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Abstract. Motivated by Kalman residuated lattices, Nelson residuated lattices and Nel-

son paraconsistent residuated lattices, we provide a natural common generalization of

them. Nelson conucleus algebras unify these examples and further extend them to the

non-commutative setting. We study their structure, establish a representation theorem for

them in terms of twist structures and conuclei that results in a categorical adjunction, and

explore situations where the representation is actually an isomorphism. In the latter case,

the adjunction is elevated to a categorical equivalence. By applying this representation to

the original motivating special cases we bring to the surface their underlying similarities.
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Introduction

Residuated lattices arise in many contexts in general and ordered algebra.
Examples of residuated lattices include lattice-ordered groups, the lattice
of ideals of a ring and relation algebras. At the same time they serve
as algebraic semantics for substructural logics, including linear, relevance
and many-valued logics. As a result, the algebraic semantics of these logics
form further examples of residuated lattices and include MV, Heyting and
Boolean algebras. In this paper we investigate a construction of involutive
residuated lattices that has interesting applications to models of paracon-
sistent logics and use it to provide a unified approach to these models.

Given a lattice L, the twist structure over L is obtained by considering
the direct product of L and its order-dual L∂ . The resulting lattice has a
natural De Morgan involution given by

∼ (x, y) = (y, x)

for all (x, y) ∈ L × L∂ . This construction was used by Kalman in 1958 [17],
while the modifier “twist” appeared thirty years later in Kracht’s paper
[18]. Although Kalman only worked with the lattice structure, several other
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authors considered expansions with additional operations on L which induce
new and interesting operations on the twist structure [5–7,9–11,18,20,21,
24,25,27,30,31].

In particular, Tsinakis and Wille [30], inspired by Chu’s work in cate-
gory theory [3] and its specialization to quantales [26], considered the twist
structure over a residuated lattice L having a greatest element � and neu-
tral element e, and endowed it with a residuated lattice structure with unit
(e,�), such that the pair (�, e) is the dualizing element for the natural
involution.

In [28,29] and [5], it is proved that the logical system of Nelson construc-
tive logic with strong negation (CNS, see [19]) has as algebraic semantics
residuated lattices whose lattice reducts are twist structures. An analogous
situation is presented in [6] and [7] by considering the paraconsistent version
of CNS (PNS, see [21]) and proving that a class of residuated lattices, called
NPc-lattices is the algebraic semantics of a system that arises by extending
the language of PNS by a Belnap constant. The monoid and implication
operations of the residuated lattices in both of these classes coincide with
the ones proposed in [30]. However, the unit of the residuated lattice is not
the same in all the cases, so these structures do not fall directly under the
framework of [30], and neither of the two corresponding varieties is contained
in the other.

Our aim is to present a unified approach that provides a deeper insight
into the classes of residuated lattices that have a representation based on
twist structures. Our framework encompasses Nelson residuated lattices [5,
28], Nelson paraconsistent residuated lattices [6,7] and Kalman residuated
lattices [1,8]. Our results allow the comparison among them and provide
some interesting new examples.

To achieve this aim we start by considering a broader class of algebras:
residuated lattice-ordered semigroups. Given a residuated lattice L we define
the general twist product Tw(L) as an involutive residuated lattice-ordered
semigroup with an extra unary operation of involution; the fact that L may
lack a top element results in Tw(L) potentially lacking an identity element.
By localizing to a specific positive idempotent element of Tw(L) (induced by
an arbitrary fixed element ı of L), we obtain a subalgebra Tw(L,ı) of Tw(L)
that is a residuated lattice; this localization is done by the double-division
conucleus given in [15], which focuses on the local submonoid of the positive
idempotent element. This approach allows us to work with twist products
of residuated lattices that do not have a top element and subsumes all of
our motivating examples. Thus we accomplish our first goal: we put into the
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same framework different algebras, such as Nelson residuated lattices and
Paraconsistent Nelson residuated lattices.

Having established this first theoretical framework, we pursue our second
purpose: to describe the class of involutive residuated lattices that have a
representation as a twist product over a residuated lattice; this requires us
to focus on a construction in the reverse direction to the twist product. We
show that the desired residuated lattice is also obtained by a conucleus on
the involutive residuated lattice, which is of a very different nature than the
double-division one, and we call it a Nelson conucleus. The main represen-
tation result in Theorem 18 shows that pairs of the form (A,n), where A is
a cyclic involutive residuated lattice and n is a Nelson conucleus, are repre-
sentable by a twist product over a residuated lattice defined on n[A]. We call
these algebras Nelson conucleus algebras and denote the variety they form
by NCA. As a corollary we provide an adjunction between the algebraic
category given by NCA and a category whose objects are pairs of the form
(L, ı) where L is a residuated lattice and ı ∈ L is a cyclic element. Along the
way of proving the representation, we generalize the original construction of
Rasiowa [22,23] on Nelson algebras and their representation by twist struc-
tures. In particular, our presentation shows that Rasiowa’s homomorphic
image construction can be replaced by a conucleus construction, which is
more internal to the original algebra, as it provides representatives for the
equivalence classes.

Our motivating examples share some extra common features: they are
commutative residuated lattices and the Nelson conucleus n is definable by
a term function; therefore they actually form varieties of commutative in-
volutive residuated lattices. First we identify the subvariety of NCA whose
elements are term equivalent to Kalman lattices. Secondly we prove that Nel-
son residuated lattices and Paraconsistent Nelson residuated lattices form
classes term equivalent to subvarieties of NCA, thus Theorem 18 applies to
them. Furthermore, we show that both of these subvarieties are contained
in NT , a subvariety of NCA, up to term equivalence, whose elements we
call Nelson-type algebras. Following Sendlewski’s representation for Nel-
son algebras in [27] and the paraconsistent analogue given by Odintsov in
[20], we improve the representation of Theorem 18 for NT by providing a
Sendlewski-like theorem, i.e., we identify each Nelson-type algebra with a
subalgebra of the twist product on n[A]. As a consequence we get a cate-
gorical equivalence between the algebraic category of Nelson-type algebras
and the category whose objects are triples of the form (H, i, F ), where H is
a Brouwerian algebra, ı is a cyclic element in H and F is a Boolean filter
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of H. This then restricts to categorical equivalences for the two subvari-
eties corresponding to Nelson residuated lattices and Paraconsistent Nelson
residuated lattices.

In the last section, we complete the circle of ideas by providing some
particular conditions under which the representation Theorem 18 can be
turned into an isomorphism theorem even when the Nelson conucleus is not
given by a term.

1. Preliminaries

In this section we review some existing definitions and constructions. We
also introduce modifications and combinations of these constructions that
will be suitable for the paper.

1.1. Residuated Lattices

A residuated lattice-ordered semigroup is an algebra A = (A, ∨, ∧, ·, \, /)
such that (A, ·) is a semigroup, (A, ∨, ∧) is a lattice and the residuation
condition

x · y ≤ z iff y ≤ x\z iff x ≤ z/y

holds for all x, y and z in A, where ≤ is the order given by the lattice struc-
ture. A residuated lattice is an algebra A = (A, ∨, ∧, ·, \, /, e) such that
(A, ·, e) is a monoid and (A, ∨, ∧, ·, \, /) is a residuated lattice-ordered semi-
group; residuated lattice-ordered semigroups and residuated lattices form
varieties. If a residuated lattice-ordered semigroup satisfies x · y = y · x, it is
called a commutative. In such case x\y = y/x and we denote the common
value by x → y. We say that the residuated lattice A is distributive if the
lattice (A, ∨, ∧) is distributive. For each natural number n we define x0 = e
and xn = xn−1 · x for n > 0; also we often write xy for x · y. For more on
residuated lattices, see [4,14,16].

We will be also working with integral residuated lattices, which are resid-
uated lattices satisfying x ≤ e, and with Brouwerian algebras that are term
equivalent to residuated lattices satisfying xy = x ∧ y (and hence are inte-
gral and commutative). Additionally, we will sometimes consider bounded
structures, with lower bound ⊥ (bottom element) and upper bound � (top
element). Bounded residuated lattices are the expansions of residuated lat-
tices with a constant ⊥ for the bottom element that is stipulated to exist;
in this case there is also a term-definable top element.
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1.2. Involutive Residuated Lattices

Residuated lattice-ordered semigroups can be expanded into involutive
residuated lattice-ordered semigroups by adding to the signature a unary
(cyclic) involution operation ∼ satisfying the equations:

∼∼x = x (double negation)

x\∼y = ∼x/y (contraposition)

In the case of residuated lattices, an alternative equivalent presentation of
involutive residuated lattices is obtained by adding to the signature a nega-
tion constant element f that is cyclic: for all x, x\f = f/x, and dualizing:
f/(x\f) = x = (f/x)\f . The two ways produce term equivalent algebras
via the definitions f = ∼e and ∼x = x\f (see [12,30] for details); in par-
ticular ∼x = x\∼e. We prefer the definition in terms of the involution ∼,
as it makes sense also for residuated lattice-ordered semigroups. In this pa-
per we will not make use of the notion of not-necessarily cyclic involutive
residuated lattice, and we will always assume cyclicity for f and ∼. Observe
that in commutative involutive residuated lattices the contraposition takes
the form x → ∼y = y → ∼x and that cyclicity holds automatically.

In an involutive residuated lattice the divisions are definable in terms
of the multiplication and the involution, and also the lattice operations are
interdefinable via De Morgan equations. More precisely:

Lemma 1. (see [12, Lemma 5.1] and [14, Lemma 2.8]) If A is an involutive
residuated lattice then

1. x\y = ∼(∼y · x) and y/x = ∼(x · ∼y).

2. x · y = ∼(y\∼x) = ∼(∼y/x).

3. ∼(x ∨ y) = ∼x ∧ ∼y and ∼(x ∧ y) = ∼x ∨ ∼y.

An involutive residuated lattice is called odd if f = e, or equivalently
∼e = e; also, we have ∼x = x\e. Because of the identification of the two
constants, odd involutive residuated lattices are term equivalent to residu-
ated lattices that satisfy the equations x\e = e/x and (x\e)\e = x. In the
commutative case, the defining equation is just (x → e) → e = x.

1.3. Conuclei Constructions

We review the important notion of conucleus on residuated structures.

1.3.1. Conuclei and Weak Conuclei

Definition 2. A weak conucleus δ on a residuated lattice-ordered semi-
group A = (A, ∨, ∧, ·, \, /) is a function on A that satisfies:
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(C1) δ(x) ≤ x,

(C2) δ(δ(x)) = δ(x),

(C3) if x ≤ y then δ(x) ≤ δ(y),

(C4) δ(x) · δ(y) ≤ δ(x · y).

If A is a residuated lattice with neutral element e and δ additionally satisfies:

(C5) δ(e) · δ(x) = δ(x) · δ(e) = δ(x),

then δ is called a conucleus on A.

Summing up, a conucleus is an interior operator δ on a residuated lattice
A that satisfies (C4) and (C5). It is immediate that if δ is a weak conucleus
then δ(x) ∨ δ(y) = δ(δ(x) ∨ δ(y)) and δ(x) · δ(y) = δ(δ(x) · δ(y)).

Given a residuated lattice A and a conucleus δ on A, the algebra

Aδ = δ[A] = (δ[A], ∨, ∧δ, ·, \δ, /δ, δ(e))

is a residuated lattice [14, Proposition 3.41], where x∧δ y = δ(x∧y), x\δy =
δ(x\y) and y/δx = δ(y/x) for x, y ∈ δ[A] (by the previous observation, δ[A]
is closed under ∨ and ·).

Lemma 3. If δ is a weak conucleus on A, then

(C6) δ(x ∧ y) = δ(δ(x) ∧ δ(y)),

(C7) δ(δ(x)\y) = δ(δ(x)\δ(y)) and δ(y/δ(x)) = δ(δ(y)/δ(x)).

Proof. For (C6), observe that by (C1) we have that δ(x) ∧ δ(y) ≤ x ∧ y,
so δ(δ(x) ∧ δ(y)) ≤ δ(x ∧ y) by (C3). As δ(x ∧ y) ≤ δ(x), δ(y) by (C3), we
have that δ(x ∧ y) ≤ δ(δ(x) ∧ δ(y)) again by (C3) and (C2). For (C7), as
δ(x)\δ(y) ≤ δ(x)\y we have one inequality. For the other one, using (C4)
we have δ(x) · δ(δ(x)\y) = δ(δ(x)) · δ(δ(x)\y) ≤ δ(δ(x) · δ(x)\y) ≤ δ(y) and
(C7) follows from (C3) and (C2).

1.3.2. Double Division Conucleus Let A = (A, ∨, ∧, ·, \, /) be a residuated
lattice-ordered semigroup and p ∈ A an idempotent element (i.e., p = p2)
that is also positive (i.e., p\x, x/p ≤ x ≤ px, xp, for all x). This definition
of being positive is justified by the fact that if A has an identity element e,
then p is positive iff e ≤ p. It is shown in [15] that the map defined by

δp(x) = p\x/p

is a weak conucleus on A, that ∧δ(p) = ∧, \δ(p) = \, /δ(p) = /, that p is
an identity element for δp[A] and that δp[A] = p\A/p = {p\a/p : a ∈ A}.
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Therefore the algebra

p\A/p = δp[A] = (p\A/p, ∧, ∨, ·, \, /, p)

is a residuated lattice. The algebra p\A/p is called the double-division conu-
cleus image of A by p. Moreover, it turns out that δp[A] = {a ∈ A : ap =
a, pa = a}.

It is further shown in [15] that if the residuated lattice-ordered semigroup
A is (cyclic) involutive with involution ∼, then the residuated lattice p\A/p
is also (cyclic) involutive and actually p\A/p is a subalgebra of A with
respect to the operations ∧, ∨, ·, \, /,∼; the constants e and ∼e are replaced
by p and ∼p.

2. Twist Structures

Given a residuated lattice-ordered semigroup L = (L,∧, ∨, ·, \, /), we con-
sider the set Tw(L) = L×L and define the operations ∧ and ∨ as in L×L∂ .
Also, for a, a′, b, b′ ∈ L, we define:

∼(a, b) = (b, a) (1)

(a, b) · (a′, b′) = (a · a′, b′/a ∧ a′\b) (2)

(a, b)\(a′, b′) = (a\a′ ∧ b/b′, b′ · a) (3)

(a′, b′)/(a, b) = (a′/a ∧ b′\b, a · b′) (4)

The resulting structure (Tw(L), ∧, ∨, ·, \, /,∼) is an involutive residu-
ated lattice-ordered semigroup that we denote Tw(L) and we refer to this
algebra as the full twist structure over L. In addition, if L is a topped
residuated lattice with neutral element e and top element � the structure
(Tw(L), ∧, ∨, ·, \, /,∼, (e,�)) is an involutive residuated lattice (see [30]). In
particular, if (L,∧, ∨, ·, \, /, e) is an integral residuated lattice, the algebra
Tw(L, e) = (Tw(L), ∧, ∨, ·, \, /,∼, (e, e)) is an involutive residuated lattice.

2.1. Double Division Conucleus for Twist Structures

Next we do not assume that L has a top, so Tw(L) may lack an identity
element.

Lemma 4. Let L be a residuated lattice and ı ∈ L.

1. The element (e, ı) is a positive idempotent of the residuated lattice-
ordered semigroup Tw(L).
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2. An element (a, b) is fixed by δ(e,ı) iff ab∨ ba ≤ ı. (Recall that δp(x) =
p\x/p.)

Proof. For (1) we have (e, ı)(e, ı) = (e · e, ı/e ∧ e\ı) = (e, ı) so (e, ı) is a
idempotent. To show that it is positive, we have that for all (a, b),

(a, b)(e, ı) = (ae, ı/a ∧ e\b) = (a, ı/a ∧ b) ≥ (a, b)

(e, ı)(a, b) = (ea, b/e ∧ a\ı) = (a, b ∧ a\ı) ≥ (a, b)

(e, ı)\(a, b) = (e\a ∧ ı/b, be) = (a ∧ ı/b, b) ≤ (a, b)

(a, b)/(e, ı) = (a/e ∧ b\ı, be) = (a ∧ b\ı, b) ≤ (a, b).

Note that

(e, ı)\(a, b)/(e, ı) = (e\a ∧ ı/b, be)/(e, ı) = (a ∧ ı/b, b)/(e, ı)

= ((a ∧ ı/b)/e ∧ b\ı, eb) = (a ∧ ı/b ∧ b\ı, b).

Therefore, (a, b) is fixed iff (e, ı)\(a, b)/(e, ı) = (a, b) iff (a ∧ ı/b ∧ b\ı, b) =
(a, b) iff a ≤ ı/b ∧ b\ı iff ab ≤ ı and ba ≤ ı iff ab ∨ ba ≤ ı.

Given the fact that (e, ı) is a positive idempotent, for a residuated lattice
L, we denote by

Tw(L, ı) = δ(e,ı)[Tw(L)] = (e, ı)\Tw(L)/(e, ı)

the double-division conucleus image of the residuated lattice-ordered semi-
group Tw(L) by δ(e, ı). Note that even though Tw(L) may have no identity
element, Tw(L, ı) is still a residuated lattice with identity element (e, ı).
This allows us to consider this construction when L is a residuated lattice
that lacks a top element. We call Tw(L, ı) the twist structure over (L, ı)

According to the previous results, the universe of the algebra Tw(L, ı)
is the set Tw(L, ı) = {(a, b) ∈ L × L∂ : ab ∨ ba ≤ ı}. In summary we obtain
the following:

Theorem 5. Let (L,∧, ∨, ·, \, /, e) be a residuated lattice and ı ∈ L. Con-
sider the set

Tw(L, ı) = {(a, b) ∈ L × L∂ : ab ∨ ba ≤ ı}
equipped with the operations ∧ and ∨ of L × L∂ and the operations defined
in equations (1), (2), (3) and (4). Then Tw(L,ı) = (Tw(L, ı), ∧, ∨, ·, \, /,∼,
(e, ı)) is an involutive residuated lattice.

We prove a lemma that sheds some light into the construction.

Lemma 6. The set

Tw(L, ı) = {(a, b) ∈ L × L : ab ∨ ba ≤ ı}
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is a downset of the direct product lattice L×L. Moreover, Mı = {(a, b) : a =
ı/b ∧ b\ı and b = ı/a ∧ a\ı} consists of maximal elements of Tw(L, ı) and if
ı is cyclic then Tw(L, ı) = ↓L×LMı.

Proof. We prove that Tw(L, ı) is a downset of L × L in terms of the
coordinatewise order, which is different than the order of the residuated
lattice Tw(L,ı). If (c, d), (a, b) ∈ L × L, are such that c ≤ a, d ≤ b and
ab ∨ ba ≤ ı, then cd ∨ dc ≤ ab ∨ ba ≤ ı. Also, note that

Tw(L, ı) = {(a, b) : a ≤ ı/b ∧ b\ı and b ≤ ı/a ∧ a\ı}
= {(a, b) : a ≤ ı/b ∧ b\ı} = {(a, b) : b ≤ ı/a ∧ a\ı}.

It then follows directly that Tw(L, ı) is a downset. To show that the set
Mı = {(a, b) : a = ı/b ∧ b\ı and b = ı/a ∧ a\ı} consists of maximal elements
of Tw(L, ı), let (a, b) ∈ Mı and (c, d) ∈ Tw(L, ı), be such that a ≤ c, b ≤ d.
Then a = ı/b ∧ b\ı, b = ı/a ∧ a\ı, c ≤ ı/d ∧ d\ı and d ≤ ı/c ∧ c\ı. So,
c ≤ ı/d ∧ d\ı ≤ ı/b ∧ b\ı = a ≤ c and d ≤ ı/c ∧ c\ı ≤ ı/a ∧ a\ı = b ≤ d,
hence (c, d) = (a, b).

Assume now that ı is cyclic to prove that Tw(L, ı) = ↓L×LMı. Since
Mı ⊆ Tw(L, ı) and Tw(L, ı) is a downset, we get ↓L×LMı ⊆ Tw(L, ı).
Conversely, if (c, d) ∈ Tw(L, ı), then c ≤ (c\ı)\ı, d ≤ c\ı and ((c\ı)\ı, c\ı) ∈
Mı; the element (d\ı, (d\ı)\ı) also witnesses this fact. This provides a visual
understanding of how Tw(L, ı) sits inside Tw(L).

In Figure 1 we consider all possible twist structures and their maximal
sets Mı associated with the only two-element residuated lattice: the general-
ized Boolean algebra 2. In Figure 2 we consider all possible twist structures
and their maximal sets Mı associated with all the three-element residu-
ated lattices: the Wajsberg chain �L3, the Gödel hoop G3 and the Sugihara
monoid S3.

2.2. Motivating Examples

We consider three different varieties of algebras that serve as the motiva-
tion for our study. The goal is to include them under the same theoretical
framework.

Example 7. A Kalman residuated lattice [1,8] is a commutative residuated
lattice A = (A, ∧, ∨, ·, →, e) satisfying the following equations:

(K1) (x → e) → e = x,

(K2) (x · y) ∧ e = (x ∧ e) · (y ∧ e),
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(0, 0) (1, 1)

(1, 0)

(0, 1)

Tw(2,0)

(0, 0) (1, 1)

(1, 0)

(0, 1)

Tw(2,1)

0

1

2

Figure 1. The 2-element residuated lattice 2, together with the lattice

structure of all its possible twist structures, and the maximal sets that

describe them. In each case, the maximal sets are shown in gray, and the

identity element for the product (1, ı) is marked as a black square

(K3) ((x ∧ e) → y) ∧ (x → (y ∨ e)) = x → y [equivalently, ((x ∧ e) →
y) ∧ ((∼y ∧ e) → ∼x) = x → y],

(K4) e ∧ (x ∨ y) = (e ∧ x) ∨ (e ∧ y) and

(K5) x ∧ (y ∨ e) = (x ∧ y) ∨ (x ∧ e).

(A, ∧, ∨, ·, →, ∼, e) is a commutative involutive residuated lattice, where
∼x = x → e and ∼ e = e, i.e., A is an odd residuated lattice. Note that the
expressions (∼y ∧ e) → ∼x and x → (y ∨ e) in the two forms of (K3) are
equal by contraposition. It will follow from our analysis that (K5) is actually
redundant.

If L = (L,∨, ∧, ·, →, 1) is an integral commutative residuated lattice, then
Tw(L, 1) is a Kalman lattice. Moreover, for each Kalman lattice A there is
an integral residuated lattice L such that A is isomorphic to a subalgebra
of Tw(L, 1) [8, Th. 2.5].

Example 8. A Nelson residuated lattice [5,11,27–29] is a bounded integral
commutative residuated lattice A = (A, ∨, ∧, ·, →, ⊥, e), that with ¬x :=
x → ⊥ satisfies:

(NRL1) ¬¬x = x.

(NRL2) (x2 → y) ∧ ((¬y)2 → ¬x) = x → y.

Involutive residuated lattices defined in [5] are not the same as the ones
defined here, since the involution ¬ is a definable operation if the constant
⊥ is included in the type. Nelson residuated lattices are term equivalent
to Nelson algebras [22,23], the algebraic counterpart of Nelson constructive
logic with strong negation [19].

If H = (H, ∨, ∧, →, 0, 1) is a Heyting algebra then viewing H as a bounded
residuated lattice with · = ∧ and bottom element 0, Tw(H, 0) is a Nelson
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Figure 2. The 3-element residuated lattices �L3, G3 and S3, together

with the lattice structure of all their possible twist-structures, and the

maximal sets that describe them. In each case, the maximal sets are

shown in gray, and the identity element for the product (1, ı) is marked

as a square
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residuated lattice with bottom element (0, 1), which is added to the signa-
ture of Tw(H, 0). As in the previous case, there is a representation theorem
since every Nelson residuated lattice is embeddable in Tw(H, 0) for a Heyt-
ing algebra H (see [5, Corollary 3.5]).

Example 9. A Nelson paraconsistent residuated lattice (NPc-lattice for
short, see [6], [7], [21] and [2]) is an odd distributive commutative residuated
lattice A = (A, ∨, ∧, ·, →, e) satisfying, for ∼x = x → e:

(NPc1) ∼∼ x = x

(NPc2) (x · y) ∧ e = (x ∧ e) · (y ∧ e)

(NPc3) (x ∧ e)2 = x ∧ e

(NPc4) ((x ∧ e) → y) ∧ (x → (y ∨ e)) = x → y [equivalently, ((x ∧ e) →
y) ∧ ((∼y ∧ e) → ∼x) = x → y]

NPc-lattices are special Kalman residuated lattices satisfying distributiv-
ity and (NPc3). They were introduced in [6] in order to present the algebraic
semantics of Nelson paraconsistent logic [21] within the framework of resid-
uated lattices.

If H = (H, ∨, ∧, →, 1) is a Brouwerian algebra (also called generalized
Heyting algebra), then viewing H as a residuated lattice with
· = ∧, Tw(H, 1) is a Nelson paraconsistent residuated lattice. As in the
previous cases, every NPc-lattice A can be embedded into a twist structure
Tw(H, 1) (see [2]).

2.3. Natural Conuclei on Twist Structures

Another conucleus will be important for understanding involutive residuated
lattices represented by twist structures; this time the conucleus will be on
Tw(L,ı). Given a residuated lattice L and an element ı ∈ L, we define the
function

nTw(a, b) = (a, ı/a ∧ a\ı)

on Tw(L,ı). Recall that ı is cyclic if x\ı = ı/x, for all x. In that case
ab ∨ ba ≤ ı iff ab ≤ ı iff ba ≤ ı, for all a, b. So, if ı is a cyclic (and in
particular in the commutative case), Tw(L, ı) = {(a, b) ∈ L × L∂ : ab ≤ ı}
and also nTw(a, b) = (a, a\ı).

Note that, under the assumption that ı is cyclic, nTw satisfies (C1), (C2),
(C3) and (C5). Moreover, we can prove:

Lemma 10. Assume that the function nTw(a, b) = (a, ı/a ∧ a\ı) is defined
on Tw(L,ı) with ı cyclic. Then for each a, b, c, d ∈ L we have:
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1. nTw((a, b) · (c, d)) = nTw(a, b) · nTw(c, d)

2. nTw((a, b) ∨ (c, d)) = nTw(a, b) ∨ nTw(a, b)

3. (nTw(a, b) · (c, d)) ∨ ((a, b) · nTw(c, d)) = (a, b) · (c, d).

In particular, nTw(a, b) is a conucleus.

Proof. Using that (x/y)/z = x/(zy) and z\(y\x) = (yz)\x holds for resid-
uated lattices ([14, Lemma 2.6(6)]), we have that

nTw((a, b) · (c, d)) = (ac, (ac)\ı) = (ac, ı/(ac) ∧ (ac)\ı)

= (ac, (c\ı)/a) ∧ (c\(a\ı)) = (a, a\ı) · (c, c\ı)

= nTw(a, b) · nTw(c, d).

Using that (y∨z)\x = (y\x)∧(z\x) holds for residuated lattices ([14, Lemma
2.6(3)]), we also have that:

nTw((a, b) ∨ (c, d)) = nTw(a ∨ c, b ∧ d) = (a ∨ c, (a ∨ c)\ı)

= (a ∨ c, (a\ı) ∧ (c\ı)) = (a, a\ı) ∨ (c, c\ı)

= nTw(a, b) ∨ nTw(a, b).

Finally we observe that

(nTw(a, b)(c, d)) ∨ ((a, b)nTw(c, d))

= (a, a\ı)(c, d) ∨ (a, b)(c, c\ı)

= (ac, (d/a ∧ c\(a\ı))) ∨ (ac, (c\b ∧ (c\ı)/a))

= (ac, (d/a ∧ c\(a\ı)) ∧ (c\b ∧ (c\ı)/a))

= (ac, (d/a ∧ ac\ı) ∧ (c\b ∧ ac\ı))

= (ac, d/a ∧ c\b) = (a, b) · (c, d),

where we used that ac(d/a ∧ c\b) ≤ ac(c\b) ≤ ab ≤ ı, so d/a ∧ c\b ≤ ac\ı.

3. Nelson Conucleus Algebras

Motivated by the properties of the pair of the involutive residuated lattice
Tw(L,ı) and the conucleus nTw, we define the main class of algebras of the
paper and link them to the preceding constructions.
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3.1. Nelson Conuclei and the Variety NCA
An operator n on a residuated lattice A is called a Nelson conucleus if n is
a conucleus and it also satisfies:

(T1) n(x ∨ y) = n(x) ∨ n(y)

(T2) n(xy) = n(x)n(y)

(T3) xy ≤ n(x)y ∨ xn(y)

Any conucleus satisfies xy ≥ n(x)y ∨ xn(y). Then we have:

Lemma 11. Let A be a residuated lattice and n a conucleus on it satisfying
(T1) and (T2). Then n is a Nelson conucleus iff

(T4) xy = n(x)y ∨ xn(y).

Observe that a Nelson conucleus n also satisfies n(e) = e since e =
ee = n(e)e ∨ en(e) = n(e). Thus given a residuated lattice A and a Nelson
conucleus n on A, the conucleus image An = (n[A], ∧n, ∨, ·, \n, /n, e) is a
residuated lattice.

From the results of Section 2.3 we get:

Lemma 12. Given a residuated lattice L and a cyclic element ı ∈ L, the
operator nTw defined on Tw(L, ı) by

nTw(a, b) = (a, a\ı)

is a Nelson conucleus.

If L an integral and commutative residuated lattice, then Tw(L, 1) is a
Kalman lattice and

nTw(a, b) = (a, 1).

If H is a Heyting algebra and Tw(H, 0) is a Nelson residuated lattice, then

nTw(a, b) = (a, a → 0).

We consider in Figure 3 all the twist structures from Figures 1 and 2
associated with all the two or three-element residuated lattices, together
with the sets n[A].

In the involutive case (T4) can be rephrased:

Lemma 13. Let A be an involutive residuated lattice and n a conucleus on
A. The operator n satisfies (T4) iff it satisfies one of the following equivalent
identities

(T5) x\y = (n(x)\y) ∧ (∼x/n(∼y)), x\y = (n(x)\y) ∧ (x\∼n(∼y)),
y/x = (y/n(x)) ∧ (n(∼y)\∼x), y/x = (y/n(x)) ∧ (∼n(∼y)/x).
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Figure 3. The 2 or 3-element residuated lattices 2, �L3, G3 and S3, to-

gether with the lattice structure of all their possible twist structures,

and the image of the conucleus. In each case, the images of n are shown

in gray, and the identity element for the product (1, ı) is marked as a

square

In this case we also have that n(∼e) is cyclic in An.

Proof. For (T5), by (T4) and Lemma 1(1), we have

(x\y) = ∼(∼y · x) = ∼(n(∼y) · x ∨ (∼y) · n(x))

= ∼(n(∼y) · x) ∧ ∼((∼y) · n(x)) = (∼x/n(∼y)) ∧ (n(x)\y).

The converse follows the same reasoning and analogously we get theother
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equalities, using that a\b = ∼a/∼b. Finally, for cyclicity, recalling (C7) we
obtain

n(x)\nn(∼e) = n(n(x)\n(∼e)) = n(n(x)\∼e)

= n(∼n(x)) = n(∼e/n(x)) = n(n(∼e)/n(x)) = n(∼e)/nn(x).

Note that n(x) ≤ n(y) iff n(x) ≤ y holds for all interior operators.

Lemma 14. Let A be a residuated lattice, n a Nelson conucleus in A and
x, y ∈ A.

If n(x) = n(y) and n(∼x) = n(∼y), then x = y.

Proof. Observe that n(x) ≤ n(y) iff n(x) ≤ y. Now n(x) ≤ y and n(∼y) ≤
∼x, iff e ≤ n(x)\y and e ≤ ∼x/n(∼y), iff e ≤ (n(x)\y) ∧ (∼x/n(∼y)). By
Equation (T5) this is equivalent to e ≤ x\y and to x ≤ y.

We define the variety NCA of Nelson conucleus algebras whose elements
are algebras (A,n) such that A is a (cyclic) involutive residuated lattice and
n is a Nelson conucleus on A. As an immediate consequence of Lemma 12
we have:

Theorem 15. Given a residuated lattice L and a cyclic element ı ∈ L, the
pair (Tw(L,ı),nTw), where nTw(a, b) = (a, ı/a ∧ a\ı) as before, is in NCA.

If (A,n) ∈ NCA, we define

x⇘ y = n(x)\y and y⇙ x = y/n(x).

With this notation, from (C7) we get n(x ⇘ y) = n(n(x)\y) = n(n(x)
\n(y)) = n(x)\nn(y), n(x⇙y) = n(n(x)/y) = n(n(x)/n(y)) = n(x)/nn(y)
and the equations (T5) become

x\y = (x⇘ y) ∧ (∼x⇙∼y) y/x = (y⇙ x) ∧ (∼y⇘∼x). (T5’)

3.2. Twist Representation and a Categorical Adjunction

So far we have described the process where from a residuated lattice L and
a cyclic element ı ∈ L, we construct an algebra (Tw(L, ı),nTw) in NCA.

We consider the category RLcy with objects algebras (L, ı), where L
is a residuated lattice and ı is a cyclic element of L; the morphisms are
homomorphisms of these algebras (they preserve the cyclic element). Also,
note that NCA defines a category where the morphisms are the algebraic
homomorphisms.
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For an object (L, ı) ∈ RLcy and a morphism f in RLcy, we define

T(L, ı) = (Tw(L, ı),nTw) and T(f)(a, b) = (f(a), f(b)).

It can be easily verified that T is a functor from RLcy to NCA.
We also have the reverse process: given an algebra (A,n) ∈ NCA, the

algebra

An = (n[A], ∨, ∧n, ·, \n, /n, e)

is a residuated lattice and n(∼e) cyclic element of An. Therefore, for an
object (A,n) and a homomorphism f : (A,n) → (B,n′) in NCA we define

R(A,n) = (An,n(∼e)) and R(f) to be the restriction of f to An.

It can be shown that R is a functor from NCA to RLcy.
We will show that the functors R and T form an adjunction. For that

consider, for (L, ı) ∈ RLcy and (A,n) ∈ NCA, the functions

ψ(L,ı) : (L, ı) → RT(L, ı) given by ψ(L,ı)(a) = (a, a\ı)

and

φ(A,n) : (A,n) → TR(A,n) given by φ(A,n)(x) = (n(x),n(∼x)).

Theorem 16. Let (L, ı) ∈ RLcy. The function ψ(L,ı) is an isomorphism.
Therefore the composition RT of functors is naturally isomorphic to the
identity functor on RLcy, via ψ−1

(L,ı).

Proof. For (L, ı) ∈ RLcy, we have T(L, ı) = (Tw(L, ı),nTw), where
Tw(L, ı) = {(a, b) ∈ L2 : ab ≤ ı}. Applying R to that we obtain
(Tw(L, ı)nTw ,nTw(∼(e, ı))), where Tw(L, ı)nTw = {(a, a\ı) : a ∈ L} and
also nTw(∼(e, ı)) = nTw(ı, e) = (ı, ı\ı). We will write ψ for ψ(L,ı). Clearly,
ψ : (L, ı) → (Tw(L, ı)nTw , (ı, ı\ı)) is a bijection. Also,

• ψ(a) ∨ ψ(b) = (a, a\ı) ∨ (b, b\ı) = (a ∨ b, a\ı ∧ b\ı) = (a ∨ b, (a ∨ b)\ı) =
ψ(a ∨ b)

• ψ(a)ψ(b) = (a, a\ı)(b, b\ı) = (a · b, (b\ı)/a) ∧ (b\(a\ı)) = (a · b, ı/(a · b) ∧
(a · b)\ı) = (ab, ab\ı) = ψ(ab)

• ψ(a) ∧nTw ψ(b) = (a, a\ı) ∧nTw (b, b\ı) = nTw(a ∧ b, a\ı ∨ b\ı) = (a ∧
b, (a ∧ b)\ı) = ψ(a ∨ b)

• ψ(a)\nTwψ(b) = nTw((a, a\ı)⇘ (b, b\ı)) = nTw(a\b∧ (a\ı)/(b\ı), (b\ı)a)
= nTw(a\b, (b\ı)a) = ψ(a\b)

• ψ(b)/nTwψ(a) = nTw((b, b\ı)⇙ (a, a\ı)) = nTw(b/a∧ (b\ı)\(a\ı), a(b\ı))
= nTw(b/a, a(b\ı)) = ψ(b/a)
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For both divisions, we used the fact that a(a\b)(b\ı) ≤ ı, that (ı/b)(b/a)a
≤ ı and cyclicity, to show that a\b ≤ (a\ı)/(b\ı) and b/a ≤ (b\ı)\(a\ı).
Furthermore, ψ(e) = (e, e\ı) = (e, ı) and ψ(ı) = (ı, ı\ı).

Therefore, ψ is an isomorphism in RLcy.

We will show that every algebra (A,n) ∈ NCA can be embedded in
TR(A,n). This means that it can be represented by a twist product, in the
following sense.

Definition 17. A twist product over (L, ı) ∈ RLcy is a subalgebra of
Tw(L,ı) that contains nTw[Tw(L, ı)], i.e. all elements of the form (a, ı/a ∧
a\ı) for a ∈ L.

From Theorem 5 we have the algebra of pairs

Tw(An, ı) =
{
(n(x),n(y)) ∈ An × A∂

n : n(x) · n(y) ≤ ı
}

where ı = n(∼e).

Theorem 18. Let (A,n) ∈ NCA and let ı = n(∼ e). The function φ(A,n) :
A → Tw(An, ı) given by the prescription

x → (n(x),n(∼ x))

is an injective homomorphism from (A,n) to (Tw(An, ı),nTw). In partic-
ular, (A,n) is isomorphic to a twist product over (An, ı).

Proof. We will write φ for φ(A,n). To prove that the mapping is well-
defined, observe that x · ∼x ≤ x · (x\(∼e)) ≤ ∼e and therefore

n(x) · n(∼x) = n(x · ∼x) ≤ n(∼e) = ı.

Recall that the neutral element on Tw(An, ı) is the pair (e, ı). Clearly
φ(e) = (n(e),n(∼e)) = (e, ı). Using the fact that De Morgan laws hold in
A one can easily check that ∧ and ∨ are preserved by the mapping φ. Also
the preservation of ∼ is straightforward from the definition of the mapping
and the fact that ∼ is an involution in A. Due to Lemma 1 we only need to
check that · is preserved. Observe that for all x, y ∈ A,

φ(x · y) = (n(x · y),n(∼(x · y)))

and

φ(x) · φ(y) = (n(x) · n(y),n(∼y)/nn(x) ∧n n(y)\nn(∼x)).

As n(x · y) = n(x) · n(y), we just need to prove that the second coordinates
of both pairs coincide. An application of Equation (T5’), Lemma 3 and
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Lemma 1 give:

n(∼y)/nn(x) ∧n n(y)\nn(∼x) = n(n(n(∼y)/n(x)) ∧ n(n(y)\n(∼x)))

= n(n(∼y/n(x)) ∧ n(n(y)\∼x))

= n((∼y/n(x)) ∧ (n(y)\∼x))

= n(((∼y)⇙ x) ∧ (y⇘ (∼x)))

= n(∼y/x) = n(∼(x · y)).

To see that the morphism φ is injective, observe that if x, y ∈ A are such
that φ(x) = φ(y), then n(x) = n(y) and n(∼x) = n(∼y) and Lemma 14
implies injectivity.

For the last part, observe that n(∼n(x)) = n(n(x)\∼e) = n(n(x)\n(∼e))
= n(x)\nı, so using the cyclicity of ı = n(∼e), we get φ(n(x)) = (n(n(x)),
n(∼n(x))) = (n(x),n(x)\nı) = nTw(φ(x)).

The function φ(A,n) is not always an isomorphism, so the functors R and
T do not form an equivalence between the categories RLcy and NCA. For
example, consider the set S = Tw(G3, 0) \ {(0, 0)} which is the universe of
a subalgebra S of Tw(G3, 0), such that nTw(S) = G3; see Figure 2. Then
the function

φ(S,nTw) : (S,nTw) → TR(S,nTw)

is an embedding from S into the twist product over (G3, 0) that is not an
isomorphism. However, R and T form an adjunction.

Theorem 19. The functor R is left adjoint of the functor T. They form
an adjunction between the categories RLcy to NCA, with unit φ and counit
ψ−1.

Proof. We need to show that for every (A,n) ∈ NCA and (L, ı) ∈ RLcy

we have:

1R(A,n) = ψ−1
R(A,n) ◦ R(φ(A,n)) and 1T(L,ı) = T(ψ−1

(L,ı)) ◦ φT(L,ı)

For the second identity, recall that T(L, ı) = (Tw(L, ı),nTw). For all a, b ∈
Tw(L, ı), we have

T(ψ−1
(L,ı)) ◦ φT(L,ı)(a, b) = T(ψ−1

(L,ı))(φ(Tw(L,ı),nTw)(a, b))

= T(ψ−1
(L,ı))(nTw(a, b),nTw(∼(a, b)))

= T(ψ−1
(L,ı))(nTw(a, b),nTw(b, a))

= T(ψ−1
(L,ı))((a, a\ı), (b, b\ı))

= (ψ−1
(L,ı)(a, a\ı), ψ−1

(L,ı)(b, b\ı))
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= (a, b)

The first one can be written as 1(An,n(∼e)) = ψ−1
(An,n(∼e)) ◦ φ(A,n) |An . For

all x ∈ An,

ψ−1
(An,n(∼e)) ◦ φ(A,n) |An (x) = ψ−1

(An,n(∼e))(φ(A,n) |An (x))

= ψ−1
(An,n(∼e))(n(x),n(∼x))

= ψ−1
(An,n(∼e))(x, x\n(∼e))

= x

We used the fact that x = n(x) and that n(∼n(x)) = n(n(x)\n(∼e)) =
n(x)\nn(∼e)), which was already mentioned in the proof of Theorem 18.

3.3. Rasiowa-Style presentation

The class of algebras we study is motivated by Nelson lattices and paracon-
sistent Nelson lattices. The original representation of these algebras in terms
of twist products is carried out by considering the algebra A and defining an
equivalence relation on A which turns out to be a congruence with respect
to some of the original operations on A (see [6,11,21,27]). Although our
presentation has a different flavor, it can be compared to the original pre-
sentations of Nelson lattices (as in [22], [23]) and of paraconsistent Nelson
lattices (as in [21]). We connect these ideas in this section.

Let (A,n) ∈ NCA. Note that the implications \ and / are not preserved
by the Nelson conucleus n. However, we will prove that the operations

x⇘ y = n(x)\y and y⇙ x = y/n(x)

are mapped into the quotient properly.

Lemma 20. For a residuated lattice A and a Nelson conucleus n on A we
have that the map

n : A → An, where n(x) = n(x),

is a homomorphism from the algebra Ā = (A, ∧, ∨, ·,⇘,⇙, e) to the algebra
An = (n[A], ∧n, ∨, ·, \n, /n,n(e)).

Proof. All conuclei produce homomorphisms for meet and e, as explained
in the first section, while (T1) and (T2) give the homomorphism property
for join and multiplication. From equation (C7) we get
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n(x⇘ y) = n(n(x)\y) = n(n(x)\n(y)) = n(x)\nn(y).

Analogously we prove ⇙.

With this result in mind, we consider the relations θ and � on A defined
by:

xθy iff n(x) = n(y) (5)

x � y iff n(x) ≤ n(y) (iff n(x) ≤ y). (6)

Lemma 21. If n is a Nelson conucleus on A, then the following hold.

1. The relation � is a preorder compatible with the operations of Ā.

2. The relation θ is a congruence on Ā, which is the kernel of the map n.
Thus, Ā/θ is isomorphic to An.

Proof. The fact that � is a preorder is trivial. For the compatibility of
� with multiplication, we have x � y and z � w implies n(x) ≤ n(y)
and n(z) ≤ n(w), so n(x)n(z) ≤ n(y)n(w), hence n(xz) ≤ n(yw), by (T2).
Consequently we obtain xz � yw. The compatibility with ∨ and ∧ is similar.
To prove that � is compatible with⇘ and⇙ we observe that if n(x) ≤ n(x′)
and n(y) ≤ n(y′), then (x′

⇘ y) � (x⇘ y′) and (y⇙x) � (y′
⇙x). We give

the proof for the case of ⇘, as the other case is analogous. If n(x) ≤ n(x′)
and n(y) ≤ n(y′), by an application of (C7) in Lemma 3 and the definition
of ⇘ we obtain

n(x′
⇘ y) = n(n(x′)\y) = n(n(x′)\n(y)) ≤ n(n(x)\n(y′))

= n(n(x)\y′) = n(x⇘ y′).

The claim about θ follow directly from the previous item and from Lemma 20.

Lemma 22. For a residuated lattice A and a Nelson conucleus n on A we
have

x � y iff (x⇘ y)⇘ (x⇘ y) ≤ (x⇘ y) iff (y⇙ x)⇙ (y⇙ x) ≤ (y⇙ x).

Proof. If x � y then n(x) ≤ y, so e ≤ n(x)\y and by Equation (C5),

(x⇘ y)⇘ (x⇘ y) = n(n(x)\y)\(n(x)\y)

≤ n(e)\(n(x)\y) = (n(x) · n(e))\y = n(x)\y

= x⇘ y.

Now assume (x⇘ y)⇘ (x⇘ y) ≤ (x⇘ y). Since n(x⇘ y) ≤ (x⇘ y), we
have

e ≤ n(x⇘ y)\(x⇘ y) = (x⇘ y)⇘ (x⇘ y)
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and so e ≤ (x⇘ y) = n(x)\y. Therefore we obtain n(x) ≤ y and x � y. The
equivalence for ⇙ is analogous.

Theorem 23. Let (A,n) ∈ NCA. Then A/θ = (A/θ, ∨, ∧,⇘, e/θ) is iso-
morphic to An, and in particular it is a residuated lattice.

We propose the following definition, which is phrased in terms of ⇘, ⇙,
� and θ, as a natural generalization of the definitions of Nelson lattices and
paraconsistent Nelson lattices.

A Rasiowa-type algebra Ā = (A, ∨, ∧, ·,⇘,⇙, ∼, e) is an algebra with
five binary operations ∨, ∧, ·,⇘,⇙, a unary operation ∼ and a constant e,
that satisfies:

(R1) (A, ∨, ∧) is a lattice and ∼ is a De Morgan involution on it,
namely ∼∼x = x and ∼(x ∨ y) = ∼x ∧ ∼y;

(R2) the relation � is a preorder, where x � y if and only if (x⇘y)⇘
(x⇘ y) ≤ (x⇘ y), and also if and only if (y⇙ x)⇙ (y⇙ x) ≤
(y⇙ x);

(R3) the equivalence relation θ induced by � is a congruence on the
algebra Ā = (A, ∨, ∧, ·,⇘,⇙, e) and the quotient Ā/θ is a resid-
uated lattice;

(R4) ∼(x⇘ y) θ (∼y · x) , ∼(y ⇙ x) θ (x · ∼y) and ∼(x · y) θ
(y⇘∼x) ∧ (∼y⇙ x);

(R5) x ≤ y if and only if x � y and ∼y � ∼x;

(R6) for each x ∈ A, (x⇘∼e) = (∼e⇙ x);

(R7) (A, ·, e) is a monoid.

Lemmas 20, 21, 22 and 13 yield the next immediate result:

Theorem 24. If (A,n) ∈ NCA, then for x⇘ y = n(x)\y and y⇙ x =
y/n(x) the structure A = (A, ∨, ∧, ·,⇘,⇙, ∼, e) is a Rasiowa-type algebra.

To close this circle of ideas we prove the following theorem. We use [x]
for the equivalence class of x with respect to θ.

Theorem 25. Assume Ā = (A, ∨, ∧, ·,⇘,⇙, ∼, e) is a Rasiowa-type alge-
bra. After setting

x\y = ∼(∼y · x) and y/x = ∼(x · ∼y),

the algebra A = (A, ∨, ∧, ·, \, /,∼, e) is an involutive residuated lattice, which
is isomorphic to a subalgebra of Tw(Ā/θ, [∼ e]). Moreover, if we set
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n(x) = ∼(x⇘∼e)

we have that the pair (A,n) is in NCA.

Proof. We define a map h on A by

h(x) = ([x], [∼x])

and prove that it is an injective homomorphism from A into Tw(Ā/θ, [∼ e]),
and therefore show that A is an involutive residuated lattice.

First we observe that the image of h is in the set Tw(Ā/θ, [∼ e]). Indeed,
we need to see that for each x ∈ A we have

[x] · [∼x] ∨ [∼x] · [x] ≤ [∼e]. (7)

To this aim, by (R4) and (R7) we get that [∼x] = [∼(e · x)] ≤ [x⇘∼e] and
therefore, since Ā/θ is a residuated lattice by (R3), we get

[x] · [∼x] ≤ [x] · [x⇘∼e] = [x] · ([x]⇘ [∼e]) ≤ [∼e],

and similarly [∼x] · [x] ≤ [∼e], ensuring that the inequality (7) holds.
The injectivity of h follows directly from (R5).
Note that (R1) implies that h preserves ∨, ∧ and ∼. For the product,

because of (R4) observe that for any x, y ∈ A we have

h(x) · h(y) = ([x], [∼x]) · ([y], [∼y]) = ([x · y], [(y⇘∼x) ∧ (∼y⇙ x)])

= ([x · y], [∼(x · y)]) = h(x · y).

We also have h(e) = ([e], [∼e]), which is the identity element of Tw(Ā/θ,
[∼ e]). As \ and / are defined in terms of the product and the involution,
we conclude that h is an injective morphism from A into Tw(Ā/θ, [∼ e]),
and in particular A is an involutive residuated lattice.

Observe now that as a consequence of (R1) and (R4) we have that

x θ x · e = x · ∼∼e θ ∼(∼e⇙ x) and x θ e · x = ∼∼e · x θ ∼(x⇘∼e),

so x θ∼(∼e⇙ x) θ ∼(x⇘∼e). Therefore

h(n(x)) = h(∼(x⇘∼e) ∨ ∼(∼e⇙ x))

= ([∼(x⇘∼e) ∨ ∼(∼e⇙ x)], [(x⇘∼e) ∧ (∼e⇙ x)])

= ([x], ([x]⇘ [∼e]) ∧ ([∼e]⇙ [x]))

= nTw(h(x)).

By (R6) x⇘ ∼e = ∼e⇙ x, thus [∼e] is cyclic, nTw is a Nelson conucleus
and so is n.



972 M. Busaniche et al.

Therefore, Rasiowa-type algebras, which include Nelson lattices as de-
fined by Rasiowa and eN4-lattices (see [6,27]), are term equivalent to Nel-
son conucleus algebras. Thus the Rasiowa-style definition can be exchanged
by one that has the advantage of being internal to A and can be seen as
providing representatives for Rasiowa’s equivalence classes [x] via the ele-
ments n(x) ∈ [x]. We also note that in the above proof we opted for the
easier argument of embedding the algebra into a twist product, but the term
equivalence can be proved directly; for example, from (R5) in order to prove
associativity of multiplication it suffices to show that [(xy)z] = [x(yz)] and
[∼((xy)z)] = [∼(x(yz))].

Remark 26. In [25] the authors define the variety of T -lattices and prove
a twist representation for these algebras. Without going into details, we
briefly mention the relationship between the algebras in [25] and our class.
A T -lattice is an algebra T = (A, ∧, ∨, ⊃, ⊂, ¬, e) of type (2, 2, 2, 2, 1, 0)
that satisfies certain equations. The underlying idea is that ⊃ and ⊂ play
a role analogous to that of ⇘ and ⇙, thus the strong implications and the
product can be defined as in the case of NCA. The main difference is that
e is no longer the neutral element of the product, and every T -lattice is
isomorphic to an involutive residuated lattice ordered semigroup that can
be respresented by a twist structure, where e is represented as (e, e), not
as (e,�). In that sense, a different type of subreduct is studied. Given a
T -lattice T = (T, ∧, ∨, ⊃, ⊂, ¬, e), the authors define x′ = ¬(x ⊃ e) for each
x ∈ T and x → y = (x ⊃ y) ∧ (¬x ⊂ ¬y). It is easy to see that if we require
that for all x, y ∈ T we have

(x′ → e′)′ = e′,

the twist structure presented in [25, Theorem 3.6] is a twist structure ob-
tained from an integral residuated lattice, and therefore T = (T, ∧, ∨, ⊃, ⊂
, ∗, ¬, e) is a Rasiowa-type algebra satisfying e = ¬e. Analogously, given a
Rasiowa-type algebra A = (A, ∨, ∧, ·,⇘,⇙, ∼, e) that satisfies e =∼ e then
the structure A = (A, ∨, ∧,⇘,⇙, ∼, e) is a T -lattice.

4. Algebras with a Term Definable Nelson Conucleus

Nelson residuated lattices, paraconsistent Nelson residuated lattices and
Kalman lattices, are particular examples of algebras in which the Nelson
conucleus can be defined by a term, i.e., there is a definable term function n
such that for each A in the corresponding class the pair (A,n) is in NCA.
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Figure 4. An example where the conucleus n cannot be a term function

Before analyzing that, we note that the theory we have developed is broader
and admits algebras where the conucleus is not definable by a term.

Example 27. Consider the twist structure Tw(�L3, 0) shown in Figure 3 and
in Figure 4. Observe that nTw(a, 0) = (a, a) so (Tw(�L3, 0),nTw) is in NCA.
However Tw(�L3, 0)\{(a, a)} is the universe of a subalgebra of Tw(�L3, 0) (as
a nTw-less reduct), and therefore nTw cannot be a term function, since the
element nTw(a, 0) cannot be obtained from operations applied to (a, 0) and
the identity (1, 0).

To show that it is a subalgebra, observe that it is a chain, therefore
closed under ∧ and ∨, and also it is closed under ∼. As the implication can
be defined in terms of the product and the involution, it only remains to
show that it is closed under the product, and we do this in Figure 4.

4.1. The Defining Terms and Kalman Residuated Lattices

Note that all the motivating examples are of commutative involutive resid-
uated lattices, and the residuated lattices An are integral. They also share
some similarities with respect to the terms defining the conucleus. Two par-
ticular cases follow from the next results, the first one in Lemma 29 and the
second in Theorem 32.

Lemma 28. Let (A,n) ∈ NCA. Then (x ∧ e)2 ≤ n(x) and if n(x) ≤ e for
all x, then

1. (x ∧ e)2 ≤ n(x) ≤ x ∧ e.

2. If e ≤ ∼e, then e = ∼e and n(x) = x ∧ e.

3. If n(x)2 = n(x), then n(x) = (x ∧ e)2.
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Proof. Using (T4), we have

(x ∧ e)2 = n(x ∧ e) · (x ∧ e) ∨ (x ∧ e) · n(x ∧ e) ≤ n(x)e ∨ en(x) = n(x).

If n(x) ≤ e then n(x) ≤ x∧ e, so (x∧ e)2 ≤ n(x) ≤ x∧ e. With this in mind,
we only need to show one inequality for (2) and for (3).

Observe first that if n(x) ≤ e holds, then ∼e\e = n(∼e)\e∧e/n(∼e) ≥ e,
so ∼e ≤ e. If e ≤ ∼e, then by the previous observation e = ∼e and as
n(∼n(x)) ≤ e, by (T5) we get

(x ∧ e)\n(x) = n(x ∧ e)\n(x) ∧ ∼(x ∧ e)/n(∼n(x))

≥ n(x)\n(x) ∧ (∼x ∨ ∼e)/e ≥ e ∧ ∼e = e,

so x ∧ e ≤ n(x). If n(x)2 = n(x), then clearly n(x) = n(x)2 ≤ (x ∧ e)2.

Observe that if n(x)2 = n(x) and A is commutative (even without as-
suming n(x) ≤ e), then using equation (T4) we have that x2 = n(x)x, and
so

x3 = x2 · x = n(x)xx = n(x)x2 = n(x)n(x)x = n(x)x = x2.

This means that if n(x)2 = n(x) and A is commutative, then A is 3-potent
(it satisfies x3 = x2).

Lemma 29. Given a Kalman residuated lattice A, the term function n(x) =
x ∧ e defines a Nelson conucleus on A, and therefore (A,n) ∈ NCA. Con-
versely, if (A,n) ∈ NCA satisfies commutativity, n(x) ≤ e and e ≤ ∼e,
then A is a Kalman residuated lattice.

Proof. First assume that A is a Kalman residuated lattice and we set
n(x) = x∧ e. It is immediate that equations (C1), (C2) and (C3) hold in A.
(C4) will follow from (T2) and (C5) comes from the fact that n(e) = e∧e = e.
Finally, (T1) is (K4), (T2) is (K2) and (T4) follows from commutativity,
(K3) and Lemma 13.

Now, if (A,n) ∈ NCA satisfies commutativity, n(x) ≤ e and e ≤ ∼e.
Then by Lemma 28 we have e = ∼e and n(x) = x∧e, and the only equation
left to verify that A is a Kalman lattice is the fact that x ∧ (y ∨ e) =
(x ∧ y) ∨ (x ∧ e). As n(x) = x ∧ e is a Nelson conucleus,
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(x ∧ (y ∨ e)) ∧ e = x ∧ ((y ∨ e) ∧ e)) = x ∧ e

((x ∧ y) ∨ (x ∧ e)) ∧ e = (x ∧ y ∧ e) ∨ (x ∧ e) = x ∧ e

and

∼(x ∧ (y ∨ e)) ∧ e = (∼x ∧ e) ∨ ((∼y ∧ e) ∧ e) = (∼x ∨ ∼y) ∧ e

∼((x ∧ y) ∨ (x ∧ e)) ∧ e = ((∼x ∨ ∼y) ∧ e) ∧ ((∼x ∨ e) ∧ e) = (∼x ∨ ∼y) ∧ e

so by Lemma 14 we have the equality.

4.2. Nelson-Type Algebras

In this section we will construct a variety of algebras A with a definable term
function n such that (A,n) is in NCA. This variety will encompass both
Nelson residuated lattices and Nelson paraconsistent lattices. To motivate
our definition, we first rewrite what we need from Lemma 28.

Lemma 30. If (A,n) ∈ NCA satisfies n(x) ≤ e and n(x)2 = n(x), then
n(x) = (x ∧ e)2 and A is a residuated lattice satisfying:

(N1) xy = (x ∧ e)2y ∨ x(y ∧ e)2,

(N2) (xy ∧ e)2 = (x ∧ e)2(y ∧ e)2.

Moreover, An is an integral residuated lattice where · and ∧n coincide, i.e.
it is a Brouwerian algebra. Finally, A is commutative, distributive, and
satisfies ((x ∨ y) ∧ e)2 = (x ∧ e)2 ∨ (y ∧ e)2.

Proof. The first facts follow from Lemma 28. Note that because of inte-
grality of An,

n(x) ∧n n(y) = n(x ∧ y) = n(x ∧ y)2 ≤ n(x)n(y) ≤ n(x) ∧n n(y),

so An is a Brouwerian algebra. Therefore, An is commutative and distribu-
tive and by Theorem 18 A will also satisfy commutativity and distributivity,
as these properties are inherited by the twist product.

With this in mind, we define the variety NT of Nelson-type algebras,
as the variety of commutative, distributive, involutive residuated lattices
satisfying equations (N1)-(N2). We show below that NT is (term equivalent
to) a subvariety of NCA. Considering the term n(x) = (x∧e)2, these axioms
can be written as:

(N’1) xy = n(x)y ∨ xn(y),

(N’2) n(xy) = n(x)n(y).

As an immediate consequence of the observation below Lemma 28 we get
that for each n ∈ N, n ≥ 2 the equation xn = x2 holds in NT .
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Lemma 31. If A ∈ NT , then n(x) = (x ∧ e)2 is a Nelson conucleus.

Proof. Trivially n satisfies (C1) and (C3). Equation (C2), that is, ((x ∧
e)2 ∧ e)2 = (x ∧ e)2 is immediate from Lemma 28, as (x ∧ e)2 ≤ e and
(x ∧ e)4 = (x ∧ e)3 = (x ∧ e)2 from (N1). (C4) will follow from (N2) and
(C5) follows by observing that (e ∧ e)2 = e. To prove (T1), we have to show
that (x ∧ e)2 ∨ (y ∧ e)2 = ((x ∨ y) ∧ e)2 hold. Since · and ∧ distribute over
∨, we have that

((x ∨ y) ∧ e)2 = ((x ∨ y) ∧ e)3

= (x ∧ e)3 ∨ (x ∧ e)2(y ∧ e) ∨ (x ∧ e)(y ∧ e)2 ∨ (y ∧ e)3

= (x ∧ e)2 ∨ (y ∧ e)2.

(T2) is (N2) and (T4) follows from (N1).

We conclude:

Theorem 32. If A ∈ NT , then n(x) = (x ∧ e)2 is a Nelson conucleus and
(A,n) ∈ NCA. Conversely, if (A,n) ∈ NCA satisfies n(x)2 = n(x) ≤ e,
then A ∈ NT .

As we are in the commutative setting, we set x → y = x\y = y/x and
x ⇒ y = x⇘ y = y⇙ x. The following result shows that Nelson-type al-
gebras generalize both Nelson residuated lattices and Nelson paraconsistent
residuated lattices.

Lemma 33. We have that:

1. The variety of Nelson residuated lattices is term equivalent to the subva-
riety of integral Nelson-type algebras.

2. The variety of Nelson paraconsistent residuated lattices is term equivalent
to the subvariety of odd Nelson-type algebras.

Proof. 1. We will show that if A = (A, ∨, ∧, ·, →, ⊥, e) is a Nelson residu-
ated lattice, after setting ¬x = x → ⊥, the algebra A = (A, ∨, ∧, ·, →, ¬, e)
is in NT and it is integral. The definition of Nelson residuated lattices im-
plies that A = (A, ∨, ∧, ·, →, ¬, e) is commutative, distributive, involutive
(NRL1), and integral. Integrality trivializes (N2). For (N1) we observe first
that the commutative analogue of Lemma 1 is xy = ¬(x → ¬y). Thus from
(NRL1) and (NRL2) we have,

xy = ¬(x → ¬y) = ¬(x2 → ¬y) ∨ ¬(y2 → ¬x) = x2y ∨ y2x.
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Assume now that A = (A, ∨, ∧, ·, →, ∼, e) is in NT and satisfies integral-
ity. If we set ⊥ = ∼e, then

∼e ∨ x = ∼(e ∧ ∼x) = ∼∼x = x

and therefore ⊥ is the lowest element in A. Besides ∼x = x → ∼e = x → ⊥
thus ¬x = ∼x and (NRL1) holds in A. Therefore A = (A, ∨, ∧, ·, →, ⊥, e)
is an involutive residuated lattice in the sense of [6]. To obtain equation
(NRL2), again the commutative analogue of Lemma 1 yields x → y =
¬(x · ¬y). This, together with integrality and (N1) amounts to

x → y = ¬(x · ¬y)

= ¬
(
((x ∧ e)2 · ¬y) ∨ x · (¬y ∧ e)2

)

= ¬
(
(x2 · ¬y) ∨ (x · ¬y)2

)

= ¬
(
¬(x2 → y) ∨ ¬((¬y)2 → ¬x)

)

= ¬¬
(
(x2 → y) ∧ ((¬y)2 → ¬x)

)

= (x2 → y) ∧ ((¬y)2 → ¬x).

2. Let A = (A, ∨, ∧, ·, →, e) be an NPc-lattice. From (NPc3) the term
function n(x) = (x∧e)2 becomes n(x) = x∧e and clearly A = (A, ∨, ∧, ·, →
, ∼, e) is in NT .

Now consider an algebra A = (A, ∨, ∧, ·, →, ∼, e) ∈ NT satisfying e =
∼e. Then ∼x = x → ∼e = x → e and A = (A, ∨, ∧, ·, →, e) is a lattice with
involution. As (NPc1) is required we need to check that the other three
equations hold in A.

Equations (NPc2) and (NPc4) are equivalent to (N2) and (N1) under
(NPc3). So it only remains to show that equation (NPc3) follows from (N1)-
(N2) and (NPc1). Observe that (x ∧ e)2 ≤ x ∧ e always holds, for the other
inequality, by (N1) and ∼e = e,

(x ∧ e) → (x ∧ e)2 = ((x ∧ e)2 → (x ∧ e)2) ∧ ((∼(x ∧ e)2 ∧ e)2 → ∼(x ∧ e))

≥ e ∧ (e → ∼(x ∧ e)) = e ∧ (∼x ∨ e) = e,

so x ∧ e ≤ (x ∧ e)2.

Observe that there are algebras in NT which are neither equivalent to
Nelson residuated lattices nor to Nelson paraconsistent residuated lattices.
For example, this is the case of Tw(G3, a) in Figure 2. It is immediate to
check that (N1) and (N2) hold in this algebra but e = (1, a) �= (a, 1) =∼ e
and e = (1, a) < (1, 0).



978 M. Busaniche et al.

We can axiomatize the join of Nelson residuated lattices and NPc-lattices
as the variety NT 0 of Nelson-type algebras satisfying the condition

(N3) e ≤ ∼e ∨ (∼e → x).

Lemma 34. The variety NT 0 is the variety generated by integral and odd
Nelson-type algebras.

Proof. Let A ∈ NT 0 be subdirectly irreducible. By [16, Theorem 2.9], in
any subdirectly irreducible commutative residuated lattice e is join-irreducible.
By distributivity in (N4) e = (∼e ∧ e) ∨ ((∼e → x) ∧ e), so either e ≤ ∼e, in
which case by Lemma 28 we have e = ∼e, or ∼e ≤ x for all x, which implies
that A is integral.

5. Sendlewski-Style Representation

We present two cases in which we can improve the categorical adjunction to
a categorical equivalence.

5.1. The Case of Nelson-Type Algebras

Theorem 18 holds for algebras in NT with the Nelson conucleus given by
n(x) = (x ∧ e)2. To improve the result for this class, we follow Sendlewski’s
ideas for Nelson algebras [27] and Odintsov’s ideas for the paraconsistent
case [20]. Recall that if A = (A, ∨, ∧, ·, →, ∼, e) is in NT , then HA =
(n[A], ∨, ∧n, →n, e) is a Brouwerian algebra.

If H is a Brouwerian algebra and F ⊆ H is a lattice filter, then F is
called a Boolean filter if for every x, y ∈ H the element x ∨ (x → y) belongs
to F ; such elements are called dense. The reader may note that if H is lower
bounded, i.e., it is the ⊥-free reduct of a Heyting algebra and F is a Boolean
filter of H, then the quotient H/F is the ⊥-free reduct of a Boolean algebra.

Lemma 35. Let H be a Brouwerian algebra, ı ∈ H and F a Boolean filter
of H. Then the set

Tw(H, ı, F ) = {(a, b) ∈ H × H∂ : a ∧ b ≤ ı, a ∨ b ∈ F}
is the universe of a subalgebra of Tw(H,ı) which is a twist product over H.

Proof. We only need to show the closure of the operations ∼, ∧ and ·, as
∨ and → can be derived from them. Consider (a, b), (a′, b′) ∈ Tw(H, ı, F ).
This means that a ∧ b ≤ ı, a ∨ b ∈ F , a′ ∧ b′ ≤ ı and a′ ∨ b′ ∈ F .

(∼) this is immediate from the definition.
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(∧) (a, b)∧(a′, b′) = (a∧a′, b∨b′). We have to show that (a∧a′)∨(b∨b′) ∈
F . Indeed, (a∧a′)∨ (b∨b′) = (a∨b∨b′)∧ (a′ ∨b∨b′) ≥ (a∨b)∧ (a′ ∨b′) ∈ F.

(·) (a, b) · (a′, b′) = (a ∧ a′, a → b′ ∧ a′ → b), then we have to prove that
(a ∧ a′) ∨ (a → b′ ∧ a′ → b) ∈ F . Recalling that F contains all the dense
elements,

(a ∧ a′) ∨ (a → b′ ∧ a′ → b) =

= (a ∨ (a → b′)) ∧ (a ∨ (a′ → b)) ∧ (a′ ∨ (a → b′)) ∧ (a′ ∨ (a′ → b))

≥ (a ∨ (a → b′)) ∧ (a ∨ b) ∧ (a′ ∨ b′) ∧ (a′ ∨ (a′ → b)) ∈ F

Finally, for each a ∈ H, the pair (a, a → ı) is in Tw(H, ı, F ) since a · (a →
ı) ≤ ı by residuation and a ∨ (a → ı) is a dense element contained in F.
Thus Tw(H, ı, F ) is a twist product over H.

To obtain an isomorphism for each A ∈ NT , we need to find a Boolean
filter F on HA such that A ∼= Tw(HA, ı, F ). Recalling that x ⇒ y =
x⇘ y = y⇙x in the commutative case, we will frequently use the fact that
the equation

n(∼(x ⇒ y)) = n(n(x) ∧ (∼y)) (8)

holds for every pair of elements x, y in an algebra A ∈ NT (it follows from
the definition of ⇒, the results of Lemma 1 and the fact that ∧n and ·
coincide in HA).

Lemma 36. If A ∈ NT and then the subset FA = {n(x ∨ ∼x) : x ∈ A} =
{n(w) : ∼w ≤ w} = {n(z) : n(∼z) ≤ n(z)} of HA is a Boolean filter.

Proof. For all x ∈ A, we have ∼(x ∨ ∼x) = ∼x ∧ x ≤ x ∨ ∼x, and if
∼w ≤ w, then w ∨ ∼w = w. So, {n(x ∨ ∼x) : x ∈ A} = {n(w) : ∼w ≤ w}.
We have that if ∼w ≤ w, then n(∼w) ≤ n(w), so {n(w) : ∼w ≤ w} ⊆
{n(z) : n(∼z) ≤ n(z)}. Also, if z satisfies n(∼z) ≤ n(z), then n(z ∨ ∼z) =
n(z) ∨ n(∼z) = n(z); so, {n(z) : n(∼z) ≤ n(z)} ⊆ {n(x ∨ ∼x) : x ∈ A}.

We will prove that FA is a (lattice) filter. Indeed, as n(e) is the top
element of HA, we have n(e) = n(e ∨ ∼e) ∈ FA.

To prove closure under ∧, take n(w),n(z) ∈ FA, with ∼w ≤ w and
∼z ≤ z. For

t = ∼ (w ∧ (w ⇒ ∼(w ∨ z))) ∧ ∼ (z ∧ (z ⇒ ∼(w ∨ z)))

= (∼w ∨ n(w)(w ∨ z)) ∧ (∼z ∨ n(z)(w ∨ z)),
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we have ∼t = (w ∧ (w ⇒ ∼(w ∨ z))) ∨ (z ∧ (z ⇒ ∼(w ∨ z))) . Using divisi-
bility and distributivity,

n(∼t) = (n(w) ∧n n(∼(w ∨ z))) ∨ (n(z) ∧n n(∼(w ∨ z)))

= n(w ∨ z) ∧n n(∼(w ∨ z))

= n(∼w) ∧n n(∼z).

Recalling Equation (8) and that p ≤ ∼∼(p ∨ q) for all p, q we get

n(t) = (n(∼w) ∨ (n(w) ∧n n(∼∼(w ∨ z)))) ∧ (n(∼z) ∨ (n(z) ∧n n(∼∼(w ∨ z))))

= n(w ∨ ∼w) ∧n n(z ∨ ∼z)

= n(w) ∧n n(z),

so n(∼t) ≤ n(t), hence n(t) ∈ FA. Since also n(w) ∧n n(z) = n(t), we get
n(w) ∧n n(z) ∈ FA.

Additionally, if n(w) ≥ n(y), where ∼w ≤ w, we have ∼(w ∨ y) =
∼w ∧ ∼y ≤ w ≤ w ∨ y, hence n(w ∨ y) ∈ FA. Since we also have n(w ∨ y) =
n(w) ∨ n(y) = n(y) we get n(y) ∈ FA.

To show that FA contains all dense elements, we need to see for all x, y ∈
A, that the element n(x) ∨ (n(x) →n n(y)) = n(x ∨ (x ⇒ y)) is in FA. This
is true since using Equation (8) we obtain

n(∼(x ∨ (x ⇒ y))) = n(∼x ∧ (n(x) · ∼y)) = n(∼x) ∧ n(x) ∧ n(∼y)

≤ n(x) ∨ (n(x) →n n(y)) = n(x ∨ (x ⇒ y)).

Theorem 37. Let A ∈ NT . If HA, ı and FA are as before, then A ∼=
Tw(HA, ı,FA).

Proof. From Theorem 18, it is sufficient to show that φA(A) = Tw(An, ı, FA)
= Tw(HA, ı, FA). One inclusion is immediate, for if x ∈ A, then n(x∨∼x) ∈
FA by definition of FA.

For the other, consider (n(x),n(y)) ∈ Tw(HA, ı, FA). We have to find
z ∈ A such that n(z) = n(x) and n(∼z) = n(y). As n(x) ∨ n(y) ∈ FA by
hypothesis, let w ∈ A be such that n(x) ∨ n(y) = n(w ∨ ∼w). Define now

z = [(w ∧ ∼w) ∨ ∼ (x ⇒ n(y)) ∨ ∼ (y ⇒ n(x))] ∧ (y ⇒ n(x)) .

Then as n(x) ∧ n(y) ≤ n(∼e), we have that n(x) ≤ n(∼n(y)) and n(y) ≤
n(∼n(x)), so

n(z)

= (n(w ∧ ∼w) ∨ n (∼ (x ⇒ n(y))) ∨ n (∼ (y ⇒ n(x)))) ∧n (n(y) →n n(x))

= (n(w ∧ ∼w) ∨ (n(x) ∧n n(∼n(y))) ∨ (n(y) ∧n n(∼n(x)))) ∧n (n(y) →n n(x))
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= (n(w ∧ ∼w) ∨ n(x) ∨ n(y)) ∧n (n(y) →n n(x))

= (n(x) ∨ n(y)) ∧n (n(y) →n n(x))

= n(x)n(∼z)

= (n(w ∨ ∼w) ∧n (n(x) →n n(y)) ∧n (n(y) →n n(x))) ∨ (n(y) ∧n n(∼n(x)))

= ((n(x) ∨ n(y)) ∧n (n(x) →n n(y)) ∧n (n(y) →n n(x))) ∨ n(y)

= (n(x) ∧n n(y)) ∨ n(y)

= n(y).

Theorem 37 provides a way to improve the result from Theorem 19. First,
we show how morphisms behave between Nelson-type algebras.

Lemma 38. Let H1,H2 be Brouwerian algebras, ı1 ∈ H1, ı2 ∈ H2 and let
F1 ⊆ H1, F2 ⊆ H2 be Boolean filters. If f : H1 → H2 is a morphism such
that f(ı1) = ı2 and f(F1) ⊆ F2, then ϕf : Tw(L1, ı1,F1) → Tw(L2, ı2,F2)
given by ϕf (a, b) = (f(a), f(b)) is morphism in NT .

Lemma 39. Let A1,A2 ∈ NT . If ϕ : A1 → A2 is a morphism, then fϕ =
ϕ |HA1

is a morphism from HA1 into HA2 such that fϕ((∼e1 ∧ e1)2) =
(∼e2 ∧ e2)2 and fϕ(FA1) ⊆ FA2.

Now, consider the category BFcy with objects triples (H, ı, F ), where H
is a Brouwerian algebra, ı ∈ H and F ⊆ H a Boolean filter; as morphisms we
take Brouwerian algebra homomorphisms f : H1 → H2 such that f(ı1) = ı2
and f(F1) ⊆ F2. Note that NT defines a category where the morphisms are
the algebraic homomorphisms. We can conclude:

Theorem 40. The categories NT and BFcy are equivalent.

5.2. Involutive-Image NCA
In this section we consider a variety in which the categorical adjunction
in Theorem 19 is strengthened. Unlike in Nelson-type algebras, the Nelson
conucleus n doesn’t need to be a term function.

5.2.1. Twist Products and Dualizing Elements Let L be a commutative
involutive residuated lattice and let f = ∼e. We define the operation a⊕b =
∼((∼b) · (∼a)). It is well known [14, Lemma 3.20] that this operation is
associative, commutative and satisfies, among other things:

a ⊕ (b ∧ c) = a ⊕ b ∧ a ⊕ c and if a ≤ b then a ⊕ c ≤ b ⊕ c.

Lemma 41. Let L be a commutative involutive residuated lattice, ı ∈ L and
F be a lattice filter of L that contains the element e ⊕ ı = f → ı. Then the
set
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Tw(L, ı, F ) = {(a, b) ∈ L × L∂ : a · b ≤ ı, a ⊕ b ∈ F}
is the universe of a subalgebra of Tw(L,ı) which is a twist product over L.

Proof. Let (a, b), (a′, b′) ∈ Tw(L, ı, F ), then (a → f) → b, (a′ → f) → b′ ∈
F .

• Tw(L, ı, F ) is clearly closed under ∼ by commutativity of ⊕.

• (a, b) ∧ (a′, b′) = (a ∧ a′, b ∨ b′), and

(a ∧ a′) ⊕ (b ∨ b′) = a ⊕ (b ∨ b′) ∧ a′ ⊕ (b ∨ b′) ≥ a ⊕ b ∧ a′ ⊕ b′ ∈ F.

• (a, b) · (a′, b′) = (a · a′, a → b′ ∧ a′ → b), and

(a · a′) ⊕ (a → b′ ∧ a′ → b)

= ((a · a′) ⊕ (a → b′)) ∧ ((a · a′) ⊕ (a′ → b))

= ((a · a′) → f) → (a → b′) ∧ ((a · a′) → f) → (a′ → b)

= ((a · (a → (a′ → f)) → b′)) ∧ ((a′ · (a′ → (a → f)) → b))

≥ ((a′ → f) → b′) ∧ ((a → f) → b) ∈ F.

• nTw(a, b) = (a, a → ı), and

a ⊕ (a → ı) = (a → f) → (a → ı) = (a(a → f)) → ı ≥ f → ı = e ⊕ ı ∈ F.

Note that e⊕ı ∈ F automatically follows from assuming that e ∈ F in the
special case where f = 0 is the bottom element; in that case as e = f → f ,
so e will be the top element. The next lemma provides a hint on how to
define filters starting from the twist structure.

Lemma 42. Let L be an integral commutative involutive residuated lattice.
Consider ı ∈ L and F a lattice filter of L. Then c ∈ F if and only if there
exists (a, b) ∈ Tw(L, ı, F ) such that c = a ⊕ b.

Proof. Note that 0 := ∼e is the bottom element. If (a, b) ∈ Tw(L, ı, F ),
then by definition c = a ⊕ b ∈ F . Conversely, if c ∈ F then c ⊕ 0 = c ∈ F
and c · 0 = 0 ≤ ı, so (c, 0) ∈ Tw(L, ı, F ) satisfies what we wanted.

5.2.2. Involutive-Image Nelson Conucleus Algebras If (A,n) ∈ NCA is
such that An is an involutive residuated lattice, we want to find a lattice
filter FA on An such that A ∼= Tw(An, ı,FA). Given the characterization
in Lemma 42, FA should contain the elements of the form a ⊕ b, where
x = (a, b) ∈ Tw(An, ı,FA). Note that n(x) = (a, a\ı) and n(∼x) = (b, b\ı).
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The identification between a and (a, a\ı) and between b and (b, b\ı) provided
by ψ(L,ı) guides us in defining

FA = {n(x) ⊕ n(∼x) : x ∈ A}.

We define the variety INCA of algebras (A,n) such that A is an involu-
tive commutative residuated lattice with a bottom element ⊥, (Â,n) ∈ NCA
where Â is the ⊥-less reduct of A, and such that the following equation
holds:

(IT1) n(n(n(x) → ⊥) → ⊥) = n(x).

We note that A is also bounded above with top element � = ∼⊥ = ⊥ →
⊥.

In this case, LA := (An,0,1) will be an integral commutative residuated
lattice, with 0 = n(⊥) as negation constant element and 1 = n(�) = n(e)
as unit element. If we define for all a ∈ LA

¬na = a →n 0,

since a = n(a), we have ¬na = a →n 0 = n(a ⇒ 0) = n(n(a) → n(⊥)) =
n(n(a) → ⊥). So if (A,n) ∈ INCA, the residuated lattice LA := (An, 0, 1)
is bounded, commutative, and (IT1) translates into: for all a ∈ An

¬n¬na = a.

In Lemma 41, we saw that if L is a commutative residuated lattice where
the dualizing element is the least element and ı ∈ L, then Tw(L, ı,F) defines
a subalgebra of Tw(L, ı). Note that the latter is in INCA.

Example 43. As a particular case, if L is a bounded commutative residu-
ated lattice satisfying ¬¬x = x, we have that n(x) = x is a Nelson conucleus,
so (L,n) ∈ INCA when we consider ∼x = ¬x, and by Theorem 18 we have
that L embeds into Tw(L, 0) by the mapping x → (x,¬x).

In the notation involving ⊥, note that we have

FA = {n(x) ⊕ n(∼x) : x ∈ A} = {(¬nn(x)) →n n(∼x) : x ∈ A}
= {(n(x) →n 0) →n n(∼x) : x ∈ A} = {n((n(x) ⇒ ⊥) ⇒ n(∼x)) : x ∈ A}
= {n(n(n(x) → ⊥) → ∼x) : x ∈ A}.

We will need the following technical result.

Lemma 44. If (A,n) ∈ NCA has a lower bound ⊥, then with the previous
notation FA = {n(∼z) : n(z) = 0, z ∈ A}.
Proof. Recall that FA = {n(x) ⊕ n(∼x) : x ∈ A} Clearly, if n(z) = 0, for
some z ∈ A, then n(∼z) = n(z) ⊕ n(∼z) ∈ FA. Conversely, let x ∈ A and
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define z = x · n(n(x) → ⊥). We have n(x) ⊕ n(∼x) = n(n(n(x) → ⊥) →
∼x) = n(∼(x · n(n(x) → ⊥)) = n(∼z). Also,

n(z) = n(x) · n(n(x) → ⊥) = n(n(x) · (n(x) → ⊥)) = n(⊥) = 0.

Theorem 45. If (A,n) ∈ INCA, 1 = n(e) and ı = n(∼e), then FA is a
lattice filter of LA and

A ∼= Tw(LA, ı, FA).

Proof. We will use Lemma 44 throughout the proof. First note that 1⊕ı =
n(e) ⊕ n(∼e) ∈ FA. Now, we show that FA is a lattice filter.

• 1 ∈ FA, because n(�) ⊕ n(∼�) = n(�) ⊕ n(⊥) = 1 ⊕ 0 = 1.

• If a = n(∼x), where n(x) = 0 and b = n(∼y), where n(y) = 0, for some
x, y ∈ A, define z := x∨y. Then, a∧nb = n(∼x)∧nn(∼y) = n(∼x∧∼y) =
n(∼(x ∨ y)) = n(∼z). Also, n(z) = n(x ∨ y) = n(x) ∨ n(y) = 0 ∨ 0 = 0.
So, a ∧n b ∈ FA.

• If a = n(∼x), where n(x) = 0 and b ≥ a with b = n(y) for some x, y ∈ A,
consider z = ∼y ∧ x, so ∼z = y ∨ ∼x. We have n(∼z) = n(y) ∨ n(∼x) =
b ∨ a = b, and

n(z) = n(∼y ∧ x) = n(∼y) ∧n n(x) = n(∼y) ∧n 0 = 0,

So b ∈ FA.

Now, using Theorem 18, we will show that φA(A) = Tw(LA, ı, FA). Note
that if (n(x),n(∼x)) ∈ φA(A), then n(x) ⊕ n(∼x) ∈ FA, so φA(A) ⊆
Tw(LA, ı, FA). For the other inclusion, consider (n(x),n(y)) ∈
Tw(LA, ı, FA). Therefore we have n(x) ·n(y) ≤ ı = n(∼e) and n(x)⊕n(y) ∈
FA. Thus there exists w ∈ A such that n(x) ⊕n(y) = n(∼w) and n(w) = 0.
We will find z ∈ A such that n(z) = n(x) and n(∼z) = n(y).

Recall that ⊕ is an operation on LA defined by a ⊕ b = ¬na →n b, where
for a ∈ LA we have ¬na = a →n 0 = n(a ⇒ 0) = n(n(a) → n(⊥)) =
n(n(a) → ⊥). For convenience we extend these operations to A by defining
for x, y ∈ A, ¬nx = n(n(x) → ⊥) and x ⊕ y = ¬nx →n n(y). It then follows
that n(x ⊕ y) = n(¬nx →n n(y)) = n(¬nx ⇒ y) = n(¬nx) ⇒ n(y) =
¬nn(x) ⇒ n(y) = n(x) ⊕ n(y).

Consider z = x ⊕ w ∧ ∼n(y). Then recalling that n(x) · n(y) ≤ n(∼e)
implies that n(x) ≤ n(∼n(y))

n(z) = n(x ⊕ w ∧ ∼n(y)) = n(x) ⊕ n(w) ∧n n(∼n(y)))

= n(x) ⊕ 0 ∧n n(∼n(y))) = n(x) ∧n n(∼n(y)) = n(x),
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and

n(∼z) = n(∼(¬n → w) ∨ n(y)) = n(∼(¬nx → w)) ∨ n(y)

= n(¬nx · ∼w)) ∨ n(y) = n(¬nx) · n(∼w)) ∨ n(y)

= n(¬nx) · (n(x) ⊕ n(y))) ∨ n(y) = ¬nn(x) · (n(x) ⊕ n(y))) ∨ n(y)

= n(y).

As before the isomorphism on objects extends to a categorical equiva-
lence.
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