a1(3117)) = O, (a1 §)117)
04s —0,0

05s O,a A O3 — Og(am )

B4 Oa — Ogq, for all s € NS.

Axiom O1 is not needed, since it becomes derivable from the new ones.
Note that here we do not assume that the set of normative sources NS is
finite. Under that assumption, one could replace B4 with:

B4y, Oa — A\ cns Osa

The axiomatic basis for the second system, ADeL; s, is obtained by
extending the one for ADeL; ; with the following schema:

B5 (O,a A O4f8) — Qidone;(al ).

Thus, ADeL; » is stronger than ADelL;; and encodes the additional
intuition that it is always possible to jointly perform a list of obligatory
action types, at least when the types are prescribed by the same source.

3.4. Semantics

Language £, is interpreted in the following semantics, which is a general-
ization of the one for language Lg. In case of a finite set NS of normative
sources, there is no problem in adapting the semantics for the basic system;
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the main result obtained here is a generalization to any set NS. Proper-
ties of ADeL; 1-models and of ADeL; s-models will be specified within
the general definition. In accordance with the comparable deductive power
of the two systems, we will define an ADeL; >-model so as to be also an
ADeL; ;-model.

DEFINITION 8. Model for L.

A model for £y is a tuple M = (W, R;, A;, D;,D, V), where all the ele-
ments are as in Section 2.4, except for the deontic system, which becomes
D = (DV, SV, Ap, {cs}sens, €), where:

e DV SV and Ap are defined in the usual way and have the usual prop-
erties;

o {cs}sens is a set of deontic classification functions, each being associated
with one normative source, namely ¢s : W X Act* — DV;

o & : W X Act* — DV is an all-things-considered deontic classification
function.

Hence, cs(w,a) is the deontic value associated to a at w by source s,
whereas €(w,«) is the deontic value associated to « at w by aggregat-
ing normative sources. In the case of ADeL; j-models (and, a fortiori, of
ADeL; 5>-models) we have, for each deontic function ¢ and for €, all the
properties that we had in ADeLg-models for the function c¢. Furthermore,
we have the following property, which captures the idea of aggregation:

o C(w,a) € SV iff c5(w, ) € SV for every s € NS.

This condition entails axiom B4 and, in the case of a finite set NS of nor-
mative sources, it corresponds to axiom B4y;,.
In ADeL; 5>-models we also have the following property:

o if ci(w,a) € SV and cs(w, B) € SV, then there is a state v € R;(w) N
Di(Oé I‘Iﬁ)

The idea behind the last condition is that norms are in themselves consistent,
so that no possible composite action types is such that its component types
receive contrary deontic values. This condition correspond to axiom B5.

The following truth conditions are added/changed accordingly in models
for the language £q:

o M,wlOsa & cs(w,a) € SV
o M,wkEOa & C(w,a) e SV.
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In ADeL; ;-models (and, a fortiori, ADeL; 5-models), the latter truth-
condition is equivalent to:

o M,wkE= O«a <« forall s € NS, ¢s(w,a) € SV.
Finally, frames are defined as per the following

DEFINITION 9. A frame for £, is a tuple F' = (W, R;, A;, D;,D) whose ele-
ments can be described as in Definition 8. An ADeL; ,-frame, for z € {1,2},
is a frame for £; whose elements satisfy the conditions mentioned in Defi-
nition 8.

3.5. Soundness

THEOREM 6. (Soundness) Every theorem of ADeLj ., where x € {1,2} is
valid in the class of ADeL; .-models.

PRrROOF. Analogous to the one of Theorem 1. We just illustrate the case of
axioms B4 and B5 as examples.

Suppose that there is a state w of an ADeL; ;-model M s.t. M, w = O«
and, for some s € NS, M, w = Oza. Then, by the truth-conditions, we have
that €(w,«) € SV; but the latter claim in ADeL; ;-models is the same
as the claim that, for every s’ € NS, ¢y (w,a) € SV. From this, by the
truth-conditions, it follows that 9%, w | Og: contradiction.

Suppose that there is a state w of an ADeL; >-model M and a source
s € NS s.t. M,w E Oga A Og(3 whereas M, w (= (;done;(a M 3). Then,
M,w = Ogae and M, w = O43; by the truth-conditions, ¢s(w, a), cs(w, 5) €
SV. From this, due to the properties of ADeL; >-models, we can infer that
there is a state v € R;(w) N D;(a M 3). Thus, M,v = done;(a M [3) and
M, w = ¢;done; (oM 3): contradiction. |

COROLLARY 4. FEvery formula that is a theorem of ADeL ,, is valid in the
class of ADeL; ,-frames, for x € {1,2}.

PrROOF. The result follows from the fact that the proof of Theorem 6 does
not make reference to any particular valuation function V. [

3.6. Completeness
DEFINITION 10. Canonical models for ADeL; ; and ADeL; 5.

The canonical model for ADeL; ; can be defined by replacing the deontic
system used in the canonical model for ADeLy with the deontic system
D = (DV,SV,Ap,{cs : s € NS}, ). In this new system (DV,Ap) and SV
are defined as in the previous case. The set NS, the functions of type cs and
the function € are defined as below:
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e NS = NSt U {s*}, where NS* = {s: O a € £;} and NSt N {s*} = 0);
o for every s € NS, ¢ (w,a) = 1 iff Oya € w;
o o (w, ) = C(w, ) =1iff Oa € w.

LEMMA 2. (Truth Lemma) If M is the canonical model for ADeL; ., where
x € {1,2}, then for every Li-formula ¢ and every mazimal ADeL .-
consistent set w, we have M,w = ¢ iff ¢ € w.

PRroOOF. The procedure is standard. We consider only the cases of formulas
of the type O a, for s € NST, and of the type Oa.

1. M,w = O iff cs(w, ) € SV, by the definition of truth, iff ¢;(w,a) =1,
by the canonical definition of SV, iff Os;a € w, by the definition of cy;

2. M,w = O« iff €(w,a) € SV, by the definition of truth, iff €(w,a) =1,
by the canonical definition of SV, iff O« € w, by the definition of €.

This concludes the proof. [

THEOREM 7. (Completeness) FEvery formula that is valid in the class of
ADeL; ,-models is a theorem of ADeL; ., for x € {1,2}.

PrOOF. Conditions on functions of the type cs, for s € NST as well as on
the function €, can be checked with the same procedure used in the case
of ADeLy, possibly relying on the new axioms 01s-05s and B4. Notice
that, since the function s* is defined in the same way as the function €,
it satisfies those conditions as well. Furthermore, the addition of s*, which
does not correspond to any deontic operator in £, allows us to get the
desired property on the relation between € and the set of normative sources:
C(w,a) = 1 iff, for all s € NS, ¢s(w, ) = 1. Indeed, for the left-to-right
direction, if €(w, a) = 1, then Oa € w and ¢y« (w, ) = 1. Furthermore, due
to B4, we have Oy a € w for all s € NS*, whence ¢y (w, a) = 1. Thus, for
all s € NS, we get cs(w,a) = 1. For the right-to-left direction, suppose that
¢(w,a) = 0. Then, O ¢ w and cg«(w, &) = 0. Thus, it is not the case that
for every s € NS we have c¢;(w,a) = 1.

Conditions on the relations R; and A;, as well as conditions on the func-
tion D;, can be checked as usual.

Moving from ADeL;; to ADeL; 5, we can build the canonical model
in the same way, but we also have to check that the following additional
property is satisfied, for every s € NS:

o if c5(w, ) =1 and cs(w, B) = 1, then there is v € R;(w) N D;(a M G).

In the case of s € NS the property holds due to axiom B5. In the case of
s*, assume that cg«(w,a) = 1 and cg« (w, 3) = 1; then Oa, OfF € w, so, by
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axiom B4, we can infer that Oza, O40 € w, that is, Oz;a A O,6 € w, for all
s € NST. Thus, since NS is non-empty, we can further infer by axiom B5
that ¢;done; (M) € w. Suppose that there is no state v € R;(w)ND;(aMpg).
Then, for all states u, we have that either u ¢ R;(w) or uw ¢ D;(a 1 (3);
yet, R; is serial and the latter claim is the same as the claim that, for
every u € R;(w), we have done;(a 1 3) ¢ u. Then, by the canonical model
construction, we have that {;done;(a M ) ¢ w: contradiction. [

COROLLARY 5. FEvery formula that is valid in the class of ADeLq ,-frames
is a theorem of ADeL; ., for z € {1,2}.

PRroOOF. The result follows also in this case from the fact that the frame of

the canonical model used in the proof of Theorem 7 satisfies all properties
of an ADeL; ,-frame, for x € {1,2}. |

4. Perspectives on Conflicts

In the present section we apply our framework to recent proposals to handle
normative conflicts in systems of action deontic logic. We start by discussing
a preliminary issue, that is, the distinction between aggregation of action
types and aggregation of normative sources.

4.1. Aggregating Actions and Sources

In the framework provided here aggregation of action types (1) and aggre-
gation of sources (Ap) are kept sharply distinct. We take this to be a crucial
feature of action deontic logic. For a comparison, let us consider the view in
[13]:

Thus, if oM B appears in a formula, then « and 8 have to be differ-
ent descriptions that can be attached to the same particular action.
Usually in this context o and (3 represent types of action coming from
different normative systems and o/ 3 refers to the same action when
we express its final deontic status after merging the normative sys-
tems.

In this passage, Kulicki and Trypuz seem to have in mind aggregation
of sources; however, they express this kind of aggregation in terms of ag-
gregation of action types, which could be misleading. If generalized, such
an analysis would also weaken the potential expressiveness of action deontic
logic since, as it is pointed out in [6], it would not make room for the possi-
bility of assigning a deontic value to the combination of two distinct action
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types within a single normative source. By contrast, in [6] a choice is made
to interpret MM as action aggregation, but the possibility of dealing with the
aggregation of sources requires additional machinery. Since the ideas in [13]
are very interesting to deepen the analysis of normative conflicts, we show
below how one could use these in the present framework.

4.2. Representing Alternative Proposals
In [13] three views are introduced:

e The pessimistic view: if an action is obligatory from one point of view
and forbidden from another, then it is to be regarded as forbidden;

e The optimistic view: if an action is obligatory from one point of view
and forbidden from another, then it is to be regarded as obligatory;

e The neutral view: if an action is obligatory from one point of view and
forbidden from another, then it is to be regarded as neither obligatory
nor forbidden.

A fourth view, based on a more sophisticated framework that allows for
representing a hierarchy among normative sources, is proposed in [6]:

e The realistic view: if an action is obligatory from one point of view and
forbidden from another, then it gives rise to a normative conflict that
remains unsolved unless a priority between the two points of view can
be established.

In the present framework these views can be captured by introducing
different deontic systems corresponding to different semi-lattices (DV, Ap).
All these systems are such that DV contains the following deontic values: o
(‘being obligatory’), f (‘being forbidden’) and i (‘being indifferent’). Further-
more, in all systems we have SV = {o}, oApi = o and iApf = f. Finally, we
have that, for h € {1,2}, ¢;, (w, @) = ¢s, (w, @), as well as that the negation
of an obligatory action is forbidden and vice versa, i.e., ¢s, (w, ) = o iff
s, (w,@) = f.

Suppose that the agent is required to perform two action types that are
mutually exclusive at a state w. So, suppose that there are action types oy
and as such that:

1. s, (w,a1) = 0, ¢, (W, a2) = 1;
2. ¢s, (W, ) =0, cs, (W, 1) = 15
3. M,w = — (i) done; (a1 Mas).
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The choice is between a7 Mag and @ M as, and has to be made taking
into account all the relevant normative sources. Hence, defining

{Csy, Csy Hw, 1 MAZ) = ¢s, (w, 1 T10Z) Ap Cs, (W, 1 T 0)
we obtain
1. ¢, (w, a1 Nag) = ¢, (w,00) Ap ¢s, (W, @) =0 Api=o0
2. ¢, (W, MaAg) = cs,(w,a1) Ap s, (w,a) =iApf=f
3. {csy, Csp Hw, 0 Maz) = 0 Ap £
4. similarly, {cs,,cs, }(w,a1 MNaz) =f Apo=o0Apf.
5. and so {cs,, s, J(w, 1 M@3) = {csy, Cs, Hw, a7 Mag) =0 Ap f.

Pessimistic system. The pessimistic deontic system is defined so that DV =
{o,f,i}, SV = {o}, and Ap is such that

/\]D)|f i o
f |f f f
i |f i o
o|f o o

The pessimistic system has it that an action which is prohibited by a
source is prohibited tout court. Furthermore, we stress that the value i can
be generated only via an aggregation of two copies of itself.

The corresponding semi-lattice has the following form:

i
|

o
|

f

Hence, f is the strongest value. The basic intuition is that an action that
is good from one point of view and bad from the other point of view is to
be eventually assessed as bad. In case of conflict, there is no good solution,
since the action an agent performs is bad no matter what the agent does.

1. {csy, s, H(w, 00 Maz) =0 Ap f = f;
2. {csy,Csp J(w, a7 Mae) =0 Ap f = f;
3. therefore, whatever we opt for, we get f.

This result makes it evident that the pessimistic system does not allow
for a positive solution of a dilemma.
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Optimistic system. The optimistic deontic system is defined so that DV =
{o,f,i}, SV = {o}, and Ap is such that

AD | f i o
f |f f o
i f i o
o|o o o

The optimistic system has it that an action which is required by a source
is required tout court. Also in the case of the optimistic system it holds that
the value i can be generated only via an aggregation of two copies of itself.

The corresponding semi-lattice has the following form:
i
f
o

Hence, o is the strongest value. The basic intuition is that an action that
is good from one point of view and bad from the other point of view is to
be eventually assessed as good. In case of conflict, there is always a good
solution, since the action an agent performs is good no matter what the
agent does.

L. {651’652}(w7a1 H@) =oApf =o;
2. {cs,,cs, H(w, a7 Mag) =0 Apf = o;
3. therefore, whatever we opt for, we get o.

This result makes it evident that the pessimistic system does allow for a
positive solution of a dilemma.

Neutral system. The neutral deontic system is defined so that DV = {o,f,
i,7}, SV = {o}, and Ap is such that

AD | f i o 7
f | f £ 7 7
i |f i o 7
o|? o o ?
/O I S O G ¢

The neutral system has it that conflicting assessments give rise to a prob-
lematic value 7. The corresponding lattice has the following form:
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N
N

In this framework, the new deontic value 7 can be generated via an ag-
gregation of two deontic values that are not necessarily identical to it.

Here, 7 is the strongest value. The basic intuition is that an action that
is good from one point of view and bad from the other point of view is
to be eventually assessed as problematic. In case of conflict, there is no
straightforward assessment, since the action an agent performs is both good
and bad.

1. {csy, s H(w,0n Maz) =0 Ap £ =75
2. {csy,cs, (w, a7 Mag) =0 Ap f =75
3. therefore, whatever we opt for, we get 7.

It is difficult to see whether the neutral system allows for a solution of a
dilemma. Here dilemmas are taken seriously: doing something good implies
doing something bad at once.

The realistic view. As long as a single normative source is taken into ac-
count, the realistic deontic system can be semantically represented within
our framework exactly as the neutral system, since the two agree on the de-
ontic value assigned to each action type within one normative source. In this
regard, they differ only conceptually: while the neutral system takes the as-
signment of value ? to an action type « as saying that « is neither obligatory
nor prohibited (whence, its syntactic counterpart is the claim -Oa A -O@),
the realistic system takes the assignment of value ? to « as saying that «
is both obligatory and prohibited (whence, its syntactic counterpart is the
claim Oa A O@).®

However, the realistic system naturally lends itself to the analysis of nor-
mative problems involving more than one normative source: in fact, it is
supported by a mechanism to handle normative conflicts by combining nor-
mative sources. In our framework a more appropriate representation of the
realistic system would require moving from language Lg to language £ and

8The notation employed in [6] is slightly different. In particular, in the case of deontic
values, the label ¢ replaces the label 7.
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adding a priority relation < among normative sources which would deter-
mine a new way of defining the deontic aggregation function €. Here we
just provide a sketch of the idea, leaving its development to a further work.
Consider two normative sources s; and ss, and let < be a strict partial order
over the set of normative source NS. We say that there is a winning source
between s; and sy iff the following holds: either s; < so or so < s;. The
deontic value assigned by € to an action type « in the realistic system is
specified by the table below, where values assigned by s; are on the vertical
axis, values assigned by so are on the horizontal axis, and an expression of
the form < /x means “if there is a winning source between s; and s, the
deontic value assigned by € to « is that of the winning source, otherwise it
is 2”7 (see Table 4 in [6]):

f i o ?

f </t </ <7
< /f i </Jo =<7
</?7 </o o < /?
< /T </ </? ?

DO ~emR R

5. Perspectives on Search Problems

The second application of the framework concerns the representation of
search problems. As is well-known, a search problem involves agents that
search sequences of actions to achieve a specific goal in an optimal way.” As
such they are problems of normative reasoning, since an agent may solve
them by acting in accordance with a certain norm that specifies the best
course of events, if any. Therefore, systems of deontic logic constitute natural
candidates to formally represent them.

In this section we show how our framework can be suitably used to provide
such a representation. Our main aim is to point out that these problems
can be encoded in the syntactic and semantic framework of ADeLg in a
straightforward and intuitive way, differently from other languages of deontic
logic in which it is not possible to make reference to action types or to the
conduct of an agent. Even the weakest framework we have introduced so
far, that is language Ly of system ADeLg and its semantics, is expressive
enough to represent interesting aspects of search problems in two steps: first,
one transforms a rigorous description of a search problem into a simplified
model for ADeLg; then, one uses the modal operators in Ly to express

9See [11, ch.2] and [21, ch.2] for a general introduction.
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actions that are available to an agent at each stage of the search problem
and norms that have to be followed.
Let us start by better specifying the sort of problems we are dealing with.

DEFINITION 11. A search problem is a tuple (S, A, in, end, a, s, cost) where

S # @ is a set of states

A # @ is a finite set of action types

in,end € S are the initial state and the goal state

a: S — p(A) gives the actions a(s) available at s € S

s: 5 x A— p(9) gives the states s(s, a) accessible via a at s € S

cost : S x A — R* gives the cost cost(s,a) of performing a at s € S

We say that the actions in a(s) are ezecutable at s and that s sees a state

s € Siff s’ € s(s,a) for some a which is executable at s. Finally, a solution
of a problem consists in a path from in to end that minimizes the costs.

5.1. A Basic Problem

A sequence of cells numbered from 1 to 6 (as in Figure 7) is given and
we are placed in cell 1. We can move from cell to cell by either making
a walk, which leads us from cell n to n + 1, provided that n + 1 exists,
or by making a jump, which leads us from cell n to 2n, provided that 2n
exists. Finally, making a walk costs 1 unit of time, while making a jump
costs 2 units of time. The problem is to find the sequence of actions that
minimizes the total cost in terms of time. Let us present this problem as a
tuple (S, A,in,end, a,s, cost):

1. S =1{1,2,3,4,5,6}

2. A =A{walk, jump}
3.in=1,end =6

4. a: W — p(A) is such that

(a) a(n) = {walk, jump}, if 1 <n <3
(b) a(n) ={walk},if4 <n <5

Figure 7. Sequence of cells
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walk, 1

walk, 1

Figure 8. Problem graph

5.8:5 x A — p(W) is such that

(a) s(n,walk) ={n+1},if 1 <n <5
(b) s(n, jump) = {2n},if 1 <n <3

6. cost : S x A — RT is such that

(a) cost(n,walk) =1,if 1 <n <5
(b) cost(n,jump) =2,if 1 <n <3

The problem can be pictured as a labeled directed graphs (Figure 8).

In this case the solution of the problem can be visualized without diffi-
culty by explicitly considering all the possible paths from 1 to 6, namely by
unraveling the problem graph (Figure 9). However, it is important to remark
that, since the graph representing a search problem may include cycles, its
unravelling may give rise to an infinite model. Here we use unravelling only
for illustrating how an example of search problem can be encoded in our
framework and such an encoding would work also in the presence of cycles
in the initial graph.'®

All in all, there are six paths with total costs: 5,4,5,6,5,6. The path
minimizing the total cost is (walk, walk, jump). So we can conclude that this
path is the optimal one, thus solving our problem. Furthermore, we are in a
position to specify the long run cost of each move by recursively computing
the minimal total cost from each state to the end state (Figure 10).

The long run cost of walking in 5 is 1, since 1 is the minimal total cost to
be paid to reach 6 from 5. In a similar way, the long run cost of walking in 3

0Tree-like models like the graph in Figure 9 are traditionally employed to interpret
systems of STIT-logic. By contrast, in the present framework we mainly work with models
like the graph in Figure 8. Furthermore, transitions between states are labelled in our
models, whereas this is usually not the case in models for STIT. As the connection between
Figures 8 and 9 suggests, by adapting the unravelling method from the model-theory of
modal logic [2], one can transform each model in our framework into a tree-like model
suitable for STIT-logic.
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Figure 10. Long run cost of a move

is 3, since 3 is the minimal total cost to be paid to reach 6 if we walk, while
the long run cost of jumping in 3 is 2, since 2 is the minimal total cost to be
paid to reach 6 from 3 if we jump. Having determined the long run costs,
we can assign a deontic value to each action at each state. In particular,
walking is better than jumping at the first two states, since the long run
cost of walking is 4 and 3, while the long run cost of jumping is 5 and 4;
jumping is better than walking at state 3, since the long run cost of walking
is 3, while the long run cost of jumping is 2. This final consideration allows
us to understand how to construct a model from a search problem.

5.2. Modeling a Search Problem

The connection between searching problems and action deontic models is the
following. A search problem is specified once the basic actions available at
each state and the outcomes and costs of these actions are defined. Suppose
that an action of an elementary type a is available at w. Then, the agent
is able to do a at w, and so there is an alternative state from which a
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state where a has been done is accessible. This provides a suitable way to
represent a problem via an action deontic model and to shed light on the
relation between action deontic models and transition systems at once.

The interesting part of the following definition concerns the specification
of W, which contains worlds taking trace of the actions leading to them and
the actions which are available in them. Accordingly, every world in W is a
triple (a, s,b), where s is a state, a is an elementary action leading to s, and
b is an elementary action available in s.

DEFINITION 12. Let (S, A,in,end, a,s, cost) be a search problem. The ac-
tion deontic model induced by this problem is the tuple (W, R;, A;, D;, D)
where

1. W is the union of three sets:

{(1,in,a) :a € a(in)}
{(a,end,a) : Jz(x € S and end € s(z,a))}
{(a,s,b) : Jz(x € S and s € s(x,s)),Jy(y € Sand y € s(s,b))}

2. R; is such that (a’,s',b") € R;((a,s,b)) iff a’ = b and s’ € s(s, b)
3. A; is such that (a/,s',0") € A;((a,s,b)) iff ' =sand o’ =a
4. D; is inductively defined so that

Base: D;(a) = {(a/,s',b") : 0’ = a}

Step: D;(1) =W

D;i(amB) = Di(a) N D;(B)
Di(aUp) = Di(a) U D;i(B)
5. D = (DV, SV, Ap, ¢) is such that
DV ={o,i,f}
SV ={o}
Ap is defined by the matrix
f i o

f £ f
ilf i i
o|lf i o

¢ is such that: ¢(w,a) = o iff the long run cost of doing a at w is
minimum; c¢(w,«) = i iff the long run cost of doing a at w is only
minimal, but not the minimum; ¢(w, a) = f otherwise.

As an example of how the transition system underlying a search problem
is represented, let us consider the graph in Figure 11:
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ai

W Tl e

a2

a A
end

Figure 11. A simple transition system

This case is general enough to illustrate the idea of the previous definition
and it allows us to better understand the connection between transition
systems and action deontic frames. The graph contains four states and two
actions:

(i) if different arrows leave a state, then different actions are available to
the agent and therefore the state has to be split in different copies linked
by the relation A;;

(ii) if different arrows lead to a state, then again the state has to be split in
different copies taking trace of the action leading to them, since states
are not memoryless.

The states and relations in the corresponding action deontic frame are
then as in Figure 12.
‘We now show that the induced frame is indeed an action deontic frame.

(a17 S1, a‘2)

Figure 12. Representation of the previous transition system
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THEOREM 8. The frame induced by a search problem is an action deontic
frame.

PROOF. We show that R;, A;, D; and DD satisfy the relevant conditions.

R; is such that R;(w) # @ for every w € W. Since w € W, by definition,
w has the form (a, s, b) for some s € S and some actions a, b. Furthermore,
by construction, every state, except possibly end, sees another state and end
sees itself. Therefore we conclude that R;(w) # @ for every w € W.

A; satisfies conditions A1 and A2.

As to Al, by definition, x € A;(w) iff the first two elements of x coincide
with the first two elements of w. Suppose that v € A;(w). If x € A;(w) or
x € A;(v), then both the first two elements of z and w and the first two
elements of x and v are the same. Thus, the first two elements of v and w are
the same, and so A;(v) = A;(w). In addition, again by definition, v € A;(v),
and thus A;(v) = A;(w) implies v € A;(w). It follows that v € A;(w) iff

As to A2, suppose that v € R;(w) and « € A;(v). Let w = (a, s,b). Then,
v has the form (b, s’,b’), for some action b’, and z has the form (b,s’,b"”),
for some action b”, which implies that € R;(w).

D; satisfies conditions D1 to D4: straightforward, by the definition of D;.
D is a deontic structure: straightforward, by the definition of . |

Let us close this section by showing how language Ly can be used to
describe some aspects of a search problem. The basic idea is that one can
use a formula of the form Oa to mean that performing an action of type
a has a minimal long run cost for the reasoning agent. So, given the def-
inition of truth in models for £y, we conclude that M,w = Oa precisely
when a is one of the actions with a minimum long run cost at w. Notice
that, since the actions that are classified as obligatory in the context of a
search problem are always among those available to the reasoning agent,
the following principle, which incorporates a version of the Ought-implies-
Can thesis, should be assumed as valid in all models representing a search
problem: Oa — {;(i)done;(a). From this it also follows that, in a model
for a search problem, the state end can be described in a purely normative
way: it is the only state where every formula of the form Oa is false. Also,
some of the structural aspects of a problem can be precisely described in
Ly, once an appropriate valuation function is selected. Specifically: suppose
that a problem has states S = {1,2,...,n}; select V such that V(ps) = {s}
for s € S. Then there are formulas corresponding to the fact that an action
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is executable at a state and to the fact that the current state can see an-
other state. In fact, if M is the model based on the frame induced by such
a problem:

M, w = O;done;(a) iff a € a(w)
M, w = Q;(done;(a) A ps) iff s € s(w, a)

This shows at least some of the potentialities deriving from the represen-
tation obtained above.

6. Final Remarks

The approach to action deontic logic introduced in this article was shown to
be expressively rich and very flexible with respect to the representation of
normative reasoning. In particular, its main strength is an encoding of fun-
damental relations between action tokens, action types and deontic values;
an encoding that makes room for combining and generalizing alternative
formal languages employed in the literature.

Several directions could be followed in order to extend our work. Here we
list three important ones, that are directly connected to issues mentioned
within our exposition. First, building on the analysis of the three systems by
Kulicki and Trypuz [13] that we provided in Section 4.2, one could show how
to capture other systems of normative reasoning available in the literature,
shedding further light on the expressiveness of our proposal. In this direc-
tion, we are working on some results that show how standard deontic logic,
von Wright’s original action logic ([24,25]), and Segerberg’s basic system of
action deontic logic, together with some of its extensions ([3,22,23]), emerge
as fragments of the present system. Second, one could explore the definition
of dyadic operators for conditional norms, starting with the ideas presented
in Section 2.3, and address some of the well-known paradoxes related to the
notion of conditional obligation. An interesting issue in this regard is deter-
mining the fragment of a logical system associated with a dyadic operator,
i.e., for a given system S and dyadic operator O, axiomatizing the set of
theorems of S in which O is the main operator. Third, one could exploit
the deontic matrices used in our semantics to capture a hierarchy among
normative sources, so as to always assign top values in the matrix to norms
coming from prioritized sources, thus contributing to the debate concerning
the use of priority orderings (either on norms or on reasons) in deontic logic
(as exploited, e.g., in [19,20]).
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