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1. Introduction

Bisimulations are important tools in the study of modal logics. They pro-
vide a structural notion of semantic equivalence: bisimilar worlds satisfy
precisely the same logical formulae. If the converse is also true then the log-
ical language is powerful enough to distinguish non-bisimilar states. This is
called the Hennessy-Milner property [28]. Moreover, Van Benthem’s theorem
states that normal modal logic can be viewed as the (Kripke) bisimulation-
invariant fragment of first-order logic. This was originally proven in [4], see
also [11, §2.6], and can be viewed as saying that modal logic provides effec-
tive syntax to describe bisimulation-invariant first-order properties. Bisim-
ulations have other uses as well; for example, they provide an equivalence
relation between process graphs [32,34], and serve as extensional equality in
non-wellfounded set theory [2].

Following Hennessy and Milner’s theorem and Van Benthem’s theorem
for normal modal logic, similar results have been derived for a wide variety of
(modal and non-modal) logics, each with its own appropriate notion of bisim-
ulation. These include monotone modal logic [26], neighbourhood logic [27],
fragments of XPath [1,14,22], (bi-)intuitionistic logic [3,25,33,35], modal μ-
calculi (within monadic second order logics) [21,29], and PDL (within weak
chain logic) [12].
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The logic at the centre of attention in the current paper is instantial
neighbourhood logic (INL), first introduced in [8]. It provides a system of
modal logic for reasoning about neighbourhood models, in which modalities
give existential information about what kind of states occur in a neigh-
bourhood of a current state. Specifically, modal formulae are of the form�(ϕ1, . . . , ϕn; ψ) and are true at a state x if x has a neighbourhood a such
that each of the ϕi is true at some state in a, and ψ is true at every state
in a. Motivations for investigating INL range from topology to games to
modelling notions of evidence.

In recent years, various aspects of INL have been studied, including its
canonical rules and formulae [39], proof theory [41,42], duality theory [9],
and definability [43]. Furthermore, several interesting restrictions and vari-
ations of INL are discussed in [8, Section 7], and dynamic extensions have
been studied in [6,7]. However, surprisingly little is known about the bisim-
ulations. While the notion of an INL-bisimulation has been defined in [8],
only the class of finite models has been shown to have the Hennessy-Milner
property, and a Van Benthem-style characterisation theorem is still missing.

This is the gap we are closing in this paper. We study INL-bisimulations
and provide several Hennessy-Milner classes that all extend the class of finite
models. Using this, we prove a Van Benthem-style characterisation theorem,
identifying INL as the bisimulation-invariant fragment of a two-sorted first-
order language interpreted over a suitable class of first-order structures. Fur-
thermore, we adapt these results to sublanguages of INL where modal for-
mulae are of the form �(ϕ1, . . . , ϕk; ψ) for some arbitrary but fixed natural
number k. We obtain Hennessy-Milner properties and a Van Benthem-style
characterisation for each of these sublanguages of INL.

Related work Hansen, Kupke and Pacuit investigated Hennessy-Milner
classes for neighbourhood logic, the extension of propositional classical logic
with a free unary modality [27]. Like INL, this logic can be interpreted in
neighbourhood models. They also proved a Van Benthem theorem, identi-
fying the logic as the (neighbourhood) bisimulation-invariant fragment of
a two-sorted first-order logic interpreted in certain class N of first-order
structures corresponding to neighbourhood models. When proving the char-
acterisation theorem for INL in Section 7 below, we embed INL in the same
two-sorted first-order logic (of course using a different translation of the
modalities), and make use of their characterisation of N.

In [38], Schröder, Litak and Pattinson investigated Van Benthem theo-
rems for coalgebraic logics. They characterised coalgebraic logics with finite
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similarity type as the behavioural equivalence-invariant fragment of corre-
sponding coalgebraic predicate logics [31]. INL can be viewed as a coalgebraic
logic but with infinite similarity type, so that general results do not apply.
Structure of the paper In Section 2 we briefly recall the language and seman-
tics of INL, as well as the definition of an INL-bisimulation. We also define
ultrafilter extensions for instantial neighbourhood models, whose definition
is straightforward but has not appeared in the literature before.

In Section 3 we commence our study of INL-bisimulations by comparing
them to Kripke bisimulations. Specifically, we recall two ways of embedding
normal modal logic into INL and the corresponding translation of Kripke
models to instantial neighbourhood models, and show that these translations
preserve and reflect both logical equivalence and bisimilarity.

Subsequently, in Section 4 we derive Hennessy-Milner properties for INL-
bisimulation using analogues of the notions of image-finiteness and modal
saturation (see e.g. [11, Section 2]). We shed a topological light on these
notions in Section 5, where we elucidate the connection between modal sat-
uration and the (double) Vietoris endofunctor on the category Top of topo-
logical spaces and continuous functions. Thereafter, in Section 6 we derive a
different Hennessy-Milner class using the notion of populated models, which
is related to the definition of descriptive instantial neighbourhood frames
from [9]. Moreover, we give a bisimilarity-somewhere-else result.

The Van Benthem-style characterisation theorem for INL is proven in
Section 7. Finally, in Section 8 we explain how the Hennessy-Milner and
Van Benthem-style results can be adapted to certain sublangages of INL.

2. Instantial Neighbourhood Models

In this section we recall the language of instantial neighbourhood logic, its
interpreting structures, and the definitions of (INL-)bisimulations and ultra-
filter extensions. Most of these have appeared in the literature before, in [8]
and [9]. The only exception is the definition of ultrafilter extensions and the
subsequent lemma (Definition 2.12 and Lemma 2.13), which were commu-
nicated at the presentation accompanying [9] given at the 15th Workshop
on Coalgebraic Methods in Computer Science in 2020.

Language, frames and models The language INL of instantial neighbour-
hood logic is generated by the grammar

ϕ::=p | � | ¬ϕ | ϕ ∧ ϕ | �(ϕ1, . . . , ϕn; ψ)
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where p ranges over a (potentially infinite) set Prop of proposition letters.
We abbreviate ⊥, ϕ∨ψ and ϕ → ψ as usual, and in case n = 0 we write �ψ
rather than �( ;ψ) or �(∅; ψ). These formulae can be interpreted in models
based on neighbourhood frames, defined next.

Definition 2.1. An instantial neighbourhood frame is a pair (X,N) of a set
X and a function N : X → PPX, where PPX denotes the double powerset of
X. An instantial neighbourhood model is a tuple M = (X,N, V ) consisting of
an instantial neighbourhood frame (X,N) and a valuation V : Prop → PX
of the proposition letters. We define mn,� : (PX)n+1 → PX by

mn,�(a1, . . . , an, b) = {x ∈ X | ∃w ∈ N(x) s.t. w ∩ ai �= ∅ ∀i, and w ⊆ b}.

A set d ∈ mn,�(a1, . . . , an, b) is said to witness the tuple (a1, . . . , an; b).
The truth set of an INL-formula ϕ in M is defined recursively via �p�M =

V (p), ���M = X, �¬ϕ�M = X \ �ϕ�M, �ϕ1 ∧ ϕ2�
M = �ϕ1�

M ∩ �ϕ2�
M, and

��(ϕ1, . . . , ϕn; ψ)�M = mn,�(�ϕ1�
M, . . . , �ϕn�M, �ψ�M).

We write M, x � ϕ if x ∈ �ϕ�M. Two states x, x′ in models M and M′ are
called logically equivalent if they satisfy precisely the same INL-formulae,
and this is denoted by M, x �INL M′, x′, or by M, x � M′, x′ if no
confusion is likely.

Indeed, instantial neighbourhood models are simply neighbourhood mod-
els. These can also be used to interpret neighbourhood logic: the extension
of classical propositional logic with a single unary modality [18,27]. When
used to interpret INL the morphisms between them are defined differently.

Definition 2.2. A bounded morphism between instantial neighbourhood
frames F = (X,N) and F′ = (X ′, N ′) is a function f : X → X ′ such that

N ′(f(x)) = {f [a] | a ∈ N(x)}
for all x ∈ X, where f [a] denotes the direct image of a ⊆ X under f . A
bounded morphism between instantial neighbourhood models M = (X,N, V )
and M′ = (X ′, N ′, V ′) is a bounded morphism f between the underlying
frames that additionally satisfies V = f−1 ◦ V ′. We write INF and INM
for the categories of instantial neighbourhood frames and models, and their
respective notions of bounded morphism.

Bounded morphisms preserve truth of INL-formulae [8, Corollary 2.10].
It is sometimes helpful to take a coalgebraic perspective. Coalgebras can

be used as to provide uniform treatment of a wide variety of modal logics
see e.g. [30,36]. In Sect. 5 we use them to describe modal saturation using
general frames and the Vietoris functor.
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Definition 2.3. Let T be an endofunctor on a category C. A T-coalgebra is
a pair (C, γ) of an object C ∈ C together with a morphism γ : C → TC in C.
A T-coalgebra morphism from (C, γ) to (C ′, γ′) is a morphism f : C → C ′ in
C such that γ′ ◦ f = Tf ◦ γ. The collection of T-coalgebras and T-coalgebra
morphisms forms a category again, which is denoted by Coalg(T).

The category of instantial neighbourhood frames can be modelled as a
category of coalgebras, i.e., INF ∼= Coalg(PP), where P : Set → Set is the
covariant powerset function. The difference between neighbourhood logic
and instantial neighbourhood logic is then displayed in the fact that the
interpreting structures for the former are given by , where is
the contravariant powerset functor on Set. This coalgebraic perspective on
neighbourhood logic is pointed out in, and used throughout [27].

Bisimulations We introduce the notion of B-exhaustive pairs of sets.

Definition 2.4. Let B ⊆ X × X ′ be a relation. Then we call a pair (a, a′)
with a ⊆ X and a′ ⊆ X ′ B-exhaustive if a′ ⊆ B[a] and a ⊆ B−1[a′].

This definition is obtained by reversing the inclusions in the definition of
so-called B-coherent pairs of sets, introduced in [27, Definition 2.1]. Spelling
out the definition of B-exhaustive sets we get: (a, a′) is B-exhaustive if every
y′ ∈ a′ is B-related to some y ∈ a, and vice versa. Thus we can reformulate
the definition of an (INL-)bisimulation [8, Definition 2.5] as follows.

Definition 2.5. Let M = (X,N, V ) and M′ = (X ′, N ′, V ′) be instantial
neighbourhood models. A relation B ⊆ X × X ′ is an (INL-)bisimulation if
for all (x, x′) ∈ B we have:

(B1) x ∈ V (p) if and only if x′ ∈ V ′(p), for all p ∈ Prop;

(B2) If a ∈ N(x) then there exists a′ ∈ N ′(x′) s.t. (a, a′) is B-exhaustive;

(B3) If a′ ∈ N ′(x′) then there exists a ∈ N(x) s.t. (a, a′) is B-exhaustive.

Two states x ∈ X and x′ ∈ X ′ are called (INL-)bisimilar if there exists a
bisimulation linking them, notation: M, x �INL M′, x′, or M, x � M′, x′ if
there is no danger of confusion.

An easy verification shows that INL-bisimulations are closed under ar-
bitrary unions. As a consequence, the relation of bisimilarity between two
models is itself a bisimulation. Furthermore, as expected we have:

Theorem 2.6. ([8], Theorem 2.7) Let M = (X,N, V ) and M′ = (X ′, N ′, V ′)
be two instantial neighbourhood models. Then for all x ∈ X and x′ ∈ X ′:

M, x � M′, x′ implies M, x � M′, x′.
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The converse of Theorem 2.6 is not true in general. In fact, the converse
being true is viewed as a special property a class of models can have.

Definition 2.7. A class C ⊆ INM of instantial neighbourhood models is
said to be a Hennessy-Milner class, or to possess the Hennessy-Milner prop-
erty if for all models M,M′ ∈ C and states x ∈ M and x′ ∈ M′,

M, x � M′, x′ iff M, x � M′, x′.

For finite models (i.e. models based on finite sets) we have:

Theorem 2.8. ([8], Theorem 3.1) The class of finite instantial neighbour-
hood models has the Hennessy-Milner property.

General frames and ultrafilter extensions We also make use of the notions
of general and descriptive frames, introduced in [9]. We recall these, and
define ultrafilter extensions of instantial neighbourhood models.

Definition 2.9. A general (instantial neighbourhood) frame is given by a
tuple (X,N,A) such that (X,N) ∈ INF and A ⊆ PX is a collection of ad-
missible subsets containing ∅ and X that is closed under Boolean operations
and under mn,� from Definition 2.1 (for all n ∈ ω). It is called:

• differentiated if for any two distinct states x, y ∈ X there exists an a ∈ A
such that x ∈ a and y /∈ a;

• compact if
⋂

A′ �= ∅ for any A′ ⊆ A with the finite intersection property;

• crowded if for all x ∈ X and d ⊆ X such that d /∈ N(x) we can find
a1, . . . , an, b such that d witnesses (a1, . . . , an; b) while no d′ ∈ N(x) wit-
nesses (a1, . . . , an; b).

A descriptive INL-frame is a general INL-frame that is differentiated, com-
pact and crowded. A general or descriptive frame (X,N,A) can be turned
into a model by equipping it with an admissible valuation V : Prop → A.

A general frame morphism from (X,N,A) to (X ′, N ′, A′) is a bounded
morphism f : (X,N) → (X ′, N ′) such that f−1(a′) ∈ A for all a′ ∈ A′. We
write G-INF for the category of general frames and general frame morphisms,
and D-INF for its full subcategory of descriptive frames.

It was proven in [9] that the category of descriptive frames is isomorphic
to the category of coalgebras of the double Vietoris functor on Stone, the
category of Stone spaces and continuous functions. We recall the definition of
the Vietoris functor, and refer to [40] for a detailed account of the connection
of the Vietoris functor and normal modal logic.
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Definition 2.10. For a topological space (X, τ), let K(X, τ) denote the
collection of compact subsets of X. The Vietoris hyperspace V(X, τ) of (X, τ)
is obtained by equipping K(X, τ) with the topology generated by

�a = {c ∈ K(X, τ) | c ⊆ a}, �a = {c ∈ K(X, τ) | a ∩ c �= ∅},

where a ranges over τ . The assignment V extends to an endofunctor on Top
by defining its action on a continuous function f : (X, τ) → (X ′, τ ′) via
Vf : V(X, τ) → V(X ′, τ ′) : c �→ f [c]. Its restriction to Stone is denoted Vst.

Theorem 2.11. ([9], Theorem 5.1) We have D-INF ∼= Coalg(VstVst).

Proof sketch. The isomorphism on objects is obtained as follows. If
(X,N,A) is a descriptive frame and τA is the topology on X generated by the
basis A, then γN : (X, τA) → VV(X, τA) : x �→ {c ∈ K(X, τA) | c ∈ N(x)}
gives a VV-coalgebra. Conversely, a VV-coalgebra γ : (X, τ) → VV(X, τ)
gives rise rise to the descriptive frame (X,Nγ , A) where A is the collection
of clopen subsets of (X, τ) and Nγ(x) = {c ⊆ X | c ∈ γ(x)}.

The key idea to take away from this proof sketch is the intuition that
in a descriptive frame (X,N,A) the collection of neighbourhoods N(x) of a
state x is determined uniquely by the closed subsets of (X, τA) it contains.

The algebraic semantics of INL is given by Boolean algebras with in-
stantial operators (BAIOs) [9, Definition 3.1]. It was proven in op. cit. that
the category of BAIOs and homomorphisms is dually equivalent to D-INF.
Therefore one can define the ultrafilter extension of an instantial neigh-
bourhood model M as the instantial neighbourhood model underlying the
descriptive model dual to the complex algebra (cf. Example 3.2 in [9]) of M.
Concretely this means:

Definition 2.12. The ultrafilter extension of an instantial neighbourhood
model M = (X,N, V ) is defined as the tuple ufM = (X̂, N̂ , V̂ ), where X̂ is
the set of ultrafilters of X, V̂ is defined by V̂ (p) = {u ∈ X̂ | p ∈ u}, and

N̂(u) = {d ⊆ X̂ | for all n ∈ ω and a1, . . . , an, b ⊆ X :

(d ∩ ãi �= ∅ for all i and d ⊆ b̃) iff mn,�(a1, . . . , an; b) ∈ u},

where ãi = {u ∈ X̂ | ai ∈ u} and similar for b̃.

If M = (X,N, V ) is an instantial neighbourhood model, then there is a
natural counterpart in ufM for every state x ∈ X, given by x̂ = {a ⊆ X |
x ∈ a} ∈ X̂. This gives rise to a map ηX : X → X̂ : x �→ x̂. It follows from
an induction on the structure of ϕ that �ϕ�ufM = ˜�ϕ�M, so:
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Lemma 2.13. Let M = (X,N, V ) be an instantial neighbourhood model.
Then for all x ∈ X we have M, x � ufM, x̂.

3. Kripke Bisimulation Versus INL-Bisimulation

Kripke models [11, Definition 1.19] give rise to instantial neighbourhood
models in several ways. In this section we investigate two such ways, corre-
sponding to two ways of embedding normal modal logic into INL. Apart
from elucidating the connection between Kripke bisimulations and INL-
bisimulations, this will aid us with the construction of counterexamples in
Section 4.

Write ML for the language of normal modal logic, given by the grammar

ϕ ::= p | � | ¬ϕ | ϕ ∧ ϕ | ◊ϕ,

where p ranges over a set Prop of proposition letters. We use the symbol◊ rather than � to distinguish it from INL-formulae, and write ◊ = ¬◊¬.
Since ◊ and ◊ are interdefinable, we may choose either one of them as prim-
itive connective. As apparent already in the next definition, both choices of
primitive connective can be intuitive, and we will use them interchangeably.

Definition 3.1. Define translations δ1, δ2 : ML → INL recursively via
δi(p) = p, δi(�) = �, δi(¬ϕ) = ¬δi(ϕ), δi(ϕ ∧ ψ) = δi(ϕ) ∧ δi(ψ), and

δ1(◊ϕ) = �δ1(ϕ), δ2(◊ ϕ) = �(δ2(ϕ);�).

The translation δ2 is called δ in [8, Section 6], and δ1 corresponds to
τ in loc. cit. and is used to translate monotone modal logic into INL. It
is well known that ML-formulae can be interpreted in Kripke models [11,
Definition 1.19, 1.20]. With the relevant notion of bounded morphism [11,
Definition 2.7], sometimes called a p-morphism, Kripke models form the
category KM.

As announced, we consider two ways of embedding KM into INM.

Definition 3.2. For a Kripke model K = (X,R, V ) define N1, N2 : X →
PPX via

N1(x) =
{{y ∈ X | xRy}}

N2(x) =
{{y} | y ∈ X and xRy

}

and set θ1K = (X,N1, V ) and θ2K = (X,N2, V ). Both θ1 and θ2 extend to
functors KM → INM by acting as the identity on morphisms.
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The following proposition and theorem reveal the connection between the
logical translations δ1, δ2, and the model translations θ1 and θ2.

Proposition 3.3. Let K = (X,R, V ) be Kripke model. Then for all x ∈ X
and ϕ ∈ ML we have

K, x � ϕ iff θ1K, x � δ1(ϕ) iff θ2K, x � δ2(ϕ).

Proof. This follows from induction on the structure of ϕ.

Theorem 3.4. Let K = (X,R, V ) and K′ = (X ′, R′, V ′) be Kripke models.
Then for all x ∈ X and x′ ∈ X ′ we have

K, x �ML K′, x′ iff θ1K, x �INL θ1K
′, x′ iff θ2K, x �INL θ2K

′, x′.

Proof. It follows from Proposition 3.3 that both the middle and right
statement imply the left one. For the converse, it suffices to prove that for
each formula ϕ ∈ INL there exists a formula ψ ∈ ML such that �ϕ�θiK =
�δi(ψ)�θiK for all K ∈ KM. Indeed, then we have

θiK, x � ϕ iff θiK, x � δi(ψ) iff K, x � ψ

iff K′, x′ � ψ iff θiK
′, x′ � δi(ψ) iff θiK

′, x′ � ϕ.

We focus on θ1, leaving θ2 to the reader. Define β : INL → ML recursive-
ly via β(p) = p, β(�) = �, β(¬ϕ) = ¬β(ϕ), β(ϕ ∧ ψ) = β(ϕ) ∧ β(ψ) and

β(ϕ1, . . . , ϕn; ψ) = ◊ ϕ1 ∧ · · · ∧ ◊ ϕn ∧ ◊ψ.

Then it follows from a routine induction on the structure of ϕ, using the fact
that every state has only one neighbourhood, that θ1K, x � ϕ iff θ1K, x �
δ1(β(ϕ)) for any Kripke model K, as required.

Kripke bisimulations [11, Definition 2.16] relate to INL-bisimulations:

Theorem 3.5. Let K = (X,R, V ) and K′ = (X ′, R′, V ′) be two Kripke
models and B ⊆ X × X ′ a relation. Then the following are equivalent:

1. B is a Kripke bisimulation between K and K′;

2. B is an INL-bisimulation between θ1K and θ1K;

3. B is an INL-bisimulation between θ2K and θ2K.

Proof. (1) ⇔ (2) and (1) ⇔ (3) follow from unravelling the definitions.

As a consequence, Hennessy-Milner classes for normal modal logic carry
over to Hennessy-Milner classes for INL, and vice versa.

Corollary 3.6. If C ⊆ KM is a Hennessy-Milner class for ML with respect
to Kripke bisimulation, then θ1C = {θ1K | K ∈ C} ⊆ INM and θ2C = {θ2K |
K ∈ C} ⊆ INM are Hennessy-Milner classes for INL with INL-bisimulation.
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Proof. Combine Theorems 3.4 and 3.5.

4. Hennessy-Milner Classes

We extend the Hennessy-Milner theorem for finite models to several larger
classes of models. We begin by defining image-finite frames and models,
and in Proposition 4.3 we prove that these form a Hennessy-Milner class.
Subsequently, with the proof of this proposition in mind, we define a notion
of modal saturation suitable for instantial neighbourhood logic. Modally
saturated models then form a Hennessy-Milner class by design.

Definition 4.1. An instantial neighbourhood frame (X,N) is called image-
finite if every state has a finite number of neighbourhoods, and each of these
neighbourhoods is finite. An instantial neighbourhood model is called image-
finite if it is based on an image-finite frame.

Remark 4.2. Since INF ∼= Coalg(PP), we can also use general coalgebraic
methods the arrive at a notion of image-finiteness. Namely, image-finite
PP-coalgebras correspond to coalgebras for some finitary version of PP,
see e.g. [27, §4.2] for details. The finitary version of PP is given by PωPω,
where Pω : Set → Set is the finitary powerset functor. An easy verification
shows that the full subcategory of INF of image-finite frames is isomorphic
to Coalg(PωPω), so that the Definition 4.1 and the coalgebraic definition
coincide.

We now prove that the image-finite models form a Hennessy-Milner class.
While this follows from general (coalgebraic) results in [37] (akin to Remark
4.16 of [27]), we give a direct proof because it serves as inspiration for the
notion of modal saturation in Definition 4.5 below.

Proposition 4.3. The collection of image-finite instantial neighbourhood
models has the Hennessy-Milner property.

Proof. Let M = (X,N, V ) and M′ = (X ′, N ′, V ′) be image-finite models.
We prove that the relation B ⊆ X × X ′ of logical equivalence is a bisimula-
tion. Clause (B1) holds trivially. We focus on (B2), (B3) being similar.

Let (x, x′) ∈ B and a ∈ N(x). Suppose towards a contradiction that no
a′ ∈ N ′(x′) makes (a, a′) B-exhaustive. Then for each a′ ∈ N ′(x′) either:

• There exists a y′ ∈ a′ such that (y, y′) /∈ B for all y ∈ a; or

• There exists a y ∈ a such that (y, y′) /∈ B for all y′ ∈ a′.
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In the first case, we can pick a formula ψa′ such that y′ �� ψa′ and y � ψa′

for all y ∈ a. Indeed, since (y, y′) /∈ B for all y ∈ a, there must be a formula
χy for each y ∈ a such that y′ �� χy and y � χy. Since a is assumed to be
finite we can then set ψa′ =

∨
y∈a χy. Likewise, in the second case we can

find a formula ϕa′ such that y � ϕa′ and y′ �� ϕa′ for all y′ ∈ a′. Write Ψ
for the set formulae of the form ψa′ , and Φ for the set of formulae of the
form ϕa′ . (We pick these such that every a′ ∈ N ′(x′) occurs as a subscript
in either Ψ or Φ precisely once.) Then

M, x � �(Φ;
∧

Ψ)

because each of the ϕ ∈ Φ are true at some state in a and each ψ ∈ Ψ is
true anywhere in a. On the other hand, for each a′ ∈ N ′(x′) we either have
a ϕ ∈ Φ that is satisfied nowhere in a′, or a ψ ∈ Ψ such that a′ �⊆ �ψ�M

′
.

So

M′, x′ �� �(Φ;
∧

Ψ),

contradicting the assumed logical equivalence of x and x′.

The next examples show that we cannot drop the condition that neigh-
bourhoods are finite, nor that states have a finite number of neighbourhoods.

Example 4.4. Consider the Kripke frames K and K′ given in Figure 1,
where K has an infinite branch and K′ does not. Equip both with a valuation
that sends every proposition letter to the empty set. The roots are denoted
by x and x′, respectively. Then K, x �ML K′, x′ while K, x ��ML K′, x′,
see e.g. [11, Example 2.23]. By Theorem 3.5 and 3.4 we have

θ1K, x � θ1K
′, x′ while θ1K, x �� θ1K

′, x′.

By construction all states in θ1K and θ1K
′ have only finitely many neigh-

bourhoods (exactly one per state). This shows that we cannot drop the
condition that neighbourhoods be finite from the assumptions of Proposi-
tion 4.3.

Likewise θ2K, x � θ2K
′, x′ while θ2K, x �� θ2K

′, x′. Now all neighbour-
hoods of states in θ2K and θ2K are finite. So we cannot drop the condi-
tion that states have only a finite number of neighbourhoods from Proposi-
tion 4.3.

In order to find a suitable definition of modal saturation for instantial
neighbourhood models, let us examine the proof of Proposition 4.3. If the
models M and M′ in the proof are not image-finite then we encounter two
problems:
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Figure 1. States x and x′ are logically equivalent w.r.t. ML, but not

Kripke bisimilar

1. First, the construction of the formulae ϕa′ and ψa′ is in danger, because
it relies on the fact that every neighbourhood is finite.

2. Second, assuming we can construct said ϕa′ and ψa′ , we potentially
obtain infinite sets Φ and Ψ, because states are no longer restricted to
having a finite amount of neighbourhoods.

The first issue can be solved by a condition that resembles the definition
of saturation for normal modal logic [11, §2.5]. That is, we require that every
neighbourhood a of any state satisfies: If Φ ⊆ INL is a family of subsets and
every finite Φ′ ⊆ω Φ is satisfied at some state in a, then there is a state y ∈ a
satisfying all of Φ. This can be rephrased as: If Φ ⊆ INL is such that every
state of a satisfies some ϕ ∈ Φ, then there exists a finite subset Φ′ ⊆ω Φ
such that every state of a satisfies some ϕ ∈ Φ′. Then, when constructing
ϕa′ and ψa′ , it suffices to only take a finite join of separating formulae χy.

Thus, with this saturation of neighbourhoods, we can find (potentially
infinite) sets of formulae Φ and Ψ as in the proof of Proposition 4.3. For all
finite subsets Φ′ ⊆ Φ and Ψ′ ⊆ Ψ we have

M, x � �(Φ′;
∧

Ψ′).

So for the proof to go through, it suffices to find a single pair of finite Φ′

and Ψ′ such that M′, x′ �� �(Φ′;
∧

Ψ′). This motivates item (3) below.

Definition 4.5. Let M = (X,N, V ) be an instantial neighbourhood model.

1. We call a subset a ⊆ X saturated if every set Φ of INL-formulae that is
finitely satisfiable in a, is also satisfiable in a.

2. M is called locally saturated if every a ∈ ⋃
x∈X N(x) is saturated.

3. We call a state x ∈ X neighbourhood saturated if for all sets Φ, Ψ of
formulae it satisfies the following condition:

If x � �(Φ′;
∧

Ψ′) for all finite Φ′ ⊆ Φ and Ψ′ ⊆ Ψ,
then there is a single neighbourhood a ∈ N(x) witnessing this.
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That is, there is a neighbourhood a ∈ N(x) such that a ∩ �ϕ�M �= ∅ for
all ϕ ∈ Φ and a ⊆ �ψ�M for all ψ ∈ Ψ.

4. M is called globally saturated if each state is neighbourhood saturated.

5. Finally, M is modally saturated if it is both locally and globally saturated.

We have already sketched how the notions of local and global saturation
resolve the problems that arise from dropping image-finiteness in the proof
of Proposition 4.3. Thus, by design we obtain the following result.

Theorem 4.6. The collection of modally saturated instantial neighbourhood
models forms a Hennessy-Milner class.

5. A Topological Perspective

We take a topological perspective on modal saturation. This exposes the
connection between modally saturated models and the Vietoris functor V :
Top → Top (from Definition 2.10). Specifically, we identify certain general
frames as corresponding to VV-coalgebras, and prove that models based on
these general frames are precisely the modally saturated models.

Definition 5.1. Let M = (X,N, V ) be an instantial neighbourhood model.
We define τV to be the topology on X generated by the clopen base

{�ϕ�M | ϕ ∈ INL}.

This topology allows us to reformulate saturation (Definition 4.5(1)) via
compactness. Recall that a subset a of a topological space (X, τ) is compact
if every open cover has a finite subcover.

Lemma 5.2. Let M = (X,N, V ) be an instantial neighbourhood model. Then
a set a ⊆ X is saturated if and only if it is compact in (X, τV ).

Thus M = (X,N, V ) is locally saturated iff
⋃

x∈X N(x) ⊆ V(X, τV ). In
this case we can characterise neighbourhood saturation as follows.

Lemma 5.3. A state x in a locally saturated instantial neighbourhood model
M = (X,N, V ) is neighbourhood saturated iff N(x) is compact in V(X, τV ).

This is a compactness property again! So a state x in a locally sat-
urated model M = (X,N, V ) is neighbourhood compact if and only if
N(x) ∈ VV(X, τV ). One naturally wonders whether N can be conceived of
as a continuous function from (X, τV ) to VV(X, τV ) when M is modally sat-
urated. This turns out to be the case, but before we can prove this we need
the following characterisation of the topology on VV(X, τV ). This lemma
extends [9, Proposition 4.3].
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Lemma 5.4. Let (X, τ) be a topological space. Then the topology of VV(X, τ)
is generated by the subbase

�(a1, . . . , an; b) = {W | ∃w ∈ W s.t. w ∩ ai �= ∅ for all i, and w ⊆ b}
�(a1, . . . , an; b) = {W | ∀w ∈ W either w ⊆ ai for some i, or w ∩ b �= ∅}

where the ai and b range over τ .

Proof. Let τ̄ be the topology on the set underlying VV(X, τ) generated by
�(a1, . . . , an; b) and �(a1, . . . , an; b). Then we have τ̄ ⊆ τ because

�(a1, . . . , an; b) = �( �a1 ∩ · · · ∩ �an ∩ �b) ∈ τ,

�(a1, . . . , an; b) = �(�a1 ∪ · · · ∪ �an ∪ �b) ∈ τ.

To prove that τ ⊆ τ̄ , we need to show that �A ∈ τ̄ and �A ∈ τ̄ for every
open subset A of V(X, τ). Let A =

⋃
i∈I( �ai,1 ∩ · · · ∩ �ai,ni

∩ �bi), be an
arbitrary open subset in V(X, τ), where I is some index set, the ai,j , bi ∈ τ
and ni ∈ ω for each i. Since � distributes over unions we then have

�A =
⋃

i∈I

�( �ai,1 ∩ · · · ∩ �ai,ni
∩ �bi) =

⋃

i∈I

�(ai,1, . . . , ai,ni
; bi)

so it remains to show that �A ∈ τ̄ . We have W ∈ �A iff W ⊆ ⋃
i∈I( �ai,1 ∩

· · · ∩ �ai,ni
∩ �bi), and since elements of VV(X, τ) are compact we have

�A =
⋃

I′⊆ωI

(

�
⋃

i∈I′
( �ai,1 ∩ · · · ∩ �ai,ni

∩ �bi)
)

.

Consequently, it suffices to prove �
⋃

i∈I′( �ai,1 ∩ · · ·∩ �ai,ni
∩�bi) ∈ τ for

finite I ′. Using distributivity, we can rewrite this as
⋃

i∈I′
( �ai,1 ∩ · · · ∩ �ai,ni

∩ �bi) =
⋂

j∈J

( �cj ∪ �dj,1 ∪ · · · ∪ �dj,mj
)

where cj , dj,k ∈ τ . Since � distributes over intersections we then have

�
⋃

i∈I′
( �ai,1 ∩ · · · ∩ �ai,ni

∩ �bi) =
⋂

j∈J

�( �cj ∪ �dj,1 ∪ · · · ∪ �dj,mj
)

=
⋂

j∈J

�(dj,1, . . . , dj,mj
; cj).

This proves �A ∈ τ̄ , and hence τ ⊆ τ̄ .

Proposition 5.5. An instantial neighbourhood model M = (X,N, V ) is
modally saturated iff N is a continuous function (X, τV ) → VV(X, τV ).
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Proof. It follows from Lemma 5.2 and 5.3 that N is well defined iff M is
modally saturated. So it suffices to prove that N is continuous whenever M
is modally saturated. This follows from Lemma 5.4 and the fact that

N−1
(

�
(
�ϕ1�

M, . . . , �ϕn�M; �ψ�M
))

= mN

(
��(ϕ1, . . . , ϕn; ψ)�M

)

is clopen in (X, τV ) and hence N−1( �(�ϕ1�
M, . . . , �ϕn�M; �ψ�M)) = X \

N−1(��(¬ϕ1, . . . ,¬ϕn; ¬ψ)�M) is in τ as well.

Finally, we characterise modally saturated models as the models based
on certain general frames. If (X,N,A) is a general frame, then we let τA be
the topology on X generated by the clopen base {a ⊆ X | a ∈ A}. Inspired
by Lemma 5.2 and 5.3 we define modal saturation of a general frame as
follows.

Definition 5.6. A general frame (X,N,A) is called modally saturated if
N is a well-defined continuous function from (X, τA) to VV(X, τA).

Clearly, every modally saturated model M = (X,N, V ) can be viewed
as coming from a modally saturated general frame. Indeed, we can simply
take A = {�ϕ�M | ϕ ∈ INL}. It turns out that the converse is true as well,
that is, every model based on a modally saturated general frame is modally
saturated. This justifies calling the frames from Definition 5.6 modally sat-
urated: they are precisely the general frames underlying modally saturated
models!

Theorem 5.7. An instantial neighbourhood model M = (X,N, V ) is modally
saturated if and only if there exists A ⊆ PX such that (X,N,A) is a modally
saturated general frame and V : Prop → A is an admissible valuation.

Proof. The direction from left to right we have already seen. So suppose
(X,N,A) is a modally saturated general frame and V : Prop → A is an ad-
missible valuation. Then the topology τV on X generated by V is contained
in τA. As a consequence, every a ∈ ⋃

x∈X N(x) is compact in τV , and N(x) is
compact in V(X, τV ). So N is a well-defined map from (X, τV ) to VV(X, τV ),
and this implies that (X,N, V ) is modally saturated by Proposition 5.5.

6. Populated Models and Bisimilarity-Somewhere-Else

In [9] it was proven that the category of Boolean algebras with instantial op-
erators (BAIOs) is dually equivalent to Coalg(VstVst). However, rather than
simply defining descriptive frames as general frames (X,N,A) such that
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(X, τA) is a Stone space and N a function from (X, τA) to VstVst(X, τA), ad-
ditional (non-compact) neighbourhoods are added to the collection of com-
pact neighbourhoods of each state. Specifically, b ⊆ X is defined to be a
neighbourhood of x ∈ X if its closure b is in N(x), see Theorem 2.11.

It was shown in [9, Theorem 6.4] that the class of models based on
crowded descriptive frames has the Hennessy-Milner property. Guided by
this fact, we investigate to what extend one can add non-compact neigh-
bourhoods as neighbourhoods of states, thus generalising loc. cit. Further-
more, we use ultrafilter extensions to derive a bisimilarity-somewhere-else
result (Theorem 6.6).

Definition 6.1. Let M = (X,N, V ) be an instantial neighbourhood model.
If a ⊆ X then we write a for the closure of a in (X, τV ). A neighbourhood
model (X,N, V ) is called populated if for all x ∈ X and a ⊆ X we have
a ∈ N(x) iff a ∈ N(x). It is called compact if (X, τV ) is a compact space.

Remark 6.2. Compactness and populatedness can be expressed via general
frames, akin to Theorem 5.7. We leave the details to the reader.

Call M = (X,N, V ) closed if every neighbourhood a ∈ ⋃
x∈X N(x) is

closed in τV . Then a populated model M = (X,N, V ) is determined uniquely
by the closed model M− = (X,N−, V ), where N−(x) = {b | b ∈ N(x)}.
Conversely, every closed model M = (X,N, V ) gives rise to a populated
model M+ = (X,N+, V ) via N+(x) = {b ⊆ X | b ∈ N(x)}.

If (X,N, V ) is populated then (N−)+ = N , and if (X,N, V ) is closed
then (N+)− = N , so these assignment form a bijective correspondence. In
fact, this correspondence does not affect truth of formulae.

Lemma 6.3. Let M = (X,N, V ) be a populated model. Then for all x ∈ X
and ϕ ∈ INL we have M, x � ϕ iff M−, x � ϕ.

Proof. This follows from induction on the structure of ϕ. By definition of
τV , truth sets of formulae are clopen, and therefore the case ϕ = p ∈ Prop is
immediate. The cases ϕ = �, ϕ = ¬ϕ1 and ϕ = ϕ1 ∧ϕ2 are straightforward.
The induction step for ϕ = �(ϕ1, . . . , ϕn; ψ) follows from the fact that for
all b ⊆ X we have b∩�ϕi�

M �= ∅ iff b∩�ϕi�
M �= ∅ and b ⊆ �ψ�M iff b ⊆ �ψ�M.

Despite this fact, the relation of logical equivalence between a populated
model and its underlying closed model need not be a bisimulation.

Example 6.4. Let X be the interval [0, 1] and N(x) = {X} for all x ∈
X. Assume a countably infinite number of proposition letters indexed by
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Q ∩ [0, 1], and let V (pq) = [q, 1]. Then I = (X,N, V ) is a closed instantial
neighbourhood model, (X, τV ) is compact, and since X is the only neigh-
bourhood of a state I is locally saturated. Moreover, the fact that each state
has only one neighbourhood implies global saturation, so I is modally sat-
urated. Let I+ = (X,N+, V ) be the corresponding populated model. Then
the half-open interval (0, 1] ∈ N+(x) for all x ∈ X because its closure is X.

The relation of logical equivalence between I and I+ is simply the diagonal
ΔX ⊆ X ×X. To see that this is not a bisimulation, let x be any state in X
and consider (0, 1] ∈ N+(x). The pair

(
[0, 1], (0, 1]

)
is not ΔX-exhaustive,

because Δ−1
X [(0, 1]] = (0, 1] �= [0, 1]. As [0, 1] is the only neighbourhood in

N(x) this proves that (B3) fails, and therefore ΔX is not a bisimulation.

However, under the additional assumption of compactness and global
saturation, populated models form their own Hennessy-Milner class. (Global
saturation of populated models is defined as in Definition 4.5(4).)

Theorem 6.5. The class of compact and globally saturated populated models
is a Hennessy-Milner class.

Proof. If M1 = (X1, N1, V1) and M2 = (X2, N2, V2) are compact and glob-
ally saturated populated models, then their underlying closed models M−

1

and M−
2 are modally saturated. So the relation B of logical equivalence is a

bisimulation between M−
1 and M−

2 . It can be shown to be a bisimulation be-
tween M1 and M2 as well: If (x1, x2) ∈ B and b1 ∈ N1(x1) then b1 ∈ N−

1 (x1),
so there must be a c2 ∈ N−

2 (x2) such that (b1, c2) is B-exhaustive. Setting
b2 = B[b1] ∩ c2 yields a neighbourhood such that (b1, b2) is B-exhaustive,
and it can be shown that b2 = c2 so that b2 ∈ N2(x2).

Finally we prove a bisimilarity-somewhere-else theorem, stating that logi-
cal equivalence between two states in two models can be verified by checking
bisimilarity between two states in certain related models. The rôle of related
model can be played either by the ultrafilter extensions or their underlying
closed models. Recall that the ultrafilter extension of a model M = (X,N, V )
is denoted by ufM. Denote the closed model underlying ufM by ufM.

Theorem 6.6. Let M = (X,N, V ) and M′ = (X ′, N ′, V ′) be two instantial
neighbourhood models. Then

M, x � M′, x′ iff ufM, x̂ � ufM′, x̂′ iff ufM, x̂ � ufM′, x̂′.

Proof. The ultrafilter extension ufM = (X̂, N̂ , V̂ ) of M is compact be-
cause the topology τV̂ is a sub-topology of a compact topology. Further-
more, it is populated as a consequence of [9, Lemma 5.4] and it is globally
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saturated because the underlying closed model is globally saturated (which
in turn follows from the fact that ufM arises from a VstVst-coalgebra). The
same goes for ufM′, so that the left “iff” follows from Lemma 2.13 and
Theorem 6.5.

Since the (closed) frames underlying ufM and ufM′ are given by VstVst-
coalgebras, Theorem 5.7 shows that models based on them are modally
saturated. The right “iff” then follows from Lemma 2.13 and 6.3, and The-
orem 4.6.

7. Characterisation Theorem

Van Benthem’s characterisation theorem for normal modal logic states that
normal modal logic is the Kripke bisimulation-invariant fragment of first-
order logic [5]. In this section we prove an INL-counterpart of this theorem.
Our proof resembles the one for normal modal logic in [11, Theorem 2.68].

We use a translation of INL into a two-sorted first-order language de-
noted by FOL, previously used in e.g. [13,23,26,27]. In particular, [27] also
deals with neighbourhood models, albeit to interpret a different modality,
and we can make use of their result characterising those two-sorted first-
order structures that correspond to neighbourhood models (recalled after
Lemma 6.5 below).

The two sorts in this language are denoted by s and n, and intuitively
contain the states and neighbourhoods of a model. To avoid notational clut-
ter, we omit the type of the elements and agree to denote elements of sort s
with x, y, z, . . ., and elements of sort n by a, b, c. These two sorts are related
via binary relations N, relating elements of sort s to elements of sort n, and
E, relating elements of sort n to elements of sort s. The intuitive reading
of xNa is “a is a neighbourhood of x” and aEx is intended to mean “x
is an element of a.” Furthermore, we have a unary predicate Pp for every
propositional variable p. So FOL is generated by the following grammar:

ϕ::=(x = y) | (a = b) | Ppx | xNa | aEx | ¬ϕ | ϕ ∧ ϕ | ∃xϕ | ∃aϕ,

where p ∈ Prop, x, y range over s, and a, b range over n. We abbreviate
∨,→,∀ as usual.

Definition 7.1. The standard translation stx : INL → FOL is defined
recursively via stx(�) = (x = x), stx(p) = Ppx, stx(¬ϕ) = ¬ stx(ϕ), stx(ϕ ∧
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ψ) = stx(ϕ) ∧ stx(ψ), and

stx(�(ϕ1, . . . , ϕn; ψ)) = ∃a
(
xNa ∧ ∃y(aEy ∧ sty(ϕ1))

∧ · · ·
∧ ∃y(aEy ∧ sty(ϕn))

∧ ∀y(aEy → sty(ψ))
)

Intuitively, the clause for �(ϕ1, . . . , ϕn; ψ) reads: “A state x satisfies�(ϕ1, . . . , ϕn; ψ) if there exists an a of type ‘neighbourhood’ such that

• a is a neighbourhood of x;

• for each of the ϕi there a state y such that y ∈ a and y satisfies ϕi;

• every state y that is in a satisfies ψ.”

Let us make this intuition more precise by investigating the first-order struc-
tures of FOL, and relating them to our instantial neighbourhood models.

Definition 7.2. A first-order structure for FOL is a tuple of the form M =
(Ds, Dn, {Pp | p ∈ Prop}, N,E), where Ds and Dn are sets, Pp ⊆ Ds, N ⊆
Ds × Dn and E ⊆ Dn × Ds. Truth of ϕ ∈ FOL in a structure M is defined
as expected, and is denoted by M |= ϕ.

We write ϕ(x) if x is a free variable of type s in ϕ. In this case, we write
M |= ϕ[s] if ϕ is true in M when s ∈ Ds is assigned to x. Similarly define
ϕ(a) and M |= ϕ[n] if a is a free variable of type n and n ∈ Dn.

If Ψ is a set of FOL-formulae and M is a two-sorted first-order structure,
then we write M |= Ψ if M |= ψ for all ψ ∈ Ψ. We denote the semantic
consequence relation of a class K of FOL-models by |=K. Finally, a set Φ(v)
of formulae with free variable v of either type is said to be K-consistent
if there exists an M ∈ K and a u of the same type as v in M such that
M |= Φ[u].

Every instantial neighbourhood model M gives rise to a two-sorted first-
order structure as follows [27, Definition 5.1].

Definition 7.3. Given an instantial neighbourhood model M = (X,N, V ),
define the first-order model M◦ = (Ds, Dn, {Pp | p ∈ Prop}, RN , R�) via

• Ds = X and Dn =
⋃

x∈X N(x);

• Pp = V (p) for all p ∈ Prop;

• RN = {(x, a) | x ∈ X and a ∈ N(x)};

• R� = {(a, x) | a ∈ Dn and x ∈ a}.
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This always gives a first-order structre in the sense of Definition 7.2.
Moreover:

Lemma 7.4. For all instantial neighbourhood models M = (X,N, V ), states
w ∈ X, and INL-formulae ϕ we have

M, w � ϕ iff M◦ |= stx(ϕ)[w].

Proof. By induction on the structure of ϕ. The only non-trivial case is for�, which can be read off from the definition of the standard translation.

While every instantial neighbourhood model gives rise to a two-sorted
first-order structure, not every first-order model is of such a form. It was
proven in [27, Proposition 5.4] that a first-order model is isomorphic to a
model of the form M◦ iff it satisfies NAX, which consists of the following
axioms:

∀a∃x(xNa), ∀a∀b((∀x(aEx ↔ bEx)) → a = b).

It is clear that every first-order model of the form M◦ satisfies NAX. Con-
versely, if M = (Ds, Dn, {Pp | p ∈ Prop}, N,E) is a two-sorted first-order
structure satisfying NAX, then the model M◦ = (Ds, N, V ), with

N(s) =
{
a ⊆ Ds | ∃n ∈ Dn s.t. sNn and {t ∈ Ds | nEt} = a

}

and V (p) = {s ∈ Ds | M |= Pp[s]} is such that M ∼= (M◦)◦ [27, Proposi-
tion 5.4].

Before proceeding to the characterisation theorem, we discuss ω-satu-
rated structures [17]. Let M = (Ds, Dn, {Pp | p ∈ Prop}, N, E) be a FOL-
model, X ⊆ Ds and A ⊆ Dn. The (X,A)-expansion FOL[X,A] of FOL is the
language obtained from FOL by adding constants x, a for each x ∈ X and
a ∈ A, and is interpreted in M by requiring that x is interpreted as x, and a
as a. The FOL-model M is called ω-saturated if for all finite X ⊆ω Ds and
A ⊆ω Dn and every collection Γ(v) of FOL[X,A]-formulae with free variable
v of type either s or n the following holds: If Γ(x) is finitely satisfiable in
M, then it is satisfiable in M. Using e.g. ultraproducts, one can show that
every FOL-model has an ω-saturated elementary extension [17]. Moreover, if
M ∈ N then its ω-saturated elementary extension is also in N, since validity
of NAX is preserved under elementary extensions.

In order to use ω-saturated structures to prove the characterisation the-
orem, we show that the instantial neighbourhood model corresponding to
any ω-saturated FOL-model in N is modally saturated.

Lemma 7.5. Suppose M ∈ N is ω-saturated. Then M◦ is modally saturated.
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Proof. Let M◦ = (X,N, V ). First we show that M◦ is locally saturated.
Let a ⊆ X be the neighbourhood of some world w. Then a corresponds to
some domain element a◦ ∈ Dn. If Φ is finitely satisfiable in a, then the set

A = {a◦Ex} ∪ {stx(ϕ) | ϕ ∈ Φ}
of FOL[{a◦}]-formulae is finitely satisfiable in M. Since M is ω-saturated,
it follows that A is satisfiable in M, and therefore Φ is satisfiable in a.

For neighbourhood saturation, let w ∈ X and let Φ and Ψ be sets of
INL-formulae. Suppose that x � �(Φ′;

∧
Ψ′) for all Φ′ ⊆ω Φ and Ψ′ ⊆ω Ψ.

Let w◦ ∈ Ds correspond to w ∈ X. Then the following set of FOL[{w◦}]-
formulae with free variable u of type n is finitely satisfiable:

B = {w◦Nu} ∪ {∃y(uEy ∧ sty(ϕ)) | ϕ ∈ Φ} ∪ {∀y(uEy → sty(ψ)) | ψ ∈ Ψ}.

(This is witnessed by the fact that M satisfies stx(�(Φ′;
∧

Ψ′))[w] for all
Φ′ ⊆ω Φ and Ψ′ ⊆ω Ψ.) Again, ω-saturation of M implies that the set B
satisfiable in M. Therefore there must exist a neighbourhood a of w such
that a ∩ �ϕ� �= ∅ for all ϕ ∈ Φ and a ⊆ �ψ� for all ψ ∈ Ψ.

We now have all the ingredients to prove the Van Benthem-style charac-
terisation theorem for instantial neighbourhood logic.
Theorem 7.6. Let α(x) be a FOL-formula. Over the class N the following
are equivalent:

1. α(x) is equivalent to the translation of an INL-formula;

2. α(x) is invariant under INL-bisimulation.
Proof. The implication (1) ⇒ (2) follows from Theorem 2.6. To prove
the converse implication, assume that α(x) is invariant under bisimulations.
Consider the set of modal consequences of α:

MOCN(α) = {stx(ϕ) | ϕ ∈ INL and α(x) |=N stx(ϕ)}.

It suffices to show that MOCN(α) |=N α(x), because then compactness en-
tails existence of a finite subset Γ(x) ⊆ MOCN(α) such that Γ(x) |=N α(x),
so that over N α(x) is equivalent to

∧
Γ(x), which is the standard transla-

tion of a formula in INL. So let M ∈ N and assume M |= MOCN(α)[s]. We
need to show that M |= α(x)[s]. Set

T (x) = {stx(ϕ) | M◦, s � ϕ}.

We claim that T (x)∪{α(x)} is consistent. Suppose not, then by compactness
there exists a finite subset T0(x) ⊆ T (x) such that α(x) |=N ¬ ∧n

i=1 T0(x).
Consequently ¬ ∧

T0(x) ∈ MOCN(α). But this implies M |= ¬ ∧
T0(x)[s],

which contradicts the assumption that M |= T0(x)[s].
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Thus we can find a first-order structure N ∈ N and an element t of sort
s in N such that N |= T (x) ∪ {α(x)}[t]. Furthermore, we have

M |= stx(ϕ)[s] iff N |= stx(ϕ)[t] for all ϕ ∈ INL. (1)

Now let M∗ and N∗ be two ω-saturated elementary extensions of M and N,
respectively, and let s∗ and t∗ be the images of s and t. Then by Lemma 7.5
(M∗)◦ and (N∗)◦ are modally saturated, and (1) and Theorem 4.6 entail
that (M∗)◦, s∗ and (N∗)◦, t∗ are bisimilar. Finally, as N |= α(x)[t] we have
N∗ |= α(x)[t∗], and since α(x) is assumed to be invariant under bisimulations
we get M∗ |= α(x)[s∗]. Invariance of truth of formulae under elementary
embeddings then gives M |= α(x)[s], as desired.

8. Adaptation to Bounded Instantial Neighbourhood Logic

In this final section we adapt the results above to bounded INL, obtained
from INL by limiting the number of instances in modal formulae [8, §7.3].

Definition 8.1. For k ∈ ω, the language INLk is the extension of classical
propositional logic with operators of the form �(ϕ1, . . . , ϕk; ψ).

Modal formulae with less than k instances can be viewed as formulae in
INLk by adding � for the remaining instances. Instantial neighbourhood
models serve as semantics for INLk via the clauses of Definition 2.1, and
logical equivalence is denoted by �k. In particular, the case k = 0 yields
monotone modal logic interpreted in neighbourhood models, with mono-
tonicity of the modality built into the definition of its interpretation (rather
than the model, as in [26, Definition 3.5]).

We extend [8, Definition 7.7] to the following notion of k-bisimulation.

Definition 8.2. A k-bisimulation between instantial neighbourhood mod-
els M = (X,N, V ) and M′ = (X ′, N ′, V ′) is a relation B ⊆ X × X ′ such
that for all (x, x′) ∈ B we have:

kB1 x ∈ V (p) if and only if x′ ∈ V ′(p), for all p ∈ Prop;

kB2 If a ∈ N(x) and y1, . . . , yk ∈ a, then there exists a′ ∈ N ′(x′) such that
a′ ⊆ B[a] and y1, . . . , yk ∈ B−1[a′];

kB3 If a′ ∈ N ′(x′) and y′
1, . . . , y

′
k ∈ a′, then there exists a ∈ N(x) such that

a ⊆ B−1[a′] and y′
1, . . . , y

′
k ∈ B[a].

Write �k for the induced notion of k-bisimilarity.
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While clearly every INL-bisimulation is also a k-bisimulation for any
k ∈ ω, the converse need not be true. This is witnessed by Example 8.4
below. As announced, we can again prove the Hennessy-Milner property for
the class of modally saturated models, with modal saturation defined as in
Definition 4.5.

Theorem 8.3. Let M = (X,N, V ) and M′ = (X ′, N ′, V ′) be two modally
saturated instantial neighbourhood models and x ∈ X,x′ ∈ X ′. Then

M, x �k M′, x′ iff M, x �k M′, x′.

Proof. We claim that the relation B of logical equivalence between M and
M′ is a k-bisimulation. The first clause is obvious. We focus on proving
(kB2). Item (kB3) can be proven symmetrically.

Let a ∈ N(x) and y1, . . . , yk ∈ a and suppose there exists no a′ ∈ N ′(x′)
with a′ ⊆ B[a] and y1, . . . , yk ∈ B−1[a′]. Then for each a′ ∈ N ′(x′), either

1. There exists z′ ∈ a′ such that z′ /∈ B[a], i.e., (z, z′) /∈ B for all z ∈ a; or

2. yi /∈ B−1[a′] for one of the yi.

In the first case we can pick a formula ψ such that a ⊆ �ψ�M and M′, z′ �� ψ.
Let Ψ be the set of all ψ that arise in such a way. In the second case, we
can find a formula ϕi such that M, yi � ϕi while M′, y′ �� ϕi for all y′ ∈ a′.
Let Φi denote all ϕi that arise in such a manner. (The index runs from 1 to
k and indicates which of the yi is used to find ϕi.) Then the set N ′(x′) of
neighbourhoods of x′, conceived of as a subset of V(X, τV ), is covered by

⋃

ϕ1∈Φ1

��¬ϕ1�
M′ ∪ · · · ∪

⋃

ϕk∈Φk

��¬ϕk�M
′ ∪

⋃

ψ∈Ψ

��¬ψ�M
′
.

Since N ′(x′) is assumed to be compact, we can find a finite subcover indexed
by finite sets Φ′

i ⊆ Φi and Ψ′ ⊆ Ψ. We then arrive at a contradiction because
M, x � �(

∧
Φ′

1, . . . ,
∧

Φ′
k;

∧
Ψ′) while M′, x′ � �(

∧
Φ′

1, . . . ,
∧

Φ′
k;

∧
Ψ′).

Call a relation B between instantial neighbourhood models an ω-bisimu-
lation if it is a k-bisimulation for every k ∈ ω. Since INL =

⋃
k∈ω INLk

Theorems 4.6 and 8.3 yield that on modally saturated models, ω-bisimilarity
and INL-logical equivalence coincide (so we can also characterise INL as the
ω-bisimulation invariant fragment of FOL on the class N). However, they
do not coincide in general, as the following example shows.

Example 8.4. Let X = [0, 1] and define N1, N2 : X → PPX by

N1(x) = {a ⊆ X | a is countably infinite} ∪ {X}
N2(x) = {a ⊆ X | a is countably infinite}
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for all x ∈ X. Let V (p) = ∅ for all p ∈ Prop and define models I1 =
(X,N1, V ) and I2 = (X,N2, V ). Then the diagonal ΔX ⊆ X × X is an
ω-bisimulation between I1 and I2, but not an INL-bisimulation.

Defining the standard translation INLk → FOL as the restriction of the
one for INL (Definition 7.1), analogously to Theorem 7.6 we obtain:

Theorem 8.5. Let α(x) be an FOL-formula. Then over the class N the
following are equivalent:

1. α(x) is equivalent to the translation of an INLk-formula;

2. α(x) is invariant under k-bisimulation.

9. Conclusion

We have identified several Hennessy-Milner classes and proved a Van Bent-
hem-style characterisation theorem for instantial neighbourhood logic, and
for an ω-indexed family of its sublogics. There are several appealing direc-
tions for further research.

First, it would be interesting to see whether the results in this paper can
be adapted to accommodate other variations of INL or its semantics, like
the topological interpretation [8, Section 7.2] or dynamic versions of INL
[6,7].

Second, one could investigate a suitable notion of simulation for INL.
Such a notion would probably only preserve a certain negation-free frag-
ment of the language. The interplay of existential and universal information
in INL-modalities turns finding a suitable definition of simulation and the
fragment it preserves into a non-trivial task. This is related to [20,24].

Finally, the conclusion of [9] speculates about a positive and a geomet-
ric version of INL. It would be fascinating to examine these further and
investigate their relation with (normal) positive modal logic [15,16,19] and
(normal) geometric modal logic [10]. Subsequently, one could think about
suitable notions of simulation and bisimulation for these logics.
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